Hansenula polymorpha Hac1p Is Critical to Protein N-Glycosylation Activity Modulation, as Revealed by Functional and Transcriptomic Analyses

Aggregation of misfolded protein in the endoplasmic reticulum (ER) induces a cellular protective response to ER stress, the unfolded protein response (UPR), which is mediated by a basic leucine zipper (bZIP) transcription factor, Hac1p/Xbp1. In this study, we identified and studied the molecular fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 2015-10, Vol.81 (20), p.6982-6993
Hauptverfasser: Moon, Hye-Yun, Cheon, Seon Ah, Kim, Hyunah, Agaphonov, M O, Kwon, Ohsuk, Oh, Doo-Byoung, Kim, Jeong-Yoon, Kang, Hyun Ah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6993
container_issue 20
container_start_page 6982
container_title Applied and Environmental Microbiology
container_volume 81
creator Moon, Hye-Yun
Cheon, Seon Ah
Kim, Hyunah
Agaphonov, M O
Kwon, Ohsuk
Oh, Doo-Byoung
Kim, Jeong-Yoon
Kang, Hyun Ah
description Aggregation of misfolded protein in the endoplasmic reticulum (ER) induces a cellular protective response to ER stress, the unfolded protein response (UPR), which is mediated by a basic leucine zipper (bZIP) transcription factor, Hac1p/Xbp1. In this study, we identified and studied the molecular functions of a HAC1 homolog from the thermotolerant yeast Hansenula polymorpha (HpHAC1). We found that the HpHAC1 mRNA contains a nonconventional intron of 177 bp whose interaction with the 5' untranslated region is responsible for the translational inhibition of the HpHAC1 mRNA. The H. polymorpha hac1-null (Hphac1Δ) mutant strain grew slowly, even under normal growth conditions, and was less thermotolerant than the wild-type (WT) strain. The mutant strain was also more sensitive to cell wall-perturbing agents and to the UPR-inducing agents dithiothreitol (DTT) and tunicamycin (TM). Using comparative transcriptome analysis of the WT and Hphac1Δ strains treated with DTT and TM, we identified HpHAC1-dependent core UPR targets, which included genes involved in protein secretion and processing, particularly those required for N-linked protein glycosylation. Notably, different glycosylation and processing patterns of the vacuolar glycoprotein carboxypeptidase Y were observed in the WT and Hphac1Δ strains. Moreover, overexpression of active HpHac1p significantly increased the N-linked glycosylation efficiency and TM resistance. Collectively, our results suggest that the function of HpHac1p is important not only for UPR induction but also for efficient glycosylation in H. polymorpha.
doi_str_mv 10.1128/AEM.01440-15
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4579441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1727677233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-9e2c802ebe835d9744adc36d76d29cf7cfc4ab8c95e3531347527651c08ce4c63</originalsourceid><addsrcrecordid>eNqNks9rFDEUx4Modq3ePEvASw-dmp-TzEVYlrZbaFWknkP2TdamZCZjklmY_8E_2tluLerJ04P3PnzeS_gi9JaSM0qZ_rA8vzkjVAhSUfkMLShpdCU5r5-jBSFNUzEmyBF6lfM9IUSQWr9ER6xmnNZCLtDPte2z68dg8RDD1MU03Fm8tkAHfJXxKvniwQZcIv6SYnG-x5-qyzBBzFOwxcceL6H4nS8TvonteOidYpvxV7dzNrgWbyZ8MfawH8wm27f4Ns1bIfmhxM4DXs79Kbv8Gr3Y2pDdm8d6jL5dnN-u1tX158ur1fK6AiFkqRrHQBPmNk5z2TZKCNsCr1tVt6yBrYItCLvR0EjHJadcKMlULSkQDU5AzY_Rx4N3GDeda8H1JdlghuQ7myYTrTd_T3p_Z77HnRFSNULQWXDyKEjxx-hyMZ3P4EKwvYtjNlTNC5VinP8HSmsmldZ76_t_0Ps4pvlvHihNiZqhmTo9UJBizsltn-6mxOwTYeZEmIdEGCpn_N2fb32Cf0eA_wKtNLLr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718107813</pqid></control><display><type>article</type><title>Hansenula polymorpha Hac1p Is Critical to Protein N-Glycosylation Activity Modulation, as Revealed by Functional and Transcriptomic Analyses</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Moon, Hye-Yun ; Cheon, Seon Ah ; Kim, Hyunah ; Agaphonov, M O ; Kwon, Ohsuk ; Oh, Doo-Byoung ; Kim, Jeong-Yoon ; Kang, Hyun Ah</creator><contributor>Cullen, D.</contributor><creatorcontrib>Moon, Hye-Yun ; Cheon, Seon Ah ; Kim, Hyunah ; Agaphonov, M O ; Kwon, Ohsuk ; Oh, Doo-Byoung ; Kim, Jeong-Yoon ; Kang, Hyun Ah ; Cullen, D.