Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning

Adaptive immunity in bacteria involves RNA-guided surveillance complexes that use CRISPR (clustered regularly interspaced short palindromic repeats)–associated (Cas) proteins together with CRISPR RNAs (crRNAs) to target invasive nucleic acids for degradation. Whereas type I and type II CRISPR-Cas su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2015-05, Vol.348 (6234), p.581-585
Hauptverfasser: Taylor, David W., Zhu, Yifan, Staals, Raymond H. J., Kornfeld, Jack E., Shinkai, Akeo, van der Oost, John, Nogales, Eva, Doudna, Jennifer A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 585
container_issue 6234
container_start_page 581
container_title Science (American Association for the Advancement of Science)
container_volume 348
creator Taylor, David W.
Zhu, Yifan
Staals, Raymond H. J.
Kornfeld, Jack E.
Shinkai, Akeo
van der Oost, John
Nogales, Eva
Doudna, Jennifer A.
description Adaptive immunity in bacteria involves RNA-guided surveillance complexes that use CRISPR (clustered regularly interspaced short palindromic repeats)–associated (Cas) proteins together with CRISPR RNAs (crRNAs) to target invasive nucleic acids for degradation. Whereas type I and type II CRISPR-Cas surveillance complexes target double-stranded DNA, type III complexes target single-stranded RNA. Near-atomic resolution cryo–electron microscopy reconstructions of native type III Cmr (CRISPR RAMP module) complexes in the absence and presence of target RNA reveal a helical protein arrangement that positions the crRNA for substrate binding. Thumblike β hairpins intercalate between segments of duplexed crRNA:target RNA to facilitate cleavage of the target at 6-nucleotide intervals. The Cmr complex is architecturally similar to the type I CRISPR-Cascade complex, suggesting divergent evolution of these immune systems from a common ancestor.
doi_str_mv 10.1126/science.aaa4535
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4582657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24747397</jstor_id><sourcerecordid>24747397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-17d97c28faa8dc8e57033f87c28881a0f1a594e2b93aac7a833c0c9a7a3112a3</originalsourceid><addsrcrecordid>eNqFkUFP3DAQha2Kqmyh556QInHpJWBn7Ni-IKFVaalQixbu1uCdLFkl8WI7qP33ZLsrJHrpaaSZ7z3NzGPss-BnQlT1efItDZ7OEFEqUO_YTHCrSltxOGAzzqEuDdfqkH1Mac35NLPwgR1WyoBWQs3Yj7scR5_HSKkITZEfqZgvru9uF-W8j4UP_aaj30WkZ8Ku6MOSttTi52WRMa4oF5uQ2tyGoR1Wx-x9g12iT_t6xO6vvt7Pv5c3v75dzy9vSq-EzaXQS6t9ZRpEs_SGlOYAjdm2jBHIG4HKSqoeLCB6jQbAc29RI0wnIxyxi53tZnzoaelpyBE7t4ltj_GPC9i6t5OhfXSr8OykMlWt9GTwZW8Qw9NIKbu-TZ66DgcKY3LCclkJDhL-jxphBWj5Fz39B12HMQ7TI5yotYZaamEn6nxH-RhSitS87i242ybq9om6faKT4mSnWKcc4iteSS01WA0vrQSdqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677364719</pqid></control><display><type>article</type><title>Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning</title><source>JSTOR Archive Collection A-Z Listing</source><source>American Association for the Advancement of Science</source><creator>Taylor, David W. ; Zhu, Yifan ; Staals, Raymond H. J. ; Kornfeld, Jack E. ; Shinkai, Akeo ; van der Oost, John ; Nogales, Eva ; Doudna, Jennifer A.</creator><creatorcontrib>Taylor, David W. ; Zhu, Yifan ; Staals, Raymond H. J. ; Kornfeld, Jack E. ; Shinkai, Akeo ; van der Oost, John ; Nogales, Eva ; Doudna, Jennifer A.</creatorcontrib><description>Adaptive immunity in bacteria involves RNA-guided surveillance complexes that use CRISPR (clustered regularly interspaced short palindromic repeats)–associated (Cas) proteins together with CRISPR RNAs (crRNAs) to target invasive nucleic acids for degradation. Whereas type I and type II CRISPR-Cas surveillance complexes target double-stranded DNA, type III complexes target single-stranded RNA. Near-atomic resolution cryo–electron microscopy reconstructions of native type III Cmr (CRISPR RAMP module) complexes in the absence and presence of target RNA reveal a helical protein arrangement that positions the crRNA for substrate binding. Thumblike β hairpins intercalate between segments of duplexed crRNA:target RNA to facilitate cleavage of the target at 6-nucleotide intervals. The Cmr complex is architecturally similar to the type I CRISPR-Cascade complex, suggesting divergent evolution of these immune systems from a common ancestor.