Regulation of constitutive and alternative mRNA splicing across the human transcriptome by PRPF8 is determined by 5' splice site strength

Sequential assembly of the human spliceosome on RNA transcripts regulates splicing across the human transcriptome. The core spliceosome component PRPF8 is essential for spliceosome assembly through its participation in ribonucleoprotein (RNP) complexes for splice-site recognition, branch-point forma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology 2015-09, Vol.16 (1), p.201-201, Article 201
Hauptverfasser: Wickramasinghe, Vihandha O, Gonzàlez-Porta, Mar, Perera, David, Bartolozzi, Arthur R, Sibley, Christopher R, Hallegger, Martina, Ule, Jernej, Marioni, John C, Venkitaraman, Ashok R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue 1
container_start_page 201
container_title Genome Biology
container_volume 16
creator Wickramasinghe, Vihandha O
Gonzàlez-Porta, Mar
Perera, David
Bartolozzi, Arthur R
Sibley, Christopher R
Hallegger, Martina
Ule, Jernej
Marioni, John C
Venkitaraman, Ashok R
description Sequential assembly of the human spliceosome on RNA transcripts regulates splicing across the human transcriptome. The core spliceosome component PRPF8 is essential for spliceosome assembly through its participation in ribonucleoprotein (RNP) complexes for splice-site recognition, branch-point formation and catalysis. PRPF8 deficiency is linked to human diseases like retinitis pigmentosa or myeloid neoplasia, but its genome-wide effects on constitutive and alternative splicing remain unclear. Here, we show that alterations in RNA splicing patterns across the human transcriptome that occur in conditions of restricted cellular PRPF8 abundance are defined by the altered splicing of introns with weak 5' splice sites. iCLIP of spliceosome components reveals that PRPF8 depletion decreases RNP complex formation at most splice sites in exon-intron junctions throughout the genome. However, impaired splicing affects only a subset of human transcripts, enriched for mitotic cell cycle factors, leading to mitotic arrest. Preferentially retained introns and differentially used exons in the affected genes contain weak 5' splice sites, but are otherwise indistinguishable from adjacent spliced introns. Experimental enhancement of splice-site strength in mini-gene constructs overcomes the effects of PRPF8 depletion on the kinetics and fidelity of splicing during transcription. Competition for PRPF8 availability alters the transcription-coupled splicing of RNAs in which weak 5' splice sites predominate, enabling diversification of human gene expression during biological processes like mitosis. Our findings exemplify the regulatory potential of changes in the core spliceosome machinery, which may be relevant to slow-onset human genetic diseases linked to PRPF8 deficiency.
doi_str_mv 10.1186/s13059-015-0749-3
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4578845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A541593195</galeid><sourcerecordid>A541593195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c698t-cfd3dff2ee5ff90efa044d3906ebfa0a7389d3d4ce2a02b2e7e85c4d29efda493</originalsourceid><addsrcrecordid>eNpdkt9uFCEUxidGY2v1AbwxJF6oF1P5OzPcmGwaq42NbjaaeEdYOMzSzMA6MI19BN9atlubriGBA_zOxwG-qnpJ8CkhXfM-EYaFrDERNW65rNmj6pjwltdtg38-fhAfVc9SusKYSE6bp9URbZiktKXH1Z8V9POgs48BRYdMDCn7PGd_DUgHi_SQYQr6dj6uvi5Q2g7e-NAjbaaYEsobQJt51AHlSYdkJr_NcQS0vkHL1fK8Qz4hC0Vk9AHsblm82YsASj6XLk8Q-rx5Xj1xekjw4m48qX6cf_x-9rm-_Pbp4mxxWZtGdrk2zjLrHAUQzkkMTmPOLZO4gXWJdcs6WQhugGpM1xRa6IThlkpwVnPJTqoPe93tvB7BGgil8EFtJz_q6UZF7dXhTvAb1cdrxUXbdVwUgbd3AlP8NUPKavTJwDDoAHFOirSkkUw2DS3o6__QqziX5xySohS3oqVSkEKd7qleD6B8cLGca0qzMPryI-B8WV8IToRkRO4qeHeQUJgMv3Ov55TUl-XFIUv27O13TeDub0qw2rlI7V2kiovUzkWKlZxXD5_oPuOfbdhfPL_Ftw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207572951</pqid></control><display><type>article</type><title>Regulation