Asynchronous GABA Release Is a Key Determinant of Tonic Inhibition and Controls Neuronal Excitability: A Study in the Synapsin II-/- Mouse

Idiopathic epilepsies have frequently been linked to mutations in voltage-gated channels (channelopathies); recently, mutations in several genes encoding presynaptic proteins have been shown to cause epilepsy in humans and mice, indicating that epilepsy can also be considered a synaptopathy. However...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2015-10, Vol.25 (10), p.3356-3368
Hauptverfasser: Medrihan, Lucian, Ferrea, Enrico, Greco, Barbara, Baldelli, Pietro, Benfenati, Fabio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3368
container_issue 10
container_start_page 3356
container_title Cerebral cortex (New York, N.Y. 1991)
container_volume 25
creator Medrihan, Lucian
Ferrea, Enrico
Greco, Barbara
Baldelli, Pietro
Benfenati, Fabio
description Idiopathic epilepsies have frequently been linked to mutations in voltage-gated channels (channelopathies); recently, mutations in several genes encoding presynaptic proteins have been shown to cause epilepsy in humans and mice, indicating that epilepsy can also be considered a synaptopathy. However, the functional mechanisms by which presynaptic dysfunctions lead to hyperexcitability and seizures are not well understood. We show that deletion of synapsin II (Syn II), a presynaptic protein contributing to epilepsy predisposition in humans, leads to a loss of tonic inhibition in mouse hippocampal slices due to a dramatic decrease in presynaptic asynchronous GABA release. We also show that the asynchronous GABA release reduces postsynaptic cell firing, and the parallel impairment of asynchronous GABA release and tonic inhibition results in an increased excitability at both single-neuron and network levels. Restoring tonic inhibition with THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; gaboxadol), a selective agonist of δ subunit-containing GABAA receptors, fully rescues the SynII(-/-) epileptic phenotype both ex vivo and in vivo. The results demonstrate a causal relationship between the dynamics of GABA release and the generation of tonic inhibition, and identify a novel mechanism of epileptogenesis generated by dysfunctions in the dynamics of release that can be effectively targeted by novel antiepileptic strategies.
doi_str_mv 10.1093/cercor/bhu141
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4585492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718077694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-c5ce53676e98a93a9cc38e9b846e567ecf8e3eeca4ac6e3f94a7cf1adb39da803</originalsourceid><addsrcrecordid>eNpVkUtv1TAQhSNERR-wZItmySa9cew8zAIp3JYStYBEy9qaOBNilGtfbAc1f4FfTdAtFaxmRnP0zRmdJHnJsnOWSb7R5LXzm26cmWBPkhMmyizNmZRP1z4TVcpzxo6T0xC-Zxmr8iJ_lhznQpa5lPwk-dWExerRO-vmAFfNuwa-0EQYCNoACNe0wAVF8jtj0UZwA9w5azS0djSdicZZQNvD1tno3RTgE80rDCe4vNcmYmcmE5c30MBtnPsFjIU4EtwuFvdhHdo23aTwcT1Oz5OjAadALx7qWfL1_eXd9kN68_mq3TY3qRYFj6kuNBW8rEqSNUqOUmtek-xqUVJRVqSHmjiRRoG6JD5IgZUeGPYdlz3WGT9L3h64-7nbUa9pdY6T2nuzQ78oh0b9v7FmVN_cTyWKuhAyXwGvHwDe_ZgpRLUzQdM0oaX1EcUqVmdVVUqxStODVHsXgqfh8QzL1J_81CE_dchv1b_619uj-m9g_DfKGZuR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718077694</pqid></control><display><type>article</type><title>Asynchronous GABA Release Is a Key Determinant of Tonic Inhibition and Controls Neuronal Excitability: A Study in the Synapsin II-/- Mouse</title><source>Electronic Journals Library</source><source>Oxford University Press Journals</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Medrihan, Lucian ; Ferrea, Enrico ; Greco, Barbara ; Baldelli, Pietro ; Benfenati, Fabio</creator><creatorcontrib>Medrihan, Lucian ; Ferrea, Enrico ; Greco, Barbara ; Baldelli, Pietro ; Benfenati, Fabio</creatorcontrib><description>Idiopathic epilepsies have frequently been linked to mutations in voltage-gated channels (channelopathies); recently, mutations in several genes encoding presynaptic proteins have been shown to cause epilepsy in humans and mice, indicating that epilepsy can also be considered a synaptopathy. However, the functional mechanisms by which presynaptic dysfunctions lead to hyperexcitability and seizures are not well understood. We show that deletion of synapsin II (Syn II), a presynaptic protein contributing to epilepsy predisposition in humans, leads to a loss of tonic inhibition in mouse hippocampal slices due to a dramatic decrease in presynaptic asynchronous GABA release. We also show that the asynchronous GABA release reduces postsynaptic cell firing, and the parallel impairment of asynchronous GABA release and tonic inhibition results in an increased excitability at both single-neuron and network levels. Restoring tonic inhibition with THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; gaboxadol), a selective agonist of δ subunit-containing GABAA receptors, fully rescues the SynII(-/-) epileptic phenotype both ex vivo and in vivo. The results demonstrate a causal relationship between the dynamics of GABA release and the generation of tonic inhibition, and identify a novel mechanism of epileptogenesis generated by dysfunctions in the dynamics of release that can be effectively targeted by novel antiepileptic strategies.