Riverbed methanotrophy sustained by high carbon conversion efficiency
Our understanding of the role of freshwaters in the global carbon cycle is being revised, but there is still a lack of data, especially for the cycling of methane, in rivers and streams. Unravelling the role of methanotrophy is key to determining the fate of methane in rivers. Here we focus on the c...
Gespeichert in:
Veröffentlicht in: | The ISME Journal 2015-10, Vol.9 (10), p.2304-2314 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2314 |
---|---|
container_issue | 10 |
container_start_page | 2304 |
container_title | The ISME Journal |
container_volume | 9 |
creator | Trimmer, Mark Shelley, Felicity C Purdy, Kevin J Maanoja, Susanna T Chronopoulou, Panagiota-Myrsini Grey, Jonathan |
description | Our understanding of the role of freshwaters in the global carbon cycle is being revised, but there is still a lack of data, especially for the cycling of methane, in rivers and streams. Unravelling the role of methanotrophy is key to determining the fate of methane in rivers. Here we focus on the carbon conversion efficiency (CCE) of methanotrophy, that is, how much organic carbon is produced per mole of CH
4
oxidised, and how this is influenced by variation in methanotroph communities. First, we show that the CCE of riverbed methanotrophs is consistently high (~50%) across a wide range of methane concentrations (~10–7000 nM) and despite a 10-fold span in the rate of methane oxidation. Then, we show that this high conversion efficiency is largely conserved (50%± confidence interval 44–56%) across pronounced variation in the key functional gene (70 operational taxonomic units (OTUs)), particulate methane monooxygenase (
pmoA
), and marked shifts in the abundance of Type I and Type II methanotrophs in eight replicate chalk streams. These data may suggest a degree of functional redundancy within the variable methanotroph community inhabiting these streams and that some of the variation in
pmoA
may reflect a suite of enzymes of different methane affinities which enables such a large range of methane concentrations to be oxidised. The latter, coupled to their high CCE, enables the methanotrophs to sustain net production throughout the year, regardless of the marked temporal and spatial changes that occur in methane. |
doi_str_mv | 10.1038/ismej.2015.98 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4579481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3813932241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-172646543aa47da4aa4e82aa26f0cb32192b77f2585f7ed3e4e8d08fcd5bff783</originalsourceid><addsrcrecordid>eNptkc1r3DAQxUVIyKbbHnsthlx68UaSJUu-FEJIPyAQCOlZyPJorWUtbSU7sP995Gy6pKGneWh-ejPDQ-gzwSuCK3nl0gCbFcWErxp5gi6I4KQUlcCnR13TBfqQ0gZjLupanKMFrbOUjF6g2wf3BLGFrhhg7LUPYwy7fl-kKY3a-fze7overfvC6NgGX5jg84fksgRrnXHgzf4jOrN6m-DTa12i399vH29-lnf3P37dXN-VhlM2lkTQmtWcVVoz0WmWC0iqNa0tNm1FSUNbISzlklsBXQW53WFpTcdba4WslujbwXc3tQN0BvwY9Vbtoht03Kugnfq3412v1uFJMS4aJkk2-PpqEMOfCdKoBpcMbLfaQ5iSIoLwhnBB5lmX79BNmKLP580Uo1TWdKbKA2ViSCmCPS5DsJoDUi8BqTkg1cz8l7cXHOm_iWRgdQBSbvk1xDdj_-v4DCrgnfU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1714228628</pqid></control><display><type>article</type><title>Riverbed methanotrophy sustained by high carbon conversion efficiency</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Trimmer, Mark ; Shelley, Felicity C ; Purdy, Kevin J ; Maanoja, Susanna T ; Chronopoulou, Panagiota-Myrsini ; Grey, Jonathan</creator><creatorcontrib>Trimmer, Mark ; Shelley, Felicity C ; Purdy, Kevin J ; Maanoja, Susanna T ; Chronopoulou, Panagiota-Myrsini ; Grey, Jonathan</creatorcontrib><description>Our understanding of the role of freshwaters in the global carbon cycle is being revised, but there is still a lack of data, especially for the cycling of methane, in rivers and streams. Unravelling the role of methanotrophy is key to determining the fate of methane in rivers. Here we focus on the carbon conversion efficiency (CCE) of methanotrophy, that is, how much organic carbon is produced per mole of CH