</creatorcontrib><description>Aggregation of misfolded protein in the endoplasmic reticulum (ER) induces a cellular protective response to ER stress, the unfolded protein response (UPR), which is mediated by a basic leucine zipper (bZIP) transcription factor, Hac1p/Xbp1. In this study, we identified and studied the molecular functions of a HAC1 homolog from the thermotolerant yeast Hansenula polymorpha (HpHAC1). We found that the HpHAC1 mRNA contains a nonconventional intron of 177 bp whose interaction with the 5' untranslated region is responsible for the translational inhibition of the HpHAC1 mRNA. The H. polymorpha hac1-null (Hphac1Δ) mutant strain grew slowly, even under normal growth conditions, and was less thermotolerant than the wild-type (WT) strain. The mutant strain was also more sensitive to cell wall-perturbing agents and to the UPR-inducing agents dithiothreitol (DTT) and tunicamycin (TM). Using comparative transcriptome analysis of the WT and Hphac1Δ strains treated with DTT and TM, we identified HpHAC1-dependent core UPR targets, which included genes involved in protein secretion and processing, particularly those required for N-linked protein glycosylation. Notably, different glycosylation and processing patterns of the vacuolar glycoprotein carboxypeptidase Y were observed in the WT and Hphac1Δ strains. Moreover, overexpression of active HpHac1p significantly increased the N-linked glycosylation efficiency and TM resistance. Collectively, our results suggest that the function of HpHac1p is important not only for UPR induction but also for efficient glycosylation in H. polymorpha.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>EISSN: 1098-6596</identifier><identifier>DOI: 10.1128/AEM.01440-15</identifier><identifier>PMID: 26231645</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Basic-Leucine Zipper Transcription Factors - genetics ; Basic-Leucine Zipper Transcription Factors - metabolism ; Gene Deletion ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Fungal ; Genes ; Genetics and Molecular Biology ; Glycosylation ; Hansenula polymorpha ; Introns ; Molecular Sequence Data ; Pichia - genetics ; Pichia - growth &amp; development ; Pichia - metabolism ; Pichia - radiation effects ; Protein Biosynthesis ; Proteins ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Sequence Analysis, DNA ; Stress, Physiological ; Temperature ; Transcription factors ; Yeast</subject><ispartof>Applied and Environmental Microbiology, 2015-10, Vol.81 (20), p.6982-6993</ispartof><rights>Copyright © 2015, American Society for Microbiology. All Rights Reserved.</rights><rights>Copyright American Society for Microbiology Oct 2015</rights><rights>Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-9e2c802ebe835d9744adc36d76d29cf7cfc4ab8c95e3531347527651c08ce4c63</citedby><cites>FETCH-LOGICAL-c445t-9e2c802ebe835d9744adc36d76d29cf7cfc4ab8c95e3531347527651c08ce4c63</cites><orcidid>0000-0002-0988-8064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4579441/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4579441/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,3175,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26231645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cullen, D.</contributor><creatorcontrib>Moon, Hye-Yun</creatorcontrib><creatorcontrib>Cheon, Seon Ah</creatorcontrib><creatorcontrib>Kim, Hyunah</creatorcontrib><creatorcontrib>Agaphonov, M O</creatorcontrib><creatorcontrib>Kwon, Ohsuk</creatorcontrib><creatorcontrib>Oh, Doo-Byoung</creatorcontrib><creatorcontrib>Kim, Jeong-Yoon</creatorcontrib><creatorcontrib>Kang, Hyun Ah</creatorcontrib><title>Hansenula polymorpha Hac1p Is Critical to Protein N-Glycosylation Activity Modulation, as Revealed by Functional and Transcriptomic Analyses</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Aggregation of misfolded protein in the endoplasmic reticulum (ER) induces a cellular protective response to ER stress, the unfolded protein response (UPR), which is mediated by a basic leucine zipper (bZIP) transcription factor, Hac1p/Xbp1. In this study, we identified and studied the molecular functions of a HAC1 homolog from the thermotolerant yeast Hansenula polymorpha (HpHAC1). We found that the HpHAC1 mRNA contains a nonconventional intron of 177 bp whose interaction with the 5' untranslated region is responsible for the translational inhibition of the HpHAC1 mRNA. The H. polymorpha hac1-null (Hphac1Δ) mutant strain