Paclitaxel tumor priming promotes delivery and transfection of intravenous lipid-siRNA in pancreatic tumors

The major barrier for using small interfering RNA (siRNA) as cancer therapeutics is the inadequate delivery and transfection in solid tumors. We have previously shown that paclitaxel tumor priming, by inducing apoptosis, expands the tumor interstitial space, improves the penetration and dispersion o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of controlled release 2015-10, Vol.216, p.103-110
Hauptverfasser: Wang, Jie, Lu, Ze, Wang, Junfeng, Cui, Minjian, Yeung, Bertrand Z., Cole, David J., Wientjes, M. Guillaume, Au, Jessie L.-S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue
container_start_page 103
container_title Journal of controlled release
container_volume 216
creator Wang, Jie
Lu, Ze
Wang, Junfeng
Cui, Minjian
Yeung, Bertrand Z.
Cole, David J.
Wientjes, M. Guillaume
Au, Jessie L.-S.
description The major barrier for using small interfering RNA (siRNA) as cancer therapeutics is the inadequate delivery and transfection in solid tumors. We have previously shown that paclitaxel tumor priming, by inducing apoptosis, expands the tumor interstitial space, improves the penetration and dispersion of nanoparticles and siRNA-lipoplexes in 3-dimensional tumor histocultures, and promotes the delivery and transfection efficiency of siRNA-lipoplexes under the locoregional setting in vivo (i.e., intraperitoneal treatment of intraperitoneal tumors). The current study evaluated whether tumor priming is functional for systemically delivered siRNA via intravenous injection, which would subject siRNA to several additional delivery barriers and elimination processes. We used the same pegylated cationic (PCat)-siRNA lipoplexes as in the intraperitoneal study to treat mice bearing subcutaneous human pancreatic Hs766T xenograft tumors. The target gene was survivin, an inducible chemoresistance gene. The results show single agent paclitaxel delayed tumor growth but also significantly induced the survivin protein level in residual tumors, whereas addition of PCat-siSurvivin completely reversed the paclitaxel-induced survivin and enhanced the paclitaxel activity (p
doi_str_mv 10.1016/j.jconrel.2015.08.012
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4582943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168365915300584</els_id><sourcerecordid>1716937733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-6281e9855dc2a925a52aec8328d0c06ffa3e1c01eacd1f7486a09098c8dd835a3</originalsourceid><addsrcrecordid>eNqFkctuFDEQRS0EIpPAJ4B6yaYbP9qvDSiKgCBFgBCsLWNXBw9ue7B7RuTvcWuGCFasSqo6detxEXpG8EAwES-3w9blVCAOFBM-YDVgQh-gDVGS9aPW_CHaNE71THB9hs5r3WKMORvlY3RGBZVUCr5BPz5ZF8Nif0Hslv2cS7crYQ7ptsU85wVq5yGGA5S7zibfLcWmOoFbQk5dnrqQWuYAKe9rF8Mu-L6Gzx8uW77b2eQK2CW4o3J9gh5NNlZ4eooX6OvbN1-urvubj-_eX13e9G4UcukFVQS04tw7ajXlllMLTjGqPHZYTJNlQBwmYJ0nkxyVsFhjrZzyXjFu2QV6ddTd7b_N4B2sO0azHmbLnck2mH8rKXw3t_lgRq6oHlkTeHESKPnnHupi5lAdxGgTtEMNkURoJiVbUX5EXcm1FpjuxxBsVqPM1pyMMqtRBivTjGp9z__e8b7rjzMNeH0EoH3qEKCY6gIkBz6U9n7jc_jPiN_ozKtF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1716937733</pqid></control><display><type>article</type><title>Paclitaxel tumor priming promotes delivery and transfection of intravenous lipid-siRNA in pancreatic tumors</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Wang, Jie ; Lu, Ze ; Wang, Junfeng ; Cui, Minjian ; Yeung, Bertrand Z. ; Cole, David J. ; Wientjes, M. Guillaume ; Au, Jessie L.-S.</creator><creatorcontrib>Wang, Jie ; Lu, Ze ; Wang, Junfeng ; Cui, Minjian ; Yeung, Bertrand Z. ; Cole, David J. ; Wientjes, M. Guillaume ; Au, Jessie L.-S.