4
oxidised, and how this is influenced by variation in methanotroph communities. First, we show that the CCE of riverbed methanotrophs is consistently high (~50%) across a wide range of methane concentrations (~10–7000 nM) and despite a 10-fold span in the rate of methane oxidation. Then, we show that this high conversion efficiency is largely conserved (50%± confidence interval 44–56%) across pronounced variation in the key functional gene (70 operational taxonomic units (OTUs)), particulate methane monooxygenase (
pmoA
), and marked shifts in the abundance of Type I and Type II methanotrophs in eight replicate chalk streams. These data may suggest a degree of functional redundancy within the variable methanotroph community inhabiting these streams and that some of the variation in
pmoA
may reflect a suite of enzymes of different methane affinities which enables such a large range of methane concentrations to be oxidised. The latter, coupled to their high CCE, enables the methanotrophs to sustain net production throughout the year, regardless of the marked temporal and spatial changes that occur in methane.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/ismej.2015.98</identifier><identifier>PMID: 26057842</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/58 ; 45/77 ; 631/158/2459 ; 631/158/47 ; 631/326/171/1878 ; 704/172 ; Bacteria - isolation & purification ; Bacteria - metabolism ; Biomedical and Life Sciences ; Carbon cycle ; Carbon Sequestration ; Ecology ; Evolutionary Biology ; Geologic Sediments - chemistry ; Geologic Sediments - microbiology ; Life Sciences ; Methane ; Methane - metabolism ; Methylocystaceae - genetics ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Organic carbon ; Original ; original-article ; Oxidation-Reduction ; Oxygenases - genetics ; Phylogeny ; River beds ; Rivers ; Rivers - chemistry ; Rivers - microbiology</subject><ispartof>The ISME Journal, 2015-10, Vol.9 (10), p.2304-2314</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Oct 2015</rights><rights>Copyright © 2015 International Society for Microbial Ecology 2015 International Society for Microbial Ecology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-172646543aa47da4aa4e82aa26f0cb32192b77f2585f7ed3e4e8d08fcd5bff783</citedby><cites>FETCH-LOGICAL-c524t-172646543aa47da4aa4e82aa26f0cb32192b77f2585f7ed3e4e8d08fcd5bff783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4579481/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4579481/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26057842$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Trimmer, Mark</creatorcontrib><creatorcontrib>Shelley, Felicity C</creatorcontrib><creatorcontrib>Purdy, Kevin J</creatorcontrib><creatorcontrib>Maanoja, Susanna T</creatorcontrib><creatorcontrib>Chronopoulou, Panagiota-Myrsini</creatorcontrib><creatorcontrib>Grey, Jonathan</creatorcontrib><title>Riverbed methanotrophy sustained by high carbon conversion efficiency</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Our understanding of the role of freshwaters in the global carbon cycle is being revised, but there is still a lack of data, especially for the cycling of methane, in rivers and streams. Unravelling the role of methanotrophy is key to determining the fate of methane in rivers. Here we focus on the carbon conversion efficiency (CCE) of methanotrophy, that is, how much organic carbon is produced per mole of CH
4
oxidised, and how this is influenced by variation in methanotroph communities. First, we show that the CCE of riverbed methanotrophs is consistently high (~50%) across a wide range of methane concentrations (~10–7000 nM) and despite a 10-fold span in the rate of methane oxidation. Then, we show that this high conversion efficiency is largely conserved (50%± confidence interval 44–56%) across pronounced variation in the key functional gene (70 operational taxonomic units (OTUs)), particulate methane monooxygenase (
