Hansenula polymorpha Hac1p Is Critical to Protein N-Glycosylation Activity Modulation, as Revealed by Functional and Transcriptomic Analyses
Aggregation of misfolded protein in the endoplasmic reticulum (ER) induces a cellular protective response to ER stress, the unfolded protein response (UPR), which is mediated by a basic leucine zipper (bZIP) transcription factor, Hac1p/Xbp1. In this study, we identified and studied the molecular fun...
Gespeichert in:
Veröffentlicht in: | Applied and Environmental Microbiology 2015-10, Vol.81 (20), p.6982-6993 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6993 |
---|---|
container_issue | 20 |
container_start_page | 6982 |
container_title | Applied and Environmental Microbiology |
container_volume | 81 |
creator | Moon, Hye-Yun Cheon, Seon Ah Kim, Hyunah Agaphonov, M O Kwon, Ohsuk Oh, Doo-Byoung Kim, Jeong-Yoon Kang, Hyun Ah |
description | Aggregation of misfolded protein in the endoplasmic reticulum (ER) induces a cellular protective response to ER stress, the unfolded protein response (UPR), which is mediated by a basic leucine zipper (bZIP) transcription factor, Hac1p/Xbp1. In this study, we identified and studied the molecular functions of a HAC1 homolog from the thermotolerant yeast Hansenula polymorpha (HpHAC1). We found that the HpHAC1 mRNA contains a nonconventional intron of 177 bp whose interaction with the 5' untranslated region is responsible for the translational inhibition of the HpHAC1 mRNA. The H. polymorpha hac1-null (Hphac1Δ) mutant strain grew slowly, even under normal growth conditions, and was less thermotolerant than the wild-type (WT) strain. The mutant strain was also more sensitive to cell wall-perturbing agents and to the UPR-inducing agents dithiothreitol (DTT) and tunicamycin (TM). Using comparative transcriptome analysis of the WT and Hphac1Δ strains treated with DTT and TM, we identified HpHAC1-dependent core UPR targets, which included genes involved in protein secretion and processing, particularly those required for N-linked protein glycosylation. Notably, different glycosylation and processing patterns of the vacuolar glycoprotein carboxypeptidase Y were observed in the WT and Hphac1Δ strains. Moreover, overexpression of active HpHac1p significantly increased the N-linked glycosylation efficiency and TM resistance. Collectively, our results suggest that the function of HpHac1p is important not only for UPR induction but also for efficient glycosylation in H. polymorpha. |
doi_str_mv | 10.1128/AEM.01440-15 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4579441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1727677233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-9e2c802ebe835d9744adc36d76d29cf7cfc4ab8c95e3531347527651c08ce4c63</originalsourceid><addsrcrecordid>eNqNks9rFDEUx4Modq3ePEvASw-dmp-TzEVYlrZbaFWknkP2TdamZCZjklmY_8E_2tluLerJ04P3PnzeS_gi9JaSM0qZ_rA8vzkjVAhSUfkMLShpdCU5r5-jBSFNUzEmyBF6lfM9IUSQWr9ER6xmnNZCLtDPte2z68dg8RDD1MU03Fm8tkAHfJXxKvniwQZcIv6SYnG-x5-qyzBBzFOwxcceL6H4nS8TvonteOidYpvxV7dzNrgWbyZ8MfawH8wm27f4Ns1bIfmhxM4DXs79Kbv8Gr3Y2pDdm8d6jL5dnN-u1tX158ur1fK6AiFkqRrHQBPmNk5z2TZKCNsCr1tVt6yBrYItCLvR0EjHJadcKMlULSkQDU5AzY_Rx4N3GDeda8H1JdlghuQ7myYTrTd_T3p_Z77HnRFSNULQWXDyKEjxx-hyMZ3P4EKwvYtjNlTNC5VinP8HSmsmldZ76_t_0Ps4pvlvHihNiZqhmTo9UJBizsltn-6mxOwTYeZEmIdEGCpn_N2fb32Cf0eA_wKtNLLr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718107813</pqid></control><display><type>article</type><title>Hansenula polymorpha Hac1p Is Critical to Protein N-Glycosylation Activity Modulation, as Revealed by Functional and Transcriptomic Analyses</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Moon, Hye-Yun ; Cheon, Seon Ah ; Kim, Hyunah ; Agaphonov, M O ; Kwon, Ohsuk ; Oh, Doo-Byoung ; Kim, Jeong-Yoon ; Kang, Hyun Ah</creator><contributor>Cullen, D.</contributor><creatorcontrib>Moon, Hye-Yun ; Cheon, Seon Ah ; Kim, Hyunah ; Agaphonov, M O ; Kwon, Ohsuk ; Oh, Doo-Byoung ; Kim, Jeong-Yoon ; Kang, Hyun Ah ; Cullen, D.