REDD2-mediated inhibition of mTOR promotes dendrite retraction induced by axonal injury
Dendritic defects occur in neurodegenerative diseases accompanied by axonopathy, yet the mechanisms that regulate these pathologic changes are poorly understood. Using Thy1-YFPH mice subjected to optic nerve axotomy, we demonstrate early retraction of retinal ganglion cell (RGC) dendrites and select...
Gespeichert in:
Veröffentlicht in: | Cell death and differentiation 2015-04, Vol.22 (4), p.612-625 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 625 |
---|---|
container_issue | 4 |
container_start_page | 612 |
container_title | Cell death and differentiation |
container_volume | 22 |
creator | Morquette, B Morquette, P Agostinone, J Feinstein, E McKinney, R A Kolta, A Di Polo, A |
description | Dendritic defects occur in neurodegenerative diseases accompanied by axonopathy, yet the mechanisms that regulate these pathologic changes are poorly understood. Using Thy1-YFPH mice subjected to optic nerve axotomy, we demonstrate early retraction of retinal ganglion cell (RGC) dendrites and selective loss of mammalian target of rapamycin (mTOR) activity, which precede soma loss. Axonal injury triggered rapid upregulation of the stress-induced protein REDD2 (regulated in development and DNA damage response 2), a potent inhibitor of mTOR. Short interfering RNA-mediated REDD2 knockdown restored mTOR activity and rescued dendritic length, area and branch complexity in a rapamycin-dependent manner. Whole-cell recordings demonstrated that REDD2 depletion leading to mTOR activation in RGCs restored their light response properties. Lastly, we show that REDD2-dependent mTOR activity extended RGC survival following axonal damage. These results indicate that injury-induced stress leads to REDD2 upregulation, mTOR inhibition and dendrite pathology causing neuronal dysfunction and subsequent cell death. |
doi_str_mv | 10.1038/cdd.2014.149 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4572858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1661993479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-b954351e5413974d91c087638aff8f3d5e7dc2bc668c93734afd511d755683e73</originalsourceid><addsrcrecordid>eNptkd1LHDEUxUNR6tb2rc8y4EsfnDWZfL8IovYDFgTZ0seQSTKaZSZZkxnp_vdG18pWfMol93fPvYcDwFcE5whicWqsnTcQkTki8gOYIcJZTQnEe6XGFNYSEn4APuW8ghAyLtlHcNDQhnLE2Qz8ubm6vGzqwVmvR2crH-5860cfQxW7alhe31TrFIc4ulxZF2zyo6uSG5M2z5APdjJlrt1U-m8Mui8_qyltPoP9TvfZfXl5D8Hv71fLi5_14vrHr4vzRW2oYGPdSkowRY4ShCUnViIDBWdY6K4THbbUcWua1jAmjMQcE91ZipDllDKBHceH4Gyru57aYsK4UE7r1Tr5QaeNitqr_zvB36nb-KAI5Y2gogh8exFI8X5yeVSDz8b1vQ4uTlkhxpCUmHBZ0OM36CpOqXjeUrhpJIaFOtlSJsWck-tej0FQPSWmSmLqKTFVEiv40a6BV_hfRAWot0AurXDr0s7W9wQfAf3YoEM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1661322930</pqid></control><display><type>article</type><title>REDD2-mediated inhibition of mTOR promotes dendrite retraction induced by axonal injury</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Morquette, B ; Morquette, P ; Agostinone, J ; Feinstein, E ; McKinney, R A ; Kolta, A ; Di Polo, A</creator><creatorcontrib>Morquette, B ; Morquette, P ; Agostinone, J ; Feinstein, E ; McKinney, R A ; Kolta, A ; Di Polo, A</creatorcontrib><description>Dendritic defects occur in neurodegenerative diseases accompanied by axonopathy, yet the mechanisms that regulate these pathologic changes are poorly understood. Using Thy1-YFPH mice subjected to optic nerve axotomy, we demonstrate early retraction of retinal ganglion cell (RGC) dendrites and selective loss of mammalian target of rapamycin (