Read clouds uncover variation in complex regions of the human genome
Although an increasing amount of human genetic variation is being identified and recorded, determining variants within repeated sequences of the human genome remains a challenge. Most population and genome-wide association studies have therefore been unable to consider variation in these regions. Co...
Gespeichert in:
Veröffentlicht in: | Genome research 2015-10, Vol.25 (10), p.1570-1580 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1580 |
---|---|
container_issue | 10 |
container_start_page | 1570 |
container_title | Genome research |
container_volume | 25 |
creator | Bishara, Alex Liu, Yuling Weng, Ziming Kashef-Haghighi, Dorna Newburger, Daniel E West, Robert Sidow, Arend Batzoglou, Serafim |
description | Although an increasing amount of human genetic variation is being identified and recorded, determining variants within repeated sequences of the human genome remains a challenge. Most population and genome-wide association studies have therefore been unable to consider variation in these regions. Core to the problem is the lack of a sequencing technology that produces reads with sufficient length and accuracy to enable unique mapping. Here, we present a novel methodology of using read clouds, obtained by accurate short-read sequencing of DNA derived from long fragment libraries, to confidently align short reads within repeat regions and enable accurate variant discovery. Our novel algorithm, Random Field Aligner (RFA), captures the relationships among the short reads governed by the long read process via a Markov Random Field. We utilized a modified version of the Illumina TruSeq synthetic long-read protocol, which yielded shallow-sequenced read clouds. We test RFA through extensive simulations and apply it to discover variants on the NA12878 human sample, for which shallow TruSeq read cloud sequencing data are available, and on an invasive breast carcinoma genome that we sequenced using the same method. We demonstrate that RFA facilitates accurate recovery of variation in 155 Mb of the human genome, including 94% of 67 Mb of segmental duplication sequence and 96% of 11 Mb of transcribed sequence, that are currently hidden from short-read technologies. |
doi_str_mv | 10.1101/gr.191189.115 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4579342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718914177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-f1db75029852f8458ebf80112bc071261d411857f5c7a268fbf8c14f1fc85bd43</originalsourceid><addsrcrecordid>eNqNkc1LxDAQxYMo7rp69Co5eumaaZM0vQjiNywIoueQpkm30jZr0i763xvZddGbp2Tm_fKYyUPoFMgcgMBF7edQAIgilmwPTYHRImGUF_vxToRICsJggo5CeCOEZFSIQzRJeSo4Y3SKbp6NqrBu3VgFPPbarY3Ha-UbNTSux02PtetWrfnA3tSxE7CzeFgavBw71ePa9K4zx-jAqjaYk-05Q693ty_XD8ni6f7x-mqRaCr4kFioypyRtBAstYIyYUorCEBaapJDyqGicRGWW6ZzlXJho6yBWrBasLKi2QxdbnxXY9mZSpt-8KqVK990yn9Kpxr5V-mbpazdWlKWFxlNo8H51sC799GEQXZN0KZtVW_cGCTkOeccOMv-gcY_BxpfRDTZoNq7ELyxu4mAyO-QZO3lJqRYssif_V5jR_-kkn0Bfz2NLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718914177</pqid></control><display><type>article</type><title>Read clouds uncover variation in complex regions of the human genome</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Bishara, Alex ; Liu, Yuling ; Weng, Ziming ; Kashef-Haghighi, Dorna ; Newburger, Daniel E ; West, Robert ; Sidow, Arend ; Batzoglou, Serafim</creator><creatorcontrib>Bishara, Alex ; Liu, Yuling ; Weng, Ziming ; Kashef-Haghighi, Dorna ; Newburger, Daniel E ; West, Robert ; Sidow, Arend ; Batzoglou, Serafim</creatorcontrib><description>Although an increasing amount of human genetic variation is being identified and recorded, determining variants within repeated sequences of the human genome remains a challenge. Most population and genome-wide association studies have therefore been unable to consider variation in these regions. Core to the problem is the lack of a sequencing technology that produces reads with sufficient length and accuracy to enable unique mapping. Here, we present a novel methodology of using read clouds, obtained by accurate short-read sequencing of DNA derived from long fragment libraries, to confidently align short reads within repeat regions and enable accurate variant discovery. Our novel algorithm, Random Field Aligner (RFA), captures the relationships among the short reads governed by the long read process via a Markov Random Field. We utilized a modified version of the Illumina TruSeq synthetic long-read protocol, which yielded shallow-sequenced read clouds. We test RFA through extensive simulations and apply it to discover variants on the NA12878 human sample, for which shallow TruSeq read cloud sequencing data are available, and on an invasive breast carcinoma genome that we sequenced using the same method. We demonstrate that RFA facilitates accurate recovery of variation in 155 Mb of the human genome, including 94% of 67 Mb of segmental duplication sequence and 96% of 11 Mb of transcribed sequence, that are currently hidden from short-read technologies.