Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning
Adaptive immunity in bacteria involves RNA-guided surveillance complexes that use CRISPR (clustered regularly interspaced short palindromic repeats)–associated (Cas) proteins together with CRISPR RNAs (crRNAs) to target invasive nucleic acids for degradation. Whereas type I and type II CRISPR-Cas su...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2015-05, Vol.348 (6234), p.581-585 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 585 |
---|---|
container_issue | 6234 |
container_start_page | 581 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 348 |
creator | Taylor, David W. Zhu, Yifan Staals, Raymond H. J. Kornfeld, Jack E. Shinkai, Akeo van der Oost, John Nogales, Eva Doudna, Jennifer A. |
description | Adaptive immunity in bacteria involves RNA-guided surveillance complexes that use CRISPR (clustered regularly interspaced short palindromic repeats)–associated (Cas) proteins together with CRISPR RNAs (crRNAs) to target invasive nucleic acids for degradation. Whereas type I and type II CRISPR-Cas surveillance complexes target double-stranded DNA, type III complexes target single-stranded RNA. Near-atomic resolution cryo–electron microscopy reconstructions of native type III Cmr (CRISPR RAMP module) complexes in the absence and presence of target RNA reveal a helical protein arrangement that positions the crRNA for substrate binding. Thumblike β hairpins intercalate between segments of duplexed crRNA:target RNA to facilitate cleavage of the target at 6-nucleotide intervals. The Cmr complex is architecturally similar to the type I CRISPR-Cascade complex, suggesting divergent evolution of these immune systems from a common ancestor. |
doi_str_mv | 10.1126/science.aaa4535 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4582657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24747397</jstor_id><sourcerecordid>24747397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-17d97c28faa8dc8e57033f87c28881a0f1a594e2b93aac7a833c0c9a7a3112a3</originalsourceid><addsrcrecordid>eNqFkUFP3DAQha2Kqmyh556QInHpJWBn7Ni-IKFVaalQixbu1uCdLFkl8WI7qP33ZLsrJHrpaaSZ7z3NzGPss-BnQlT1efItDZ7OEFEqUO_YTHCrSltxOGAzzqEuDdfqkH1Mac35NLPwgR1WyoBWQs3Yj7scR5_HSKkITZEfqZgvru9uF-W8j4UP_aaj30WkZ8Ku6MOSttTi52WRMa4oF5uQ2tyGoR1Wx-x9g12iT_t6xO6vvt7Pv5c3v75dzy9vSq-EzaXQS6t9ZRpEs_SGlOYAjdm2jBHIG4HKSqoeLCB6jQbAc29RI0wnIxyxi53tZnzoaelpyBE7t4ltj_GPC9i6t5OhfXSr8OykMlWt9GTwZW8Qw9NIKbu-TZ66DgcKY3LCclkJDhL-jxphBWj5Fz39B12HMQ7TI5yotYZaamEn6nxH-RhSitS87i242ybq9om6faKT4mSnWKcc4iteSS01WA0vrQSdqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677364719</pqid></control><display><type>article</type><title>Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning</title><source>JSTOR Archive Collection A-Z Listing</source><source>American Association for the Advancement of Science</source><creator>Taylor, David W. ; Zhu, Yifan ; Staals, Raymond H. J. ; Kornfeld, Jack E. ; Shinkai, Akeo ; van der Oost, John ; Nogales, Eva ; Doudna, Jennifer A.</creator><creatorcontrib>Taylor, David W. ; Zhu, Yifan ; Staals, Raymond H. J. ; Kornfeld, Jack E. ; Shinkai, Akeo ; van der Oost, John ; Nogales, Eva ; Doudna, Jennifer A.</creatorcontrib><description>Adaptive immunity in bacteria involves RNA-guided surveillance complexes that use CRISPR (clustered regularly interspaced short palindromic repeats)–associated (Cas) proteins together with CRISPR RNAs (crRNAs) to target invasive nucleic acids for degradation. Whereas type I and type II CRISPR-Cas surveillance complexes target double-stranded DNA, type III complexes target single-stranded RNA. Near-atomic resolution cryo–electron microscopy reconstructions of native type III Cmr (CRISPR RAMP module) complexes in the absence and presence of target RNA reveal a helical protein arrangement that positions the crRNA for substrate binding. Thumblike β hairpins intercalate between segments of duplexed crRNA:target RNA to facilitate cleavage of the target at 6-nucleotide intervals. The Cmr complex is architecturally similar to the type I CRISPR-Cascade complex, suggesting divergent evolution of these immune systems from a common ancestor.