</creatorcontrib><description>Aggregation of misfolded protein in the endoplasmic reticulum (ER) induces a cellular protective response to ER stress, the unfolded protein response (UPR), which is mediated by a basic leucine zipper (bZIP) transcription factor, Hac1p/Xbp1. In this study, we identified and studied the molecular functions of a HAC1 homolog from the thermotolerant yeast Hansenula polymorpha (HpHAC1). We found that the HpHAC1 mRNA contains a nonconventional intron of 177 bp whose interaction with the 5' untranslated region is responsible for the translational inhibition of the HpHAC1 mRNA. The H. polymorpha hac1-null (Hphac1Δ) mutant strain grew slowly, even under normal growth conditions, and was less thermotolerant than the wild-type (WT) strain. The mutant strain was also more sensitive to cell wall-perturbing agents and to the UPR-inducing agents dithiothreitol (DTT) and tunicamycin (TM). Using comparative transcriptome analysis of the WT and Hphac1Δ strains treated with DTT and TM, we identified HpHAC1-dependent core UPR targets, which included genes involved in protein secretion and processing, particularly those required for N-linked protein glycosylation. Notably, different glycosylation and processing patterns of the vacuolar glycoprotein carboxypeptidase Y were observed in the WT and Hphac1Δ strains. Moreover, overexpression of active HpHac1p significantly increased the N-linked glycosylation efficiency and TM resistance. Collectively, our results suggest that the function of HpHac1p is important not only for UPR induction but also for efficient glycosylation in H. polymorpha.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>EISSN: 1098-6596</identifier><identifier>DOI: 10.1128/AEM.01440-15</identifier><identifier>PMID: 26231645</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Basic-Leucine Zipper Transcription Factors - genetics ; Basic-Leucine Zipper Transcription Factors - metabolism ; Gene Deletion ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Fungal ; Genes ; Genetics and Molecular Biology ; Glycosylation ; Hansenula polymorpha ; Introns ; Molecular Sequence Data ; Pichia - genetics ; Pichia - growth & development ; Pichia - metabolism ; Pichia - radiation effects ; Protein Biosynthesis ; Proteins ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Sequence Analysis, DNA ; Stress, Physiological ; Temperature ; Transcription factors ; Yeast</subject><ispartof>Applied and Environmental Microbiology, 2015-10, Vol.81 (20), p.6982-6993</ispartof><rights>Copyright © 2015, American Society for Microbiology. All Rights Reserved.</rights><rights>Copyright American Society for Microbiology Oct 2015</rights><rights>Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-9e2c802ebe835d9744adc36d76d29cf7cfc4ab8c95e3531347527651c08ce4c63</citedby><cites>FETCH-LOGICAL-c445t-9e2c802ebe835d9744adc36d76d29cf7cfc4ab8c95e3531347527651c08ce4c63</cites><orcidid>0000-0002-0988-8064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4579441/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4579441/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,3175,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26231645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cullen, D.</contributor><creatorcontrib>Moon, Hye-Yun</creatorcontrib><creatorcontrib>Cheon, Seon Ah</creatorcontrib><creatorcontrib>Kim, Hyunah</creatorcontrib><creatorcontrib>Agaphonov, M O</creatorcontrib><creatorcontrib>Kwon, Ohsuk</creatorcontrib><creatorcontrib>Oh, Doo-Byoung</creatorcontrib><creatorcontrib>Kim, Jeong-Yoon</creatorcontrib><creatorcontrib>Kang, Hyun Ah</creatorcontrib><title>Hansenula polymorpha Hac1p Is Critical to Protein N-Glycosylation Activity Modulation, as Revealed by Functional and Transcriptomic Analyses</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Aggregation of misfolded protein in the endoplasmic reticulum (ER) induces a cellular protective response to ER stress, the unfolded protein response (UPR), which is mediated by a basic leucine zipper (bZIP) transcription factor, Hac1p/Xbp1. In this study, we identified and studied the molecular functions of a HAC1 homolog from the thermotolerant yeast Hansenula polymorpha (HpHAC1). We found that the HpHAC1 mRNA contains a nonconventional intron of 177 bp whose interaction with the 5' untranslated region is responsible for the translational inhibition of the HpHAC1 mRNA. The H. polymorpha hac1-null (Hphac1Δ) mutant strain grew slowly, even under normal growth conditions, and was less