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaa4535</identifier><identifier>PMID: 25837515</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington: American Association for the Advancement of Science</publisher><subject>Archaea ; Bacteria ; Binding ; Electron microscopes ; Electron microscopy ; Genetics ; Immune system ; Immune systems ; Nucleic acids ; Proteins ; Ramps ; Ribonucleic acids ; Surveillance ; Thermus thermophilus ; Transcription factors ; Transmission electron microscopy</subject><ispartof>Science (American Association for the Advancement of Science), 2015-05, Vol.348 (6234), p.581-585</ispartof><rights>Copyright © 2015 American Association for the Advancement of Science</rights><rights>Copyright © 2015, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-17d97c28faa8dc8e57033f87c28881a0f1a594e2b93aac7a833c0c9a7a3112a3</citedby><cites>FETCH-LOGICAL-c519t-17d97c28faa8dc8e57033f87c28881a0f1a594e2b93aac7a833c0c9a7a3112a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24747397$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24747397$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,2884,2885,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Taylor, David W.</creatorcontrib><creatorcontrib>Zhu, Yifan</creatorcontrib><creatorcontrib>Staals, Raymond H. J.</creatorcontrib><creatorcontrib>Kornfeld, Jack E.</creatorcontrib><creatorcontrib>Shinkai, Akeo</creatorcontrib><creatorcontrib>van der Oost, John</creatorcontrib><creatorcontrib>Nogales, Eva</creatorcontrib><creatorcontrib>Doudna, Jennifer A.</creatorcontrib><title>Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning</title><title>Science (American Association for the Advancement of Science)</title><description>Adaptive immunity in bacteria involves RNA-guided surveillance complexes that use CRISPR (clustered regularly interspaced short palindromic repeats)–associated (Cas) proteins together with CRISPR RNAs (crRNAs) to target invasive nucleic acids for degradation. Whereas type I and type II CRISPR-Cas surveillance complexes target double-stranded DNA, type III complexes target single-stranded RNA. Near-atomic resolution cryo–electron microscopy reconstructions of native type III Cmr (CRISPR RAMP module) complexes in the absence and presence of target RNA reveal a helical protein arrangement that positions the crRNA for substrate binding. Thumblike β hairpins intercalate between segments of duplexed crRNA:target RNA to facilitate cleavage of the target at 6-nucleotide intervals. The Cmr complex is architecturally similar to the type I CRISPR-Cascade complex, suggesting divergent evolution of these immune systems from a common ancestor.</description><subject>Archaea</subject><subject>Bacteria</subject><subject>Binding</subject><subject>Electron microscopes</subject><subject>Electron microscopy</subject><subject>Genetics</subject><subject>Immune system</subject><subject>Immune systems</subject><subject>Nucleic acids</subject><subject>Proteins</subject><subject>Ramps</subject><subject>Ribonucleic acids</subject><subject>Surveillance</subject><subject>Thermus thermophilus</subject><subject>Transcription factors</subject><subject>Transmission electron microscopy</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkUFP3DAQha2Kqmyh556QInHpJWBn7Ni-IKFVaalQixbu1uCdLFkl8WI7qP33ZLsrJHrpaaSZ7z3NzGPss-BnQlT1efItDZ7OEFEqUO_YTHCrSltxOGAzzqEuDdfqkH1Mac35NLPwgR1WyoBWQs3Yj7scR5_HSKkITZEfqZgvru9uF-W8j4UP_aaj30WkZ8Ku6MOSttTi52WRMa4oF5uQ2tyGoR1Wx-x9g12iT_t6xO6vvt7Pv5c3v75dzy9vSq-EzaXQS6t9ZRpEs_SGlOYAjdm2jBHIG4HKSqoeLCB6jQbAc29RI0wnIxyxi53tZnzoaelpyBE7t4ltj_GPC9i6t5OhfXSr8OykMlWt9GTwZW8Qw9NIKbu-TZ66DgcKY3LCclkJDhL-jxphBWj5Fz39B12HMQ7TI5yotYZaamEn6nxH-RhSitS87i242ybq9om6faKT4mSnWKcc4iteSS01WA0vrQSdqA</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Taylor, David W.</creator><creator>Zhu, Yifan</creator><creator>Staals, Raymond H. J.