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaa4535</identifier><identifier>PMID: 25837515</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington: American Association for the Advancement of Science</publisher><subject>Archaea ; Bacteria ; Binding ; Electron microscopes ; Electron microscopy ; Genetics ; Immune system ; Immune systems ; Nucleic acids ; Proteins ; Ramps ; Ribonucleic acids ; Surveillance ; Thermus thermophilus ; Transcription factors ; Transmission electron microscopy</subject><ispartof>Science (American Association for the Advancement of Science), 2015-05, Vol.348 (6234), p.581-585</ispartof><rights>Copyright © 2015 American Association for the Advancement of Science</rights><rights>Copyright © 2015, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-17d97c28faa8dc8e57033f87c28881a0f1a594e2b93aac7a833c0c9a7a3112a3</citedby><cites>FETCH-LOGICAL-c519t-17d97c28faa8dc8e57033f87c28881a0f1a594e2b93aac7a833c0c9a7a3112a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24747397$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24747397$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,2884,2885,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Taylor, David W.</creatorcontrib><creatorcontrib>Zhu, Yifan</creatorcontrib><creatorcontrib>Staals, Raymond H. J.</creatorcontrib><creatorcontrib>Kornfeld, Jack E.</creatorcontrib><creatorcontrib>Shinkai, Akeo</creatorcontrib><creatorcontrib>van der Oost, John</creatorcontrib><creatorcontrib>Nogales, Eva</creatorcontrib><creatorcontrib>Doudna, Jennifer A.</creatorcontrib><title>Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning</title><title>Science (American Association for the Advancement of Science)</title><description>Adaptive immunity in bacteria involves RNA-guided surveillance complexes that use CRISPR (clustered regularly interspaced short palindromic repeats)–associated (Cas) proteins together with CRISPR RNAs (crRNAs) to target invasive nucleic acids for degradation. Whereas type I and type II CRISPR-Cas surveillance complexes target double-stranded DNA, type III complexes target single-stranded RNA. Near-atomic resolution cryo–electron microscopy reconstructions of native type III Cmr (CRISPR RAMP module) complexes in the absence and presence of target RNA reveal a helical protein arrangement that positions the crRNA for substrate binding. Thumblike β hairpins intercalate between segments of duplexed crRNA:target RNA to facilitate cleavage of the target at 6-nucleotide intervals. The Cmr complex is architecturally similar to the type I CRISPR-Cascade complex, suggesting divergent evolution of these immune systems from a common ancestor.</description><subject>Archaea</subject><subject>Bacteria</subject><subject>Binding</subject><subject>Electron microscopes</subject><subject>Electron microscopy</subject><subject>Genetics</subject><subject>Immune system</subject><subject>Immune systems</subject><subject>Nucleic acids</subject><subject>Proteins</subject><subject>Ramps</subject><subject>Ribonucleic acids</subject><subject>Surveillance</subject><subject>Thermus thermophilus</subject><subject>Transcription factors</subject><subject>Transmission electron microscopy</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkUFP3DAQha2Kqmyh556QInHpJWBn7Ni-IKFVaalQixbu1uCdLFkl8WI7qP33ZLsrJHrpaaSZ7z3NzGPss-BnQlT1efItDZ7OEFEqUO_YTHCrSltxOGAzzqEuDdfqkH1Mac35NLPwgR1WyoBWQs3Yj7scR5_HSKkITZEfqZgvru9uF-W8j4UP_aaj30WkZ8Ku6MOSttTi52WRMa4oF5uQ2tyGoR1Wx-x9g12iT_t6xO6vvt7Pv5c3v75dzy9vSq-EzaXQS6t9ZRpEs_SGlOYAjdm2jBHIG4HKSqoeLCB6jQbAc29RI0wnIxyxi53tZnzoaelpyBE7t4ltj_GPC9i6t5OhfXSr8OykMlWt9GTwZW8Qw9NIKbu-TZ66DgcKY3LCclkJDhL-jxphBWj5Fz39B12HMQ7TI5yotYZaamEn6nxH-RhSitS87i242ybq9om6faKT4mSnWKcc4iteSS01WA0vrQSdqA</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Taylor, David W.</creator><creator>Zhu, Yifan</creator><creator>Staals, Raymond H. J.</creator><creator>Kornfeld, Jack E.