of constitutive and alternative mRNA splicing across the human transcriptome by PRPF8 is determined by 5' splice site strength</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wickramasinghe, Vihandha O ; Gonzàlez-Porta, Mar ; Perera, David ; Bartolozzi, Arthur R ; Sibley, Christopher R ; Hallegger, Martina ; Ule, Jernej ; Marioni, John C ; Venkitaraman, Ashok R</creator><creatorcontrib>Wickramasinghe, Vihandha O ; Gonzàlez-Porta, Mar ; Perera, David ; Bartolozzi, Arthur R ; Sibley, Christopher R ; Hallegger, Martina ; Ule, Jernej ; Marioni, John C ; Venkitaraman, Ashok R</creatorcontrib><description>Sequential assembly of the human spliceosome on RNA transcripts regulates splicing across the human transcriptome. The core spliceosome component PRPF8 is essential for spliceosome assembly through its participation in ribonucleoprotein (RNP) complexes for splice-site recognition, branch-point formation and catalysis. PRPF8 deficiency is linked to human diseases like retinitis pigmentosa or myeloid neoplasia, but its genome-wide effects on constitutive and alternative splicing remain unclear. Here, we show that alterations in RNA splicing patterns across the human transcriptome that occur in conditions of restricted cellular PRPF8 abundance are defined by the altered splicing of introns with weak 5' splice sites. iCLIP of spliceosome components reveals that PRPF8 depletion decreases RNP complex formation at most splice sites in exon-intron junctions throughout the genome. However, impaired splicing affects only a subset of human transcripts, enriched for mitotic cell cycle factors, leading to mitotic arrest. Preferentially retained introns and differentially used exons in the affected genes contain weak 5' splice sites, but are otherwise indistinguishable from adjacent spliced introns. Experimental enhancement of splice-site strength in mini-gene constructs overcomes the effects of PRPF8 depletion on the kinetics and fidelity of splicing during transcription. Competition for PRPF8 availability alters the transcription-coupled splicing of RNAs in which weak 5' splice sites predominate, enabling diversification of human gene expression during biological processes like mitosis. Our findings exemplify the regulatory potential of changes in the core spliceosome machinery, which may be relevant to slow-onset human genetic diseases linked to PRPF8 deficiency.</description><identifier>ISSN: 1474-760X</identifier><identifier>ISSN: 1474-7596</identifier><identifier>EISSN: 1474-760X</identifier><identifier>DOI: 10.1186/s13059-015-0749-3</identifier><identifier>PMID: 26392272</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Acids ; Alternative splicing ; Alternative Splicing - genetics ; Binding sites ; Bioinformatics ; Catalysis ; Cell cycle ; Disease susceptibility ; Exons ; Exons - genetics ; Gene expression ; Genetic transcription ; Genome ; Genomes ; Genomics ; Humans ; Introns ; Introns - genetics ; Messenger RNA ; Mitosis ; Mutation ; Proteins ; Retinitis ; Retinitis pigmentosa ; Retinitis Pigmentosa - genetics ; Retinitis Pigmentosa - pathology ; Ribonucleoproteins - genetics ; RNA Splice Sites ; RNA, Messenger - genetics ; RNA-Binding Proteins - genetics ; Spliceosomes - genetics ; Transcription ; Transcriptome - genetics</subject><ispartof>Genome Biology, 2015-09, Vol.16 (1), p.201-201, Article 201</ispartof><rights>COPYRIGHT 2015 BioMed Central Ltd.</rights><rights>2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Wickramasinghe et al. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c698t-cfd3dff2ee5ff90efa044d3906ebfa0a7389d3d4ce2a02b2e7e85c4d29efda493</citedby><cites>FETCH-LOGICAL-c698t-cfd3dff2ee5ff90efa044d3906ebfa0a7389d3d4ce2a02b2e7e85c4d29efda493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4578845/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4578845/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26392272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wickramasinghe, Vihandha O</creatorcontrib><creatorcontrib>Gonzàlez-Porta, Mar</creatorcontrib><creatorcontrib>Perera, David</creatorcontrib><creatorcontrib>Bartolozzi, Arthur R</creatorcontrib><creatorcontrib>Sibley, Christopher R</creatorcontrib><creatorcontrib>Hallegger, Martina</creatorcontrib><creatorcontrib>Ule, Jernej</creatorcontrib><creatorcontrib>Marioni, John C</creatorcontrib><creatorcontrib>Venkitaraman, Ashok R</creatorcontrib><title>Regulation of constitutive and alternative mRNA splicing across the human transcriptome by PRPF8 is determined by 5' splice site strength</title><title>Genome Biology</title><addtitle>Genome Biol</addtitle><description>Sequential assembly of the human spliceosome on RNA transcripts regulates splicing across the human transcriptome. The core spliceosome component PRPF8 is essential for spliceosome assembly through its participation in ribonucleoprotein (RNP) complexes for splice-site recognition, branch-point formation and catalysis. PRPF8 deficiency is linked to human diseases like retinitis pigmentosa or myeloid neoplasia, but its genome-wide effects on constitutive and alternative splicing remain unclear. Here, we show that alterations in RNA splicing patterns across the human transcriptome that occur in conditions of restricted cellular PRPF8 abundance are defined by the altered splicing of introns with weak 5' splice sites. iCLIP of spliceosome components reveals that PRPF8 depletion decreases RNP complex formation at most splice sites in exon-intron junctions throughout the genome. However, impaired splicing affects only a subset of human transcripts, enriched for mitotic cell cycle factors, leading to mitotic arrest. Preferentially retained introns and differentially used exons in the affected genes contain weak 5' splice sites, but are otherwise indistinguishable from adjacent spliced introns. Experimental enhancement of splice-site strength in mini-gene constructs overcomes the effects of PRPF8 depletion on the kinetics and fidelity of splicing during transcription. Competition for PRPF8 availability alters the transcription-coupled splicing of RNAs in which weak 5' splice sites predominate, enabling diversification of human gene expression during biological processes like mitosis. Our findings exemplify the regulatory potential of changes in the core spliceosome machinery, which may be relevant to slow-onset human genetic diseases linked to PRPF8 deficiency.</description><subject>Acids</subject><subject>Alternative splicing</subject><subject>Alternative Splicing - genetics</subject><subject>Binding sites</subject><subject>Bioinformatics</subject><subject>Catalysis</subject><subject>Cell cycle</subject><subject>Disease susceptibility</subject><subject>Exons</subject><subject>Exons - genetics</subject><subject>Gene expression</subject><subject>Genetic transcription</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Humans</subject><subject>Introns</subject><subject>Introns - genetics</subject><subject>Messenger RNA</subject><subject>Mitosis</subject><subject>Mutation</subject><subject>Proteins</subject><subject>Retinitis</subject><subject>Retinitis pigmentosa</subject><subject>Retinitis Pigmentosa - genetics</subject><subject>Retinitis Pigmentosa - pathology</subject><subject>Ribonucleoproteins - genetics</subject><subject>RNA Splice Sites</subject><subject>RNA, Messenger - genetics</subject><subject>RNA-Binding Proteins - genetics</subject><subject>Spliceosomes - genetics</subject><subject>Transcription</subject><subject>Transcriptome - genetics</subject><issn>1474-760X</issn><issn>1474-7596</issn><issn>1474-760X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>KPI</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkt9uFCEUxidGY2v1AbwxJF6oF1P5OzPcmGwaq42NbjaaeEdYOMzSzMA6MI19BN9atlubriGBA_zOxwG-qnpJ8CkhXfM-EYaFrDERNW65rNmj6pjwltdtg38-fhAfVc9SusKYSE6bp9URbZiktKXH1Z8V9POgs48BRYdMDCn7PGd_DUgHi_SQYQr6dj6uvi5Q2g7e-NAjbaaYEsobQJt51AHlSYdkJr_NcQS0vkHL1fK8Qz4hC0Vk9AHsblm82YsASj6XLk8Q-rx5Xj1xekjw4m48qX6cf_x-9rm-_Pbp4mxxWZtGdrk2zjLrHAUQzkkMTmPOLZO4gXWJdcs6WQhugGpM1xRa6IThlkpwVnPJTqoPe93tvB7BGgil8EFtJz_q6UZF7dXhTvAb1cdrxUXbdVwUgbd3AlP8NUPKavTJwDDoAHFOirSkkUw2DS3o6__QqziX5xySohS3oqVSkEKd7qleD6B8cLGca0qzMPryI-B8WV8IToRkRO4qeHeQUJgMv3Ov55TUl-XFIUv27O13TeDub0qw2rlI7V2kiovUzkWKlZxXD5_oPuOfbdhfPL_Ftw</recordid><startdate>20150921</startdate><enddate>20150921</enddate><creator>Wickramasinghe, Vihandha O</creator><creator>Gonzàlez-Porta, Mar</creator><creator>Perera, David</creator><creator>Bartolozzi, Arthur R</creator><creator>Sibley, Christopher R</creator><creator>Hallegger, Martina</creator><creator>Ule, Jernej</creator><creator>Marioni, John C</creator><creator>Venkitaraman, Ashok R</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>KPI</scope><scope>IAO</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150921</creationdate><title>Regulation of constitutive and alternative mRNA splicing across the human transcriptome by PRPF8 is determined by 5' splice site strength</title><author>Wickramasinghe, Vihandha O ; Gonzàlez-Porta, Mar ; Perera, David ; Bartolozzi, Arthur R ; Sibley, Christopher R ; Hallegger, Martina ; Ule, Jernej ; Marioni, John C ; Venkitaraman, Ashok R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c698t-cfd3dff2ee5ff90efa044d3906ebfa0a7389d3d4ce2a02b2e7e85c4d29efda493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acids</topic><topic>Alternative splicing</topic><topic>Alternative Splicing - genetics</topic><topic>Binding sites</topic><topic>Bioinformatics</topic><topic>Catalysis</topic><topic>Cell cycle</topic><topic>Disease susceptibility</topic><topic>Exons</topic><topic>Exons - genetics</topic><topic>Gene expression</topic><topic>Genetic transcription</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Humans</topic><topic>Introns</topic><topic>Introns - genetics</topic><topic>Messenger RNA</topic><topic>Mitosis</topic><topic>Mutation</topic><topic>Proteins</topic><topic>Retinitis</topic><topic>Retinitis pigmentosa</topic><topic>Retinitis Pigmentosa - genetics</topic><topic>Retinitis Pigmentosa - pathology</topic><topic>Ribonucleoproteins - genetics</topic><topic>RNA Splice Sites</topic><topic>RNA, Messenger - genetics</topic><topic>RNA-Binding Proteins - genetics</topic><topic>Spliceosomes - genetics</topic><topic>Transcription</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wickramasinghe, Vihandha O</creatorcontrib><creatorcontrib>Gonzàlez-Porta, Mar</creatorcontrib><creatorcontrib>Perera, David</creatorcontrib><creatorcontrib>Bartolozzi, Arthur R</creatorcontrib><creatorcontrib>Sibley, Christopher R</creatorcontrib><creatorcontrib>Hallegger, Martina</creatorcontrib><creatorcontrib>Ule, Jernej</creatorcontrib><creatorcontrib>Marioni, John C</creatorcontrib><creatorcontrib>Venkitaraman, Ashok R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Global Issues</collection><collection>Gale Academic OneFile</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wickramasinghe, Vihandha O</au><au>Gonzàlez-Porta, Mar</au><au>Perera, David</au><au>Bartolozzi, Arthur R</au><au>Sibley, Christopher R</au><au>Hallegger, Martina</au><au>Ule, Jernej</au><au>Marioni, John C</au><au>Venkitaraman, Ashok R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of constitutive and alternative mRNA splicing across the human transcriptome by PRPF8 is determined by 5' splice site strength</atitle><jtitle>Genome