</creator><creator>Kornfeld, Jack E.</creator><creator>Shinkai, Akeo</creator><creator>van der Oost, John</creator><creator>Nogales, Eva</creator><creator>Doudna, Jennifer A.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20150501</creationdate><title>Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning</title><author>Taylor, David W. ; Zhu, Yifan ; Staals, Raymond H. J. ; Kornfeld, Jack E. ; Shinkai, Akeo ; van der Oost, John ; Nogales, Eva ; Doudna, Jennifer A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-17d97c28faa8dc8e57033f87c28881a0f1a594e2b93aac7a833c0c9a7a3112a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Archaea</topic><topic>Bacteria</topic><topic>Binding</topic><topic>Electron microscopes</topic><topic>Electron microscopy</topic><topic>Genetics</topic><topic>Immune system</topic><topic>Immune systems</topic><topic>Nucleic acids</topic><topic>Proteins</topic><topic>Ramps</topic><topic>Ribonucleic acids</topic><topic>Surveillance</topic><topic>Thermus thermophilus</topic><topic>Transcription factors</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylor, David W.</creatorcontrib><creatorcontrib>Zhu, Yifan</creatorcontrib><creatorcontrib>Staals, Raymond H. J.</creatorcontrib><creatorcontrib>Kornfeld, Jack E.</creatorcontrib><creatorcontrib>Shinkai, Akeo</creatorcontrib><creatorcontrib>van der Oost, John</creatorcontrib><creatorcontrib>Nogales, Eva</creatorcontrib><creatorcontrib>Doudna, Jennifer A.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, David W.</au><au>Zhu, Yifan</au><au>Staals, Raymond H. J.</au><au>Kornfeld, Jack E.</au><au>Shinkai, Akeo</au><au>van der Oost, John</au><au>Nogales, Eva</au><au>Doudna, Jennifer A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2015-05-01</date><risdate>2015</risdate><volume>348</volume><issue>6234</issue><spage>581</spage><epage>585</epage><pages>581-585</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Adaptive immunity in bacteria involves RNA-guided surveillance complexes that use CRISPR (clustered regularly interspaced short palindromic repeats)–associated (Cas) proteins together with CRISPR RNAs (crRNAs) to target invasive nucleic acids for degradation. Whereas type I and type II CRISPR-Cas surveillance complexes target double-stranded DNA, type III complexes target single-stranded RNA. Near-atomic resolution cryo–electron microscopy reconstructions of native type III Cmr (CRISPR RAMP module) complexes in the absence and presence of target RNA reveal a helical protein arrangement that positions the crRNA for substrate binding. Thumblike β hairpins intercalate between segments of duplexed crRNA:target RNA to facilitate cleavage of the target at 6-nucleotide intervals. The Cmr complex is architecturally similar to the type I CRISPR-Cascade complex, suggesting divergent evolution of these immune systems from a common ancestor.</abstract><cop>Washington</cop><pub>American Association for the Advancement of Science</pub><pmid>25837515</pmid><doi>10.1126/science.aaa4535</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2015-05, Vol.348 (6234), p.581-585
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4582657
source JSTOR Archive Collection A-Z Listing; American Association for the Advancement of Science
subjects Archaea
Bacteria
Binding
Electron microscopes
Electron microscopy
Genetics
Immune system
Immune systems
Nucleic acids
Proteins
Ramps
Ribonucleic acids
Surveillance
Thermus thermophilus
Transcription factors
Transmission electron microscopy
title Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structures%20of%20the%20CRISPR-Cmr%20complex%20reveal%20mode%20of%20RNA%20target%20positioning&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Taylor,%20David%20W.&rft.date=2015-05-01&rft.volume=348&rft.issue=6234&rft.spage=581&rft.epage=585&rft.pages=581-585&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.aaa4535&rft_dat=%3Cjstor_pubme%3E24747397%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677364719&rft_id=info:pmid/25837515&rft_jstor_id=24747397&rfr_iscdi=true