grew slowly, even under normal growth conditions, and was less thermotolerant than the wild-type (WT) strain. The mutant strain was also more sensitive to cell wall-perturbing agents and to the UPR-inducing agents dithiothreitol (DTT) and tunicamycin (TM). Using comparative transcriptome analysis of the WT and Hphac1Δ strains treated with DTT and TM, we identified HpHAC1-dependent core UPR targets, which included genes involved in protein secretion and processing, particularly those required for N-linked protein glycosylation. Notably, different glycosylation and processing patterns of the vacuolar glycoprotein carboxypeptidase Y were observed in the WT and Hphac1Δ strains. Moreover, overexpression of active HpHac1p significantly increased the N-linked glycosylation efficiency and TM resistance. Collectively, our results suggest that the function of HpHac1p is important not only for UPR induction but also for efficient glycosylation in H. polymorpha.</description><subject>Basic-Leucine Zipper Transcription Factors - genetics</subject><subject>Basic-Leucine Zipper Transcription Factors - metabolism</subject><subject>Gene Deletion</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genes</subject><subject>Genetics and Molecular Biology</subject><subject>Glycosylation</subject><subject>Hansenula polymorpha</subject><subject>Introns</subject><subject>Molecular Sequence Data</subject><subject>Pichia - genetics</subject><subject>Pichia - growth &amp; development</subject><subject>Pichia - metabolism</subject><subject>Pichia - radiation effects</subject><subject>Protein Biosynthesis</subject><subject>Proteins</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Sequence Analysis, DNA</subject><subject>Stress, Physiological</subject><subject>Temperature</subject><subject>Transcription factors</subject><subject>Yeast</subject><issn>0099-2240</issn><issn>1098-5336</issn><issn>1098-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks9rFDEUx4Modq3ePEvASw-dmp-TzEVYlrZbaFWknkP2TdamZCZjklmY_8E_2tluLerJ04P3PnzeS_gi9JaSM0qZ_rA8vzkjVAhSUfkMLShpdCU5r5-jBSFNUzEmyBF6lfM9IUSQWr9ER6xmnNZCLtDPte2z68dg8RDD1MU03Fm8tkAHfJXxKvniwQZcIv6SYnG-x5-qyzBBzFOwxcceL6H4nS8TvonteOidYpvxV7dzNrgWbyZ8MfawH8wm27f4Ns1bIfmhxM4DXs79Kbv8Gr3Y2pDdm8d6jL5dnN-u1tX158ur1fK6AiFkqRrHQBPmNk5z2TZKCNsCr1tVt6yBrYItCLvR0EjHJadcKMlULSkQDU5AzY_Rx4N3GDeda8H1JdlghuQ7myYTrTd_T3p_Z77HnRFSNULQWXDyKEjxx-hyMZ3P4EKwvYtjNlTNC5VinP8HSmsmldZ76_t_0Ps4pvlvHihNiZqhmTo9UJBizsltn-6mxOwTYeZEmIdEGCpn_N2fb32Cf0eA_wKtNLLr</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Moon, Hye-Yun</creator><creator>Cheon, Seon Ah</creator><creator>Kim, Hyunah</creator><creator>Agaphonov, M O</creator><creator>Kwon, Ohsuk</creator><creator>Oh, Doo-Byoung</creator><creator>Kim, Jeong-Yoon</creator><creator>Kang, Hyun Ah</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0988-8064</orcidid></search><sort><creationdate>20151001</creationdate><title>Hansenula polymorpha Hac1p Is Critical to Protein N-Glycosylation Activity Modulation, as Revealed by Functional and Transcriptomic Analyses</title><author>Moon, Hye-Yun ; Cheon, Seon Ah ; Kim, Hyunah ; Agaphonov, M O ; Kwon, Ohsuk ; Oh, Doo-Byoung ; Kim, Jeong-Yoon ; Kang, Hyun Ah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-9e2c802ebe835d9744adc36d76d29cf7cfc4ab8c95e3531347527651c08ce4c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Basic-Leucine Zipper Transcription Factors - genetics</topic><topic>Basic-Leucine Zipper Transcription Factors - metabolism</topic><topic>Gene Deletion</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genes</topic><topic>Genetics and Molecular Biology</topic><topic>Glycosylation</topic><topic>Hansenula polymorpha</topic><topic>Introns</topic><topic>Molecular Sequence Data</topic><topic>Pichia - genetics</topic><topic>Pichia - growth &amp; development</topic><topic>Pichia - metabolism</topic><topic>Pichia - radiation effects</topic><topic>Protein Biosynthesis</topic><topic>Proteins</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Sequence Analysis, DNA</topic><topic>Stress, Physiological</topic><topic>Temperature</topic><topic>Transcription factors</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moon, Hye-Yun</creatorcontrib><creatorcontrib>Cheon, Seon