</description><identifier>ISSN: 1088-9051</identifier><identifier>EISSN: 1549-5469</identifier><identifier>DOI: 10.1101/gr.191189.115</identifier><identifier>PMID: 26286554</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Algorithms ; Carcinoma, Ductal - genetics ; Carcinoma, Ductal, Breast - genetics ; DNA Fragmentation ; Genetic Variation ; Genome, Human ; Humans ; Method ; Sequence Alignment - methods ; Sequence Analysis, DNA - methods</subject><ispartof>Genome research, 2015-10, Vol.25 (10), p.1570-1580</ispartof><rights>2015 Bishara et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-f1db75029852f8458ebf80112bc071261d411857f5c7a268fbf8c14f1fc85bd43</citedby><cites>FETCH-LOGICAL-c486t-f1db75029852f8458ebf80112bc071261d411857f5c7a268fbf8c14f1fc85bd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4579342/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4579342/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26286554$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bishara, Alex</creatorcontrib><creatorcontrib>Liu, Yuling</creatorcontrib><creatorcontrib>Weng, Ziming</creatorcontrib><creatorcontrib>Kashef-Haghighi, Dorna</creatorcontrib><creatorcontrib>Newburger, Daniel E</creatorcontrib><creatorcontrib>West, Robert</creatorcontrib><creatorcontrib>Sidow, Arend</creatorcontrib><creatorcontrib>Batzoglou, Serafim</creatorcontrib><title>Read clouds uncover variation in complex regions of the human genome</title><title>Genome research</title><addtitle>Genome Res</addtitle><description>Although an increasing amount of human genetic variation is being identified and recorded, determining variants within repeated sequences of the human genome remains a challenge. Most population and genome-wide association studies have therefore been unable to consider variation in these regions. Core to the problem is the lack of a sequencing technology that produces reads with sufficient length and accuracy to enable unique mapping. Here, we present a novel methodology of using read clouds, obtained by accurate short-read sequencing of DNA derived from long fragment libraries, to confidently align short reads within repeat regions and enable accurate variant discovery. Our novel algorithm, Random Field Aligner (RFA), captures the relationships among the short reads governed by the long read process via a Markov Random Field. We utilized a modified version of the Illumina TruSeq synthetic long-read protocol, which yielded shallow-sequenced read clouds. We test RFA through extensive simulations and apply it to discover variants on the NA12878 human sample, for which shallow TruSeq read cloud sequencing data are available, and on an invasive breast carcinoma genome that we sequenced using the same method. We demonstrate that RFA facilitates accurate recovery of variation in 155 Mb of the human genome, including 94% of 67 Mb of segmental duplication sequence and 96% of 11 Mb of transcribed sequence, that are currently hidden from short-read technologies.</description><subject>Algorithms</subject><subject>Carcinoma, Ductal - genetics</subject><subject>Carcinoma, Ductal, Breast - genetics</subject><subject>DNA Fragmentation</subject><subject>Genetic Variation</subject><subject>Genome, Human</subject><subject>Humans</subject><subject>Method</subject><subject>Sequence Alignment - methods</subject><subject>Sequence Analysis, DNA - methods</subject><issn>1088-9051</issn><issn>1549-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1LxDAQxYMo7rp69Co5eumaaZM0vQjiNywIoueQpkm30jZr0i763xvZddGbp2Tm_fKYyUPoFMgcgMBF7edQAIgilmwPTYHRImGUF_vxToRICsJggo5CeCOEZFSIQzRJeSo4Y3SKbp6NqrBu3VgFPPbarY3Ha-UbNTSux02PtetWrfnA3tSxE7CzeFgavBw71ePa9K4zx-jAqjaYk-05Q693ty_XD8ni6f7x-mqRaCr4kFioypyRtBAstYIyYUorCEBaapJDyqGicRGWW6ZzlXJho6yBWrBasLKi2QxdbnxXY9mZSpt-8KqVK990yn9Kpxr5V-mbpazdWlKWFxlNo8H51sC799GEQXZN0KZtVW_cGCTkOeccOMv-gcY_BxpfRDTZoNq7ELyxu4mAyO-QZO3lJqRYssif_V5jR_-kkn0Bfz2NLQ</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Bishara, Alex</creator><creator>Liu, Yuling</creator><creator>Weng, Ziming</creator><creator>Kashef-Haghighi, Dorna</creator><creator>Newburger, Daniel