</creatorcontrib><description>The major barrier for using small interfering RNA (siRNA) as cancer therapeutics is the inadequate delivery and transfection in solid tumors. We have previously shown that paclitaxel tumor priming, by inducing apoptosis, expands the tumor interstitial space, improves the penetration and dispersion of nanoparticles and siRNA-lipoplexes in 3-dimensional tumor histocultures, and promotes the delivery and transfection efficiency of siRNA-lipoplexes under the locoregional setting in vivo (i.e., intraperitoneal treatment of intraperitoneal tumors). The current study evaluated whether tumor priming is functional for systemically delivered siRNA via intravenous injection, which would subject siRNA to several additional delivery barriers and elimination processes. We used the same pegylated cationic (PCat)-siRNA lipoplexes as in the intraperitoneal study to treat mice bearing subcutaneous human pancreatic Hs766T xenograft tumors. The target gene was survivin, an inducible chemoresistance gene. The results show single agent paclitaxel delayed tumor growth but also significantly induced the survivin protein level in residual tumors, whereas addition of PCat-siSurvivin completely reversed the paclitaxel-induced survivin and enhanced the paclitaxel activity (p&lt;0.05). In comparison, PCat-siSurvivin alone did not yield survivin knockdown or antitumor activity, indicating the in vivo effectiveness of intravenous siRNA-mediated gene silencing requires paclitaxel cotreatment. Additional in vitro studies showed that paclitaxel promoted the cytoplasmic release of siGLO, a 22 nucleotide double-stranded RNA that has no mRNA targets, from its PCat lipoplex and/or endosomes/lysosomes. Taken together, our earlier and current data show paclitaxel tumor priming, by promoting the interstitial transport and cytoplasmic release, is critical to promote the delivery and transfection of siRNA in vivo. In addition, because paclitaxel has broad spectrum activity and is used to treat multiple types of solid tumors including the hard-to-treat pancreatic cancer, the synergistic paclitaxel+siSurvivin combination represents a potentially useful chemo-gene therapy. [Display omitted]</description><identifier>ISSN: 0168-3659</identifier><identifier>EISSN: 1873-4995</identifier><identifier>DOI: 10.1016/j.jconrel.2015.08.012</identifier><identifier>PMID: 26272765</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Antineoplastic Agents, Phytogenic - administration &amp; dosage ; Antineoplastic Agents, Phytogenic - pharmacology ; Cell Line, Tumor ; Chemo-gene therapy ; Drug Delivery Systems ; Drug Resistance, Neoplasm ; Female ; Gene Silencing - drug effects ; Genetic Therapy - methods ; Humans ; Inhibitor of Apoptosis Proteins - drug effects ; Injections, Intravenous ; Intravenous siRNA delivery ; Lipids - chemistry ; Mice ; Mice, Nude ; Paclitaxel ; Paclitaxel - administration &amp; dosage ; Paclitaxel - pharmacology ; Pancreatic cancer ; Pancreatic Neoplasms - drug therapy ; Pancreatic Neoplasms - therapy ; Peritoneal Neoplasms - drug therapy ; RNA, Neoplasm - metabolism ; RNA, Small Interfering - administration &amp; dosage ; RNA, Small Interfering - pharmacology ; Survivin ; Transfection ; Xenograft Model Antitumor Assays</subject><ispartof>Journal of controlled release, 2015-10, Vol.216, p.103-110</ispartof><rights>2015 Elsevier B.V.</rights><rights>Copyright © 2015 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-6281e9855dc2a925a52aec8328d0c06ffa3e1c01eacd1f7486a09098c8dd835a3</citedby><cites>FETCH-LOGICAL-c467t-6281e9855dc2a925a52aec8328d0c06ffa3e1c01eacd1f7486a09098c8dd835a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jconrel.2015.08.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26272765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Lu, Ze</creatorcontrib><creatorcontrib>Wang, Junfeng</creatorcontrib><creatorcontrib>Cui, Minjian</creatorcontrib><creatorcontrib>Yeung, Bertrand Z.</creatorcontrib><creatorcontrib>Cole, David J.