Ah</creatorcontrib><creatorcontrib>Kim, Hyunah</creatorcontrib><creatorcontrib>Agaphonov, M O</creatorcontrib><creatorcontrib>Kwon, Ohsuk</creatorcontrib><creatorcontrib>Oh, Doo-Byoung</creatorcontrib><creatorcontrib>Kim, Jeong-Yoon</creatorcontrib><creatorcontrib>Kang, Hyun Ah</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moon, Hye-Yun</au><au>Cheon, Seon Ah</au><au>Kim, Hyunah</au><au>Agaphonov, M O</au><au>Kwon, Ohsuk</au><au>Oh, Doo-Byoung</au><au>Kim, Jeong-Yoon</au><au>Kang, Hyun Ah</au><au>Cullen, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hansenula polymorpha Hac1p Is Critical to Protein N-Glycosylation Activity Modulation, as Revealed by Functional and Transcriptomic Analyses</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>81</volume><issue>20</issue><spage>6982</spage><epage>6993</epage><pages>6982-6993</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><eissn>1098-6596</eissn><coden>AEMIDF</coden><abstract>Aggregation of misfolded protein in the endoplasmic reticulum (ER) induces a cellular protective response to ER stress, the unfolded protein response (UPR), which is mediated by a basic leucine zipper (bZIP) transcription factor, Hac1p/Xbp1. In this study, we identified and studied the molecular functions of a HAC1 homolog from the thermotolerant yeast Hansenula polymorpha (HpHAC1). We found that the HpHAC1 mRNA contains a nonconventional intron of 177 bp whose interaction with the 5' untranslated region is responsible for the translational inhibition of the HpHAC1 mRNA. The H. polymorpha hac1-null (Hphac1Δ) mutant strain grew slowly, even under normal growth conditions, and was less thermotolerant than the wild-type (WT) strain. The mutant strain was also more sensitive to cell wall-perturbing agents and to the UPR-inducing agents dithiothreitol (DTT) and tunicamycin (TM). Using comparative transcriptome analysis of the WT and Hphac1Δ strains treated with DTT and TM, we identified HpHAC1-dependent core UPR targets, which included genes involved in protein secretion and processing, particularly those required for N-linked protein glycosylation. Notably, different glycosylation and processing patterns of the vacuolar glycoprotein carboxypeptidase Y were observed in the WT and Hphac1Δ strains. Moreover, overexpression of active HpHac1p significantly increased the N-linked glycosylation efficiency and TM resistance. Collectively, our results suggest that the function of HpHac1p is important not only for UPR induction but also for efficient glycosylation in H. polymorpha.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>26231645</pmid><doi>10.1128/AEM.01440-15</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0988-8064</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 2015-10, Vol.81 (20), p.6982-6993
issn 0099-2240
1098-5336
1098-6596
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4579441
source American Society for Microbiology; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Basic-Leucine Zipper Transcription Factors - genetics
Basic-Leucine Zipper Transcription Factors - metabolism
Gene Deletion
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Fungal
Genes
Genetics and Molecular Biology
Glycosylation
Hansenula polymorpha
Introns
Molecular Sequence Data
Pichia - genetics
Pichia - growth & development
Pichia - metabolism
Pichia - radiation effects
Protein Biosynthesis
Proteins
RNA, Messenger - genetics
RNA, Messenger - metabolism
Sequence Analysis, DNA
Stress, Physiological
Temperature
Transcription factors
Yeast
title Hansenula polymorpha Hac1p Is Critical to Protein N-Glycosylation Activity Modulation, as Revealed by Functional and Transcriptomic Analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hansenula%20polymorpha%20Hac1p%20Is%20Critical%20to%20Protein%20N-Glycosylation%20Activity%20Modulation,%20as%20Revealed%20by%20Functional%20and%20Transcriptomic%20Analyses&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Moon,%20Hye-Yun&rft.date=2015-10-01&rft.volume=81&rft.issue=20&rft.spage=6982&rft.epage=6993&rft.pages=6982-6993&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.01440-15&rft_dat=%3Cproquest_pubme%3E1727677233%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718107813&rft_id=info:pmid/26231645&rfr_iscdi=true