E</creator><creator>West, Robert</creator><creator>Sidow, Arend</creator><creator>Batzoglou, Serafim</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20151001</creationdate><title>Read clouds uncover variation in complex regions of the human genome</title><author>Bishara, Alex ; Liu, Yuling ; Weng, Ziming ; Kashef-Haghighi, Dorna ; Newburger, Daniel E ; West, Robert ; Sidow, Arend ; Batzoglou, Serafim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-f1db75029852f8458ebf80112bc071261d411857f5c7a268fbf8c14f1fc85bd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Carcinoma, Ductal - genetics</topic><topic>Carcinoma, Ductal, Breast - genetics</topic><topic>DNA Fragmentation</topic><topic>Genetic Variation</topic><topic>Genome, Human</topic><topic>Humans</topic><topic>Method</topic><topic>Sequence Alignment - methods</topic><topic>Sequence Analysis, DNA - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bishara, Alex</creatorcontrib><creatorcontrib>Liu, Yuling</creatorcontrib><creatorcontrib>Weng, Ziming</creatorcontrib><creatorcontrib>Kashef-Haghighi, Dorna</creatorcontrib><creatorcontrib>Newburger, Daniel E</creatorcontrib><creatorcontrib>West, Robert</creatorcontrib><creatorcontrib>Sidow, Arend</creatorcontrib><creatorcontrib>Batzoglou, Serafim</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bishara, Alex</au><au>Liu, Yuling</au><au>Weng, Ziming</au><au>Kashef-Haghighi, Dorna</au><au>Newburger, Daniel E</au><au>West, Robert</au><au>Sidow, Arend</au><au>Batzoglou, Serafim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Read clouds uncover variation in complex regions of the human genome</atitle><jtitle>Genome research</jtitle><addtitle>Genome Res</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>25</volume><issue>10</issue><spage>1570</spage><epage>1580</epage><pages>1570-1580</pages><issn>1088-9051</issn><eissn>1549-5469</eissn><abstract>Although an increasing amount of human genetic variation is being identified and recorded, determining variants within repeated sequences of the human genome remains a challenge. Most population and genome-wide association studies have therefore been unable to consider variation in these regions. Core to the problem is the lack of a sequencing technology that produces reads with sufficient length and accuracy to enable unique mapping. Here, we present a novel methodology of using read clouds, obtained by accurate short-read sequencing of DNA derived from long fragment libraries, to confidently align short reads within repeat regions and enable accurate variant discovery. Our novel algorithm, Random Field Aligner (RFA), captures the relationships among the short reads governed by the long read process via a Markov Random Field. We utilized a modified version of the Illumina TruSeq synthetic long-read protocol, which yielded shallow-sequenced read clouds. We test RFA through extensive simulations and apply it to discover variants on the NA12878 human sample, for which shallow TruSeq read cloud sequencing data are available, and on an invasive breast carcinoma genome that we sequenced using the same method. We demonstrate that RFA facilitates accurate recovery of variation in 155 Mb of the human genome, including 94% of 67 Mb of segmental duplication sequence and 96% of 11 Mb of transcribed sequence, that are currently hidden from short-read technologies.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>26286554</pmid><doi>10.1101/gr.191189.115</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1088-9051 |
ispartof | Genome research, 2015-10, Vol.25 (10), p.1570-1580 |
issn | 1088-9051 1549-5469 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4579342 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Carcinoma, Ductal - genetics Carcinoma, Ductal, Breast - genetics DNA Fragmentation Genetic Variation Genome, Human Humans Method Sequence Alignment - methods Sequence Analysis, DNA - methods |
title | Read clouds uncover variation in complex regions of the human genome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Read%20clouds%20uncover%20variation%20in%20complex%20regions%20of%20the%20human%20genome&rft.jtitle=Genome%20research&rft.au=Bishara,%20Alex&rft.date=2015-10-01&rft.volume=25&rft.issue=10&rft.spage=1570&rft.epage=1580&rft.pages=1570-1580&rft.issn=1088-9051&rft.eissn=1549-5469&rft_id=info:doi/10.1101/gr.191189.115&rft_dat=%3Cproquest_pubme%3E1718914177%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718914177&rft_id=info:pmid/26286554&rfr_iscdi=true |