</creatorcontrib><creatorcontrib>Wientjes, M. Guillaume</creatorcontrib><creatorcontrib>Au, Jessie L.-S.</creatorcontrib><title>Paclitaxel tumor priming promotes delivery and transfection of intravenous lipid-siRNA in pancreatic tumors</title><title>Journal of controlled release</title><addtitle>J Control Release</addtitle><description>The major barrier for using small interfering RNA (siRNA) as cancer therapeutics is the inadequate delivery and transfection in solid tumors. We have previously shown that paclitaxel tumor priming, by inducing apoptosis, expands the tumor interstitial space, improves the penetration and dispersion of nanoparticles and siRNA-lipoplexes in 3-dimensional tumor histocultures, and promotes the delivery and transfection efficiency of siRNA-lipoplexes under the locoregional setting in vivo (i.e., intraperitoneal treatment of intraperitoneal tumors). The current study evaluated whether tumor priming is functional for systemically delivered siRNA via intravenous injection, which would subject siRNA to several additional delivery barriers and elimination processes. We used the same pegylated cationic (PCat)-siRNA lipoplexes as in the intraperitoneal study to treat mice bearing subcutaneous human pancreatic Hs766T xenograft tumors. The target gene was survivin, an inducible chemoresistance gene. The results show single agent paclitaxel delayed tumor growth but also significantly induced the survivin protein level in residual tumors, whereas addition of PCat-siSurvivin completely reversed the paclitaxel-induced survivin and enhanced the paclitaxel activity (p&lt;0.05). In comparison, PCat-siSurvivin alone did not yield survivin knockdown or antitumor activity, indicating the in vivo effectiveness of intravenous siRNA-mediated gene silencing requires paclitaxel cotreatment. Additional in vitro studies showed that paclitaxel promoted the cytoplasmic release of siGLO, a 22 nucleotide double-stranded RNA that has no mRNA targets, from its PCat lipoplex and/or endosomes/lysosomes. Taken together, our earlier and current data show paclitaxel tumor priming, by promoting the interstitial transport and cytoplasmic release, is critical to promote the delivery and transfection of siRNA in vivo. In addition, because paclitaxel has broad spectrum activity and is used to treat multiple types of solid tumors including the hard-to-treat pancreatic cancer, the synergistic paclitaxel+siSurvivin combination represents a potentially useful chemo-gene therapy. [Display omitted]</description><subject>Animals</subject><subject>Antineoplastic Agents, Phytogenic - administration &amp; dosage</subject><subject>Antineoplastic Agents, Phytogenic - pharmacology</subject><subject>Cell Line, Tumor</subject><subject>Chemo-gene therapy</subject><subject>Drug Delivery Systems</subject><subject>Drug Resistance, Neoplasm</subject><subject>Female</subject><subject>Gene Silencing - drug effects</subject><subject>Genetic Therapy - methods</subject><subject>Humans</subject><subject>Inhibitor of Apoptosis Proteins - drug effects</subject><subject>Injections, Intravenous</subject><subject>Intravenous siRNA delivery</subject><subject>Lipids - chemistry</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Paclitaxel</subject><subject>Paclitaxel - administration &amp; dosage</subject><subject>Paclitaxel - pharmacology</subject><subject>Pancreatic cancer</subject><subject>Pancreatic Neoplasms - drug therapy</subject><subject>Pancreatic Neoplasms - therapy</subject><subject>Peritoneal Neoplasms - drug therapy</subject><subject>RNA, Neoplasm - metabolism</subject><subject>RNA, Small Interfering - administration &amp; dosage</subject><subject>RNA, Small Interfering - pharmacology</subject><subject>Survivin</subject><subject>Transfection</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0168-3659</issn><issn>1873-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctuFDEQRS0EIpPAJ4B6yaYbP9qvDSiKgCBFgBCsLWNXBw9ue7B7RuTvcWuGCFasSqo6detxEXpG8EAwES-3w9blVCAOFBM-YDVgQh-gDVGS9aPW_CHaNE71THB9hs5r3WKMORvlY3RGBZVUCr5BPz5ZF8Nif0Hslv2cS7crYQ7ptsU85wVq5yGGA5S7zibfLcWmOoFbQk5dnrqQWuYAKe9rF8Mu-L6Gzx8uW77b2eQK2CW4o3J9gh5NNlZ4eooX6OvbN1-urvubj-_eX13e9G4UcukFVQS04tw7ajXlllMLTjGqPHZYTJNlQBwmYJ0nkxyVsFhjrZzyXjFu2QV6ddTd7b_N4B2sO0azHmbLnck2mH8rKXw3t_lgRq6oHlkTeHESKPnnHupi5lAdxGgTtEMNkURoJiVbUX5EXcm1FpjuxxBsVqPM1pyMMqtRBivTjGp9z__e8b7rjzMNeH0EoH3qEKCY6gIkBz6U9n7jc_jPiN_ozKtF</recordid><startdate>20151028</startdate><enddate>20151028</enddate><creator>Wang, Jie</creator><creator>Lu, Ze</creator><creator>Wang, Junfeng</creator><creator>Cui, Minjian</creator><creator>Yeung, Bertrand Z.</creator><creator>Cole, David J.</creator><creator>Wientjes, M. Guillaume</creator><creator>Au, Jessie L.-S.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151028</creationdate><title>Paclitaxel tumor priming promotes delivery and transfection of intravenous lipid-siRNA in pancreatic tumors</title><author>Wang, Jie ; Lu, Ze ; Wang, Junfeng ; Cui, Minjian ; Yeung, Bertrand Z. ; Cole, David J. ; Wientjes, M. Guillaume ; Au, Jessie L.-S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-6281e9855dc2a925a52aec8328d0c06ffa3e1c01eacd1f7486a09098c8dd835a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Antineoplastic Agents, Phytogenic - administration &amp; dosage</topic><topic>Antineoplastic Agents, Phytogenic - pharmacology</topic><topic>Cell Line, Tumor</topic><topic>Chemo-gene therapy</topic><topic>Drug Delivery Systems</topic><topic>Drug Resistance, Neoplasm</topic><topic>Female</topic><topic>Gene Silencing - drug effects</topic><topic>Genetic Therapy - methods</topic><topic>Humans</topic><topic>Inhibitor of Apoptosis Proteins - drug effects</topic><topic>Injections, Intravenous</topic><topic>Intravenous siRNA delivery</topic><topic>Lipids - chemistry</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Paclitaxel</topic><topic>Paclitaxel - administration &amp; dosage</topic><topic>Paclitaxel - pharmacology</topic><topic>Pancreatic cancer</topic><topic>Pancreatic Neoplasms - drug therapy</topic><topic>Pancreatic Neoplasms - therapy</topic><topic>Peritoneal Neoplasms - drug therapy</topic><topic>RNA, Neoplasm - metabolism</topic><topic>RNA, Small Interfering - administration &amp; dosage</topic><topic>RNA, Small Interfering - pharmacology</topic><topic>Survivin</topic><topic>Transfection</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Lu, Ze</creatorcontrib><creatorcontrib>Wang, Junfeng</creatorcontrib><creatorcontrib>Cui, Minjian</creatorcontrib><creatorcontrib>Yeung, Bertrand Z.</creatorcontrib><creatorcontrib>Cole, David J.</creatorcontrib><creatorcontrib>Wientjes, M. Guillaume</creatorcontrib><creatorcontrib>Au, Jessie L.-S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of controlled release</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jie</au><au>Lu, Ze</au><au>Wang, Junfeng</au><au>Cui, Minjian</au><au>Yeung, Bertrand Z.</au><au>Cole, David J.</au><au>Wientjes, M. Guillaume</au><au>Au, Jessie L.-S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Paclitaxel tumor priming promotes delivery and transfection of intravenous lipid-siRNA in pancreatic tumors</atitle><jtitle>Journal of controlled release</jtitle><addtitle>J Control Release</addtitle><date>2015-10-28</date><risdate>2015</risdate><volume>216</volume><spage>103</spage><epage>110</epage><pages>103-110</pages><issn>0168-3659</issn><eissn>1873-4995</eissn><abstract>The major barrier for using small interfering RNA (siRNA) as cancer therapeutics is the inadequate delivery and transfection in solid tumors. We have previously shown that paclitaxel tumor priming, by inducing apoptosis, expands the tumor