pmoA
), and marked shifts in the abundance of Type I and Type II methanotrophs in eight replicate chalk streams. These data may suggest a degree of functional redundancy within the variable methanotroph community inhabiting these streams and that some of the variation in
pmoA
may reflect a suite of enzymes of different methane affinities which enables such a large range of methane concentrations to be oxidised. The latter, coupled to their high CCE, enables the methanotrophs to sustain net production throughout the year, regardless of the marked temporal and spatial changes that occur in methane.</description><subject>101/58</subject><subject>45/77</subject><subject>631/158/2459</subject><subject>631/158/47</subject><subject>631/326/171/1878</subject><subject>704/172</subject><subject>Bacteria - isolation & purification</subject><subject>Bacteria - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon cycle</subject><subject>Carbon Sequestration</subject><subject>Ecology</subject><subject>Evolutionary Biology</subject><subject>Geologic Sediments - chemistry</subject><subject>Geologic Sediments - microbiology</subject><subject>Life Sciences</subject><subject>Methane</subject><subject>Methane - metabolism</subject><subject>Methylocystaceae - genetics</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Organic carbon</subject><subject>Original</subject><subject>original-article</subject><subject>Oxidation-Reduction</subject><subject>Oxygenases - genetics</subject><subject>Phylogeny</subject><subject>River beds</subject><subject>Rivers</subject><subject>Rivers - chemistry</subject><subject>Rivers - microbiology</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkc1r3DAQxUVIyKbbHnsthlx68UaSJUu-FEJIPyAQCOlZyPJorWUtbSU7sP995Gy6pKGneWh-ejPDQ-gzwSuCK3nl0gCbFcWErxp5gi6I4KQUlcCnR13TBfqQ0gZjLupanKMFrbOUjF6g2wf3BLGFrhhg7LUPYwy7fl-kKY3a-fze7overfvC6NgGX5jg84fksgRrnXHgzf4jOrN6m-DTa12i399vH29-lnf3P37dXN-VhlM2lkTQmtWcVVoz0WmWC0iqNa0tNm1FSUNbISzlklsBXQW53WFpTcdba4WslujbwXc3tQN0BvwY9Vbtoht03Kugnfq3412v1uFJMS4aJkk2-PpqEMOfCdKoBpcMbLfaQ5iSIoLwhnBB5lmX79BNmKLP580Uo1TWdKbKA2ViSCmCPS5DsJoDUi8BqTkg1cz8l7cXHOm_iWRgdQBSbvk1xDdj_-v4DCrgnfU</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Trimmer, Mark</creator><creator>Shelley, Felicity C</creator><creator>Purdy, Kevin J</creator><creator>Maanoja, Susanna T</creator><creator>Chronopoulou, Panagiota-Myrsini</creator><creator>Grey, Jonathan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151001</creationdate><title>Riverbed methanotrophy sustained by high carbon conversion efficiency</title><author>Trimmer, Mark ; Shelley, Felicity C ; Purdy, Kevin J ; Maanoja, Susanna T ; Chronopoulou, Panagiota-Myrsini ; Grey, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-172646543aa47da4aa4e82aa26f0cb32192b77f2585f7ed3e4e8d08fcd5bff783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>101/58</topic><topic>45/77</topic><topic>631/158/2459</topic><topic>631/158/47</topic><topic>631/326/171/1878</topic><topic>704/172</topic><topic>Bacteria - isolation & purification</topic><topic>Bacteria - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon cycle</topic><topic>Carbon Sequestration</topic><topic>Ecology</topic><topic>Evolutionary Biology</topic><topic>Geologic Sediments - chemistry</topic><topic>Geologic Sediments - microbiology</topic><topic>Life Sciences</topic><topic>Methane</topic><topic>Methane - metabolism</topic><topic>Methylocystaceae - genetics</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Organic carbon</topic><topic>Original</topic><topic>original-article</topic><topic>Oxidation-Reduction</topic><topic>Oxygenases - genetics</topic><topic>Phylogeny</topic><topic>River beds</topic><topic>Rivers</topic><topic>Rivers - chemistry</topic><topic>Rivers - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trimmer, Mark</creatorcontrib><creatorcontrib>Shelley, Felicity C</creatorcontrib><creatorcontrib>Purdy, Kevin J</creatorcontrib><creatorcontrib>Maanoja, Susanna T</creatorcontrib><creatorcontrib>Chronopoulou, Panagiota-Myrsini</creatorcontrib><creatorcontrib>Grey, Jonathan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trimmer, Mark</au><au>Shelley, Felicity C</au><au>Purdy, Kevin J</au><au>Maanoja, Susanna T</au><au>Chronopoulou, Panagiota-Myrsini</au><au>Grey, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riverbed methanotrophy sustained by high carbon conversion efficiency</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>9</volume><issue>10</issue><spage>2304</spage><epage>2314</epage><pages>2304-2314</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Our understanding of the role of freshwaters in the global carbon cycle is being revised, but there is still a lack of data, especially for the cycling of methane, in rivers and streams. Unravelling the role of methanotrophy is key to determining the fate of methane in rivers. Here we focus on the carbon conversion efficiency (CCE) of methanotrophy, that is, how much organic carbon is produced per mole of CH
4
oxidised, and how this is influenced by variation in methanotroph communities. First, we show that the CCE of riverbed methanotrophs is consistently high (~50%) across a wide range of methane concentrations (~10–7000 nM) and despite a 10-fold span in the rate of methane oxidation. Then, we show that this high conversion efficiency is largely conserved (50%± confidence interval 44–56%) across pronounced variation in the key functional gene (70 operational taxonomic units (OTUs)), particulate methane monooxygenase (
pmoA
), and marked shifts in the abundance of Type I and Type II methanotrophs in eight replicate chalk streams. These data may suggest a degree of functional redundancy within the variable methanotroph community inhabiting these streams and that some of the variation in
pmoA
may reflect a suite of enzymes of different methane affinities which enables such a large range of methane concentrations to be oxidised. The latter, coupled to their high CCE, enables the methanotrophs to sustain net production throughout the year, regardless of the marked temporal and spatial changes that occur in methane.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26057842</pmid><doi>10.1038/ismej.2015.98</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-7362 |
ispartof | The ISME Journal, 2015-10, Vol.9 (10), p.2304-2314 |
issn | 1751-7362 1751-7370 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4579481 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central |
subjects | 101/58 45/77 631/158/2459 631/158/47 631/326/171/1878 704/172 Bacteria - isolation & purification Bacteria - metabolism Biomedical and Life Sciences Carbon cycle Carbon Sequestration Ecology Evolutionary Biology Geologic Sediments - chemistry Geologic Sediments - microbiology Life Sciences Methane Methane - metabolism Methylocystaceae - genetics Microbial Ecology Microbial Genetics and Genomics Microbiology Organic carbon Original original-article Oxidation-Reduction Oxygenases - genetics Phylogeny River beds Rivers Rivers - chemistry Rivers - microbiology |
title | Riverbed methanotrophy sustained by high carbon conversion efficiency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A33%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riverbed%20methanotrophy%20sustained%20by%20high%20carbon%20conversion%20efficiency&rft.jtitle=The%20ISME%20Journal&rft.au=Trimmer,%20Mark&rft.date=2015-10-01&rft.volume=9&rft.issue=10&rft.spage=2304&rft.epage=2314&rft.pages=2304-2314&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/ismej.2015.98&rft_dat=%3Cproquest_pubme%3E3813932241%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1714228628&rft_id=info:pmid/26057842&rfr_iscdi=true |