</description><identifier>ISSN: 1047-3211</identifier><identifier>EISSN: 1460-2199</identifier><identifier>DOI: 10.1093/cercor/bhu141</identifier><identifier>PMID: 24962993</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Action Potentials - drug effects ; Animals ; Excitatory Postsynaptic Potentials ; GABA Agonists - pharmacology ; gamma-Aminobutyric Acid - physiology ; Hippocampus - drug effects ; Hippocampus - physiology ; Hippocampus - physiopathology ; Inhibitory Postsynaptic Potentials ; Isoxazoles - pharmacology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neural Inhibition ; Neurons - drug effects ; Neurons - physiology ; Seizures - physiopathology ; Synapsins - genetics ; Synapsins - physiology</subject><ispartof>Cerebral cortex (New York, N.Y. 1991), 2015-10, Vol.25 (10), p.3356-3368</ispartof><rights>The Author 2014. Published by Oxford University Press.</rights><rights>The Author 2014. Published by Oxford University Press 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-c5ce53676e98a93a9cc38e9b846e567ecf8e3eeca4ac6e3f94a7cf1adb39da803</citedby><cites>FETCH-LOGICAL-c453t-c5ce53676e98a93a9cc38e9b846e567ecf8e3eeca4ac6e3f94a7cf1adb39da803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24962993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Medrihan, Lucian</creatorcontrib><creatorcontrib>Ferrea, Enrico</creatorcontrib><creatorcontrib>Greco, Barbara</creatorcontrib><creatorcontrib>Baldelli, Pietro</creatorcontrib><creatorcontrib>Benfenati, Fabio</creatorcontrib><title>Asynchronous GABA Release Is a Key Determinant of Tonic Inhibition and Controls Neuronal Excitability: A Study in the Synapsin II-/- Mouse</title><title>Cerebral cortex (New York, N.Y. 1991)</title><addtitle>Cereb Cortex</addtitle><description>Idiopathic epilepsies have frequently been linked to mutations in voltage-gated channels (channelopathies); recently, mutations in several genes encoding presynaptic proteins have been shown to cause epilepsy in humans and mice, indicating that epilepsy can also be considered a synaptopathy. However, the functional mechanisms by which presynaptic dysfunctions lead to hyperexcitability and seizures are not well understood. We show that deletion of synapsin II (Syn II), a presynaptic protein contributing to epilepsy predisposition in humans, leads to a loss of tonic inhibition in mouse hippocampal slices due to a dramatic decrease in presynaptic asynchronous GABA release. We also show that the asynchronous GABA release reduces postsynaptic cell firing, and the parallel impairment of asynchronous GABA release and tonic inhibition results in an increased excitability at both single-neuron and network levels. Restoring tonic inhibition with THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; gaboxadol), a selective agonist of δ subunit-containing GABAA receptors, fully rescues the SynII(-/-) epileptic phenotype both ex vivo and in vivo. The results demonstrate a causal relationship between the dynamics of GABA release and the generation of tonic inhibition, and identify a novel mechanism of epileptogenesis generated by dysfunctions in the dynamics of release that can be effectively targeted by novel antiepileptic strategies.</description><subject>Action Potentials - drug effects</subject><subject>Animals</subject><subject>Excitatory Postsynaptic Potentials</subject><subject>GABA Agonists - pharmacology</subject><subject>gamma-Aminobutyric Acid - physiology</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - physiology</subject><subject>Hippocampus - physiopathology</subject><subject>Inhibitory Postsynaptic Potentials</subject><subject>Isoxazoles - pharmacology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Neural Inhibition</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Seizures - physiopathology</subject><subject>Synapsins - genetics</subject><subject>Synapsins - physiology</subject><issn>1047-3211</issn><issn>1460-2199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUtv1TAQhSNERR-wZItmySa9cew8zAIp3JYStYBEy9qaOBNilGtfbAc1f4FfTdAtFaxmRnP0zRmdJHnJsnOWSb7R5LXzm26cmWBPkhMmyizNmZRP1z4TVcpzxo6T0xC-Zxmr8iJ_lhznQpa5lPwk-dWExerRO-vmAFfNuwa-0EQYCNoACNe0wAVF8jtj0UZwA9w5azS0djSdicZZQNvD1tno3RTgE80rDCe4vNcmYmcmE5c30MBtnPsFjIU4EtwuFvdhHdo23aTwcT1Oz5OjAadALx7qWfL1_eXd9kN68_mq3TY3qRYFj6kuNBW8rEqSNUqOUmtek-xqUVJRVqSHmjiRRoG6JD5IgZUeGPYdlz3WGT9L3h64-7nbUa9pdY6T2nuzQ78oh0b9v7FmVN_cTyWKuhAyXwGvHwDe_ZgpRLUzQdM0oaX1EcUqVmdVVUqxStODVHsXgqfh8QzL1J_81CE_dchv1b_619uj-m9g_DfKGZuR</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Medrihan, Lucian</creator><creator>Ferrea, Enrico</creator><creator>Greco, Barbara</creator><creator>Baldelli, Pietro</creator><creator>Benfenati, Fabio</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151001</creationdate><title>Asynchronous GABA Release Is a Key Determinant of Tonic Inhibition