</creator><creator>Shinkai, Akeo</creator><creator>van der Oost, John</creator><creator>Nogales, Eva</creator><creator>Doudna, Jennifer A.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20150501</creationdate><title>Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning</title><author>Taylor, David W. ; Zhu, Yifan ; Staals, Raymond H. J. ; Kornfeld, Jack E. ; Shinkai, Akeo ; van der Oost, John ; Nogales, Eva ; Doudna, Jennifer A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-17d97c28faa8dc8e57033f87c28881a0f1a594e2b93aac7a833c0c9a7a3112a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Archaea</topic><topic>Bacteria</topic><topic>Binding</topic><topic>Electron microscopes</topic><topic>Electron microscopy</topic><topic>Genetics</topic><topic>Immune system</topic><topic>Immune systems</topic><topic>Nucleic acids</topic><topic>Proteins</topic><topic>Ramps</topic><topic>Ribonucleic acids</topic><topic>Surveillance</topic><topic>Thermus thermophilus</topic><topic>Transcription factors</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylor, David W.</creatorcontrib><creatorcontrib>Zhu, Yifan</creatorcontrib><creatorcontrib>Staals, Raymond H. J.</creatorcontrib><creatorcontrib>Kornfeld, Jack E.</creatorcontrib><creatorcontrib>Shinkai, Akeo</creatorcontrib><creatorcontrib>van der Oost, John</creatorcontrib><creatorcontrib>Nogales, Eva</creatorcontrib><creatorcontrib>Doudna, Jennifer A.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, David W.</au><au>Zhu, Yifan</au><au>Staals, Raymond H. J.</au><au>Kornfeld, Jack E.</au><au>Shinkai, Akeo</au><au>van der Oost, John</au><au>Nogales, Eva</au><au>Doudna, Jennifer A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2015-05-01</date><risdate>2015</risdate><volume>348</volume><issue>6234</issue><spage>581</spage><epage>585</epage><pages>581-585</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Adaptive immunity in bacteria involves RNA-guided surveillance complexes that use CRISPR (clustered regularly interspaced short palindromic repeats)–associated (Cas) proteins together with CRISPR RNAs (crRNAs) to target invasive nucleic acids for degradation. Whereas type I and type II CRISPR-Cas surveillance complexes target double-stranded DNA, type III complexes target single-stranded RNA. Near-atomic resolution cryo–electron microscopy reconstructions of native type III Cmr (CRISPR RAMP module) complexes in the absence and presence of target RNA reveal a helical protein arrangement that positions the crRNA for substrate binding. Thumblike β hairpins intercalate between segments of duplexed crRNA:target RNA to facilitate cleavage of the target at 6-nucleotide intervals. The Cmr complex is architecturally similar to the type I CRISPR-Cascade complex, suggesting divergent evolution of these immune systems from a common ancestor.</abstract><cop>Washington</cop><pub>American Association for the Advancement of Science</pub><pmid>25837515</pmid><doi>10.1126/science.aaa4535</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2015-05, Vol.348 (6234), p.581-585 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4582657 |
source | JSTOR Archive Collection A-Z Listing; American Association for the Advancement of Science |
subjects | Archaea Bacteria Binding Electron microscopes Electron microscopy Genetics Immune system Immune systems Nucleic acids Proteins Ramps Ribonucleic acids Surveillance Thermus thermophilus Transcription factors Transmission electron microscopy |
title | Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structures%20of%20the%20CRISPR-Cmr%20complex%20reveal%20mode%20of%20RNA%20target%20positioning&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Taylor,%20David%20W.&rft.date=2015-05-01&rft.volume=348&rft.issue=6234&rft.spage=581&rft.epage=585&rft.pages=581-585&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.aaa4535&rft_dat=%3Cjstor_pubme%3E24747397%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677364719&rft_id=info:pmid/25837515&rft_jstor_id=24747397&rfr_iscdi=true |