thermotolerant than the wild-type (WT) strain. The mutant strain was also more sensitive to cell wall-perturbing agents and to the UPR-inducing agents dithiothreitol (DTT) and tunicamycin (TM). Using comparative transcriptome analysis of the WT and Hphac1Δ strains treated with DTT and TM, we identified HpHAC1-dependent core UPR targets, which included genes involved in protein secretion and processing, particularly those required for N-linked protein glycosylation. Notably, different glycosylation and processing patterns of the vacuolar glycoprotein carboxypeptidase Y were observed in the WT and Hphac1Δ strains. Moreover, overexpression of active HpHac1p significantly increased the N-linked glycosylation efficiency and TM resistance. Collectively, our results suggest that the function of HpHac1p is important not only for UPR induction but also for efficient glycosylation in H. polymorpha.</description><subject>Basic-Leucine Zipper Transcription Factors - genetics</subject><subject>Basic-Leucine Zipper Transcription Factors - metabolism</subject><subject>Gene Deletion</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genes</subject><subject>Genetics and Molecular Biology</subject><subject>Glycosylation</subject><subject>Hansenula polymorpha</subject><subject>Introns</subject><subject>Molecular Sequence Data</subject><subject>Pichia - genetics</subject><subject>Pichia - growth & development</subject><subject>Pichia - metabolism</subject><subject>Pichia - radiation effects</subject><subject>Protein Biosynthesis</subject><subject>Proteins</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Sequence Analysis, DNA</subject><subject>Stress, Physiological</subject><subject>Temperature</subject><subject>Transcription factors</subject><subject>Yeast</subject><issn>0099-2240</issn><issn>1098-5336</issn><issn>1098-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks9rFDEUx4Modq3ePEvASw-dmp-TzEVYlrZbaFWknkP2TdamZCZjklmY_8E_2tluLerJ04P3PnzeS_gi9JaSM0qZ_rA8vzkjVAhSUfkMLShpdCU5r5-jBSFNUzEmyBF6lfM9IUSQWr9ER6xmnNZCLtDPte2z68dg8RDD1MU03Fm8tkAHfJXxKvniwQZcIv6SYnG-x5-qyzBBzFOwxcceL6H4nS8TvonteOidYpvxV7dzNrgWbyZ8MfawH8wm27f4Ns1bIfmhxM4DXs79Kbv8Gr3Y2pDdm8d6jL5dnN-u1tX158ur1fK6AiFkqRrHQBPmNk5z2TZKCNsCr1tVt6yBrYItCLvR0EjHJadcKMlULSkQDU5AzY_Rx4N3GDeda8H1JdlghuQ7myYTrTd_T3p_Z77HnRFSNULQWXDyKEjxx-hyMZ3P4EKwvYtjNlTNC5VinP8HSmsmldZ76_t_0Ps4pvlvHihNiZqhmTo9UJBizsltn-6mxOwTYeZEmIdEGCpn_N2fb32Cf0eA_wKtNLLr</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Moon, Hye-Yun</creator><creator>Cheon, Seon Ah</creator><creator>Kim, Hyunah</creator><creator>Agaphonov, M O</creator><creator>Kwon, Ohsuk</creator><creator>Oh, Doo-Byoung</creator><creator>Kim, Jeong-Yoon</creator><creator>Kang, Hyun Ah</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0988-8064</orcidid></search><sort><creationdate>20151001</creationdate><title>Hansenula polymorpha Hac1p Is Critical to Protein N-Glycosylation Activity Modulation, as Revealed by Functional and Transcriptomic Analyses</title><author>Moon, Hye-Yun ; Cheon, Seon Ah ; Kim, Hyunah ; Agaphonov, M O ; Kwon, Ohsuk ; Oh, Doo-Byoung ; Kim, Jeong-Yoon ; Kang, Hyun Ah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-9e2c802ebe835d9744adc36d76d29cf7cfc4ab8c95e3531347527651c08ce4c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Basic-Leucine Zipper Transcription Factors - genetics</topic><topic>Basic-Leucine Zipper Transcription Factors - metabolism</topic><topic>Gene Deletion</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genes</topic><topic>Genetics and Molecular Biology</topic><topic>Glycosylation</topic><topic>Hansenula polymorpha</topic><topic>Introns</topic><topic>Molecular Sequence Data</topic><topic>Pichia - genetics</topic><topic>Pichia - growth & development</topic><topic>Pichia - metabolism</topic><topic>Pichia - radiation effects</topic><topic>Protein Biosynthesis</topic><topic>Proteins</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Sequence Analysis, DNA</topic><topic>Stress, Physiological</topic><topic>Temperature</topic><topic>Transcription factors</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moon, Hye-Yun</creatorcontrib><creatorcontrib>Cheon, Seon Ah</creatorcontrib><creatorcontrib>Kim, Hyunah</creatorcontrib><creatorcontrib>Agaphonov, M