interstitial space, improves the penetration and dispersion of nanoparticles and siRNA-lipoplexes in 3-dimensional tumor histocultures, and promotes the delivery and transfection efficiency of siRNA-lipoplexes under the locoregional setting in vivo (i.e., intraperitoneal treatment of intraperitoneal tumors). The current study evaluated whether tumor priming is functional for systemically delivered siRNA via intravenous injection, which would subject siRNA to several additional delivery barriers and elimination processes. We used the same pegylated cationic (PCat)-siRNA lipoplexes as in the intraperitoneal study to treat mice bearing subcutaneous human pancreatic Hs766T xenograft tumors. The target gene was survivin, an inducible chemoresistance gene. The results show single agent paclitaxel delayed tumor growth but also significantly induced the survivin protein level in residual tumors, whereas addition of PCat-siSurvivin completely reversed the paclitaxel-induced survivin and enhanced the paclitaxel activity (p&lt;0.05). In comparison, PCat-siSurvivin alone did not yield survivin knockdown or antitumor activity, indicating the in vivo effectiveness of intravenous siRNA-mediated gene silencing requires paclitaxel cotreatment. Additional in vitro studies showed that paclitaxel promoted the cytoplasmic release of siGLO, a 22 nucleotide double-stranded RNA that has no mRNA targets, from its PCat lipoplex and/or endosomes/lysosomes. Taken together, our earlier and current data show paclitaxel tumor priming, by promoting the interstitial transport and cytoplasmic release, is critical to promote the delivery and transfection of siRNA in vivo. In addition, because paclitaxel has broad spectrum activity and is used to treat multiple types of solid tumors including the hard-to-treat pancreatic cancer, the synergistic paclitaxel+siSurvivin combination represents a potentially useful chemo-gene therapy. [Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>26272765</pmid><doi>10.1016/j.jconrel.2015.08.012</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-3659
ispartof Journal of controlled release, 2015-10, Vol.216, p.103-110
issn 0168-3659
1873-4995
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4582943
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE
subjects Animals
Antineoplastic Agents, Phytogenic - administration & dosage
Antineoplastic Agents, Phytogenic - pharmacology
Cell Line, Tumor
Chemo-gene therapy
Drug Delivery Systems
Drug Resistance, Neoplasm
Female
Gene Silencing - drug effects
Genetic Therapy - methods
Humans
Inhibitor of Apoptosis Proteins - drug effects
Injections, Intravenous
Intravenous siRNA delivery
Lipids - chemistry
Mice
Mice, Nude
Paclitaxel
Paclitaxel - administration & dosage
Paclitaxel - pharmacology
Pancreatic cancer
Pancreatic Neoplasms - drug therapy
Pancreatic Neoplasms - therapy
Peritoneal Neoplasms - drug therapy
RNA, Neoplasm - metabolism
RNA, Small Interfering - administration & dosage
RNA, Small Interfering - pharmacology
Survivin
Transfection
Xenograft Model Antitumor Assays
title Paclitaxel tumor priming promotes delivery and transfection of intravenous lipid-siRNA in pancreatic tumors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A48%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Paclitaxel%20tumor%20priming%20promotes%20delivery%20and%20transfection%20of%20intravenous%20lipid-siRNA%20in%20pancreatic%20tumors&rft.jtitle=Journal%20of%20controlled%20release&rft.au=Wang,%20Jie&rft.date=2015-10-28&rft.volume=216&rft.spage=103&rft.epage=110&rft.pages=103-110&rft.issn=0168-3659&rft.eissn=1873-4995&rft_id=info:doi/10.1016/j.jconrel.2015.08.012&rft_dat=%3Cproquest_pubme%3E1716937733%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1716937733&rft_id=info:pmid/26272765&rft_els_id=S0168365915300584&rfr_iscdi=true