Biology</jtitle><addtitle>Genome Biol</addtitle><date>2015-09-21</date><risdate>2015</risdate><volume>16</volume><issue>1</issue><spage>201</spage><epage>201</epage><pages>201-201</pages><artnum>201</artnum><issn>1474-760X</issn><issn>1474-7596</issn><eissn>1474-760X</eissn><abstract>Sequential assembly of the human spliceosome on RNA transcripts regulates splicing across the human transcriptome. The core spliceosome component PRPF8 is essential for spliceosome assembly through its participation in ribonucleoprotein (RNP) complexes for splice-site recognition, branch-point formation and catalysis. PRPF8 deficiency is linked to human diseases like retinitis pigmentosa or myeloid neoplasia, but its genome-wide effects on constitutive and alternative splicing remain unclear. Here, we show that alterations in RNA splicing patterns across the human transcriptome that occur in conditions of restricted cellular PRPF8 abundance are defined by the altered splicing of introns with weak 5' splice sites. iCLIP of spliceosome components reveals that PRPF8 depletion decreases RNP complex formation at most splice sites in exon-intron junctions throughout the genome. However, impaired splicing affects only a subset of human transcripts, enriched for mitotic cell cycle factors, leading to mitotic arrest. Preferentially retained introns and differentially used exons in the affected genes contain weak 5' splice sites, but are otherwise indistinguishable from adjacent spliced introns. Experimental enhancement of splice-site strength in mini-gene constructs overcomes the effects of PRPF8 depletion on the kinetics and fidelity of splicing during transcription. Competition for PRPF8 availability alters the transcription-coupled splicing of RNAs in which weak 5' splice sites predominate, enabling diversification of human gene expression during biological processes like mitosis. Our findings exemplify the regulatory potential of changes in the core spliceosome machinery, which may be relevant to slow-onset human genetic diseases linked to PRPF8 deficiency.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>26392272</pmid><doi>10.1186/s13059-015-0749-3</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1474-760X
ispartof Genome Biology, 2015-09, Vol.16 (1), p.201-201, Article 201
issn 1474-760X
1474-7596
1474-760X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4578845
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Acids
Alternative splicing
Alternative Splicing - genetics
Binding sites
Bioinformatics
Catalysis
Cell cycle
Disease susceptibility
Exons
Exons - genetics
Gene expression
Genetic transcription
Genome
Genomes
Genomics
Humans
Introns
Introns - genetics
Messenger RNA
Mitosis
Mutation
Proteins
Retinitis
Retinitis pigmentosa
Retinitis Pigmentosa - genetics
Retinitis Pigmentosa - pathology
Ribonucleoproteins - genetics
RNA Splice Sites
RNA, Messenger - genetics
RNA-Binding Proteins - genetics
Spliceosomes - genetics
Transcription
Transcriptome - genetics
title Regulation of constitutive and alternative mRNA splicing across the human transcriptome by PRPF8 is determined by 5' splice site strength
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A32%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20constitutive%20and%20alternative%20mRNA%20splicing%20across%20the%20human%20transcriptome%20by%20PRPF8%20is%20determined%20by%205'%20splice%20site%20strength&rft.jtitle=Genome%20Biology&rft.au=Wickramasinghe,%20Vihandha%20O&rft.date=2015-09-21&rft.volume=16&rft.issue=1&rft.spage=201&rft.epage=201&rft.pages=201-201&rft.artnum=201&rft.issn=1474-760X&rft.eissn=1474-760X&rft_id=info:doi/10.1186/s13059-015-0749-3&rft_dat=%3Cgale_pubme%3EA541593195%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207572951&rft_id=info:pmid/26392272&rft_galeid=A541593195&rfr_iscdi=true