O</creatorcontrib><creatorcontrib>Kwon, Ohsuk</creatorcontrib><creatorcontrib>Oh, Doo-Byoung</creatorcontrib><creatorcontrib>Kim, Jeong-Yoon</creatorcontrib><creatorcontrib>Kang, Hyun Ah</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moon, Hye-Yun</au><au>Cheon, Seon Ah</au><au>Kim, Hyunah</au><au>Agaphonov, M O</au><au>Kwon, Ohsuk</au><au>Oh, Doo-Byoung</au><au>Kim, Jeong-Yoon</au><au>Kang, Hyun Ah</au><au>Cullen, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hansenula polymorpha Hac1p Is Critical to Protein N-Glycosylation Activity Modulation, as Revealed by Functional and Transcriptomic Analyses</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>81</volume><issue>20</issue><spage>6982</spage><epage>6993</epage><pages>6982-6993</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><eissn>1098-6596</eissn><coden>AEMIDF</coden><abstract>Aggregation of misfolded protein in the endoplasmic reticulum (ER) induces a cellular protective response to ER stress, the unfolded protein response (UPR), which is mediated by a basic leucine zipper (bZIP) transcription factor, Hac1p/Xbp1. In this study, we identified and studied the molecular functions of a HAC1 homolog from the thermotolerant yeast Hansenula polymorpha (HpHAC1). We found that the HpHAC1 mRNA contains a nonconventional intron of 177 bp whose interaction with the 5' untranslated region is responsible for the translational inhibition of the HpHAC1 mRNA. The H. polymorpha hac1-null (Hphac1Δ) mutant strain grew slowly, even under normal growth conditions, and was less thermotolerant than the wild-type (WT) strain. The mutant strain was also more sensitive to cell wall-perturbing agents and to the UPR-inducing agents dithiothreitol (DTT) and tunicamycin (TM). Using comparative transcriptome analysis of the WT and Hphac1Δ strains treated with DTT and TM, we identified HpHAC1-dependent core UPR targets, which included genes involved in protein secretion and processing, particularly those required for N-linked protein glycosylation. Notably, different glycosylation and processing patterns of the vacuolar glycoprotein carboxypeptidase Y were observed in the WT and Hphac1Δ strains. Moreover, overexpression of active HpHac1p significantly increased the N-linked glycosylation efficiency and TM resistance. Collectively, our results suggest that the function of HpHac1p is important not only for UPR induction but also for efficient glycosylation in H. polymorpha.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>26231645</pmid><doi>10.1128/AEM.01440-15</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0988-8064</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and Environmental Microbiology, 2015-10, Vol.81 (20), p.6982-6993 |
issn | 0099-2240 1098-5336 1098-6596 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4579441 |
source | American Society for Microbiology; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Basic-Leucine Zipper Transcription Factors - genetics Basic-Leucine Zipper Transcription Factors - metabolism Gene Deletion Gene expression Gene Expression Profiling Gene Expression Regulation, Fungal Genes Genetics and Molecular Biology Glycosylation Hansenula polymorpha Introns Molecular Sequence Data Pichia - genetics Pichia - growth & development Pichia - metabolism Pichia - radiation effects Protein Biosynthesis Proteins RNA, Messenger - genetics RNA, Messenger - metabolism Sequence Analysis, DNA Stress, Physiological Temperature Transcription factors Yeast |
title | Hansenula polymorpha Hac1p Is Critical to Protein N-Glycosylation Activity Modulation, as Revealed by Functional and Transcriptomic Analyses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hansenula%20polymorpha%20Hac1p%20Is%20Critical%20to%20Protein%20N-Glycosylation%20Activity%20Modulation,%20as%20Revealed%20by%20Functional%20and%20Transcriptomic%20Analyses&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Moon,%20Hye-Yun&rft.date=2015-10-01&rft.volume=81&rft.issue=20&rft.spage=6982&rft.epage=6993&rft.pages=6982-6993&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.01440-15&rft_dat=%3Cproquest_pubme%3E1727677233%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718107813&rft_id=info:pmid/26231645&rfr_iscdi=true |