and Controls Neuronal Excitability: A Study in the Synapsin II-/- Mouse</title><author>Medrihan, Lucian ; Ferrea, Enrico ; Greco, Barbara ; Baldelli, Pietro ; Benfenati, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-c5ce53676e98a93a9cc38e9b846e567ecf8e3eeca4ac6e3f94a7cf1adb39da803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Action Potentials - drug effects</topic><topic>Animals</topic><topic>Excitatory Postsynaptic Potentials</topic><topic>GABA Agonists - pharmacology</topic><topic>gamma-Aminobutyric Acid - physiology</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - physiology</topic><topic>Hippocampus - physiopathology</topic><topic>Inhibitory Postsynaptic Potentials</topic><topic>Isoxazoles - pharmacology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Neural Inhibition</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Seizures - physiopathology</topic><topic>Synapsins - genetics</topic><topic>Synapsins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medrihan, Lucian</creatorcontrib><creatorcontrib>Ferrea, Enrico</creatorcontrib><creatorcontrib>Greco, Barbara</creatorcontrib><creatorcontrib>Baldelli, Pietro</creatorcontrib><creatorcontrib>Benfenati, Fabio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medrihan, Lucian</au><au>Ferrea, Enrico</au><au>Greco, Barbara</au><au>Baldelli, Pietro</au><au>Benfenati, Fabio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asynchronous GABA Release Is a Key Determinant of Tonic Inhibition and Controls Neuronal Excitability: A Study in the Synapsin II-/- Mouse</atitle><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle><addtitle>Cereb Cortex</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>25</volume><issue>10</issue><spage>3356</spage><epage>3368</epage><pages>3356-3368</pages><issn>1047-3211</issn><eissn>1460-2199</eissn><abstract>Idiopathic epilepsies have frequently been linked to mutations in voltage-gated channels (channelopathies); recently, mutations in several genes encoding presynaptic proteins have been shown to cause epilepsy in humans and mice, indicating that epilepsy can also be considered a synaptopathy. However, the functional mechanisms by which presynaptic dysfunctions lead to hyperexcitability and seizures are not well understood. We show that deletion of synapsin II (Syn II), a presynaptic protein contributing to epilepsy predisposition in humans, leads to a loss of tonic inhibition in mouse hippocampal slices due to a dramatic decrease in presynaptic asynchronous GABA release. We also show that the asynchronous GABA release reduces postsynaptic cell firing, and the parallel impairment of asynchronous GABA release and tonic inhibition results in an increased excitability at both single-neuron and network levels. Restoring tonic inhibition with THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; gaboxadol), a selective agonist of δ subunit-containing GABAA receptors, fully rescues the SynII(-/-) epileptic phenotype both ex vivo and in vivo. The results demonstrate a causal relationship between the dynamics of GABA release and the generation of tonic inhibition, and identify a novel mechanism of epileptogenesis generated by dysfunctions in the dynamics of release that can be effectively targeted by novel antiepileptic strategies.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>24962993</pmid><doi>10.1093/cercor/bhu141</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1047-3211
ispartof Cerebral cortex (New York, N.Y. 1991), 2015-10, Vol.25 (10), p.3356-3368
issn 1047-3211
1460-2199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4585492
source Electronic Journals Library; Oxford University Press Journals; MEDLINE; Alma/SFX Local Collection
subjects Action Potentials - drug effects
Animals
Excitatory Postsynaptic Potentials
GABA Agonists - pharmacology
gamma-Aminobutyric Acid - physiology
Hippocampus - drug effects
Hippocampus - physiology
Hippocampus - physiopathology
Inhibitory Postsynaptic Potentials
Isoxazoles - pharmacology
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Neural Inhibition
Neurons - drug effects
Neurons - physiology
Seizures - physiopathology
Synapsins - genetics
Synapsins - physiology
title Asynchronous GABA Release Is a Key Determinant of Tonic Inhibition and Controls Neuronal Excitability: A Study in the Synapsin II-/- Mouse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A45%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asynchronous%20GABA%20Release%20Is%20a%20Key%20Determinant%20of%20Tonic%20Inhibition%20and%20Controls%20Neuronal%20Excitability:%20A%20Study%20in%20the%20Synapsin%20II-/-%20Mouse&rft.jtitle=Cerebral%20cortex%20(New%20York,%20N.Y.%201991)&rft.au=Medrihan,%20Lucian&rft.date=2015-10-01&rft.volume=25&rft.issue=10&rft.spage=3356&rft.epage=3368&rft.pages=3356-3368&rft.issn=1047-3211&rft.eissn=1460-2199&rft_id=info:doi/10.1093/cercor/bhu141&rft_dat=%3Cproquest_pubme%3E1718077694%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718077694&rft_id=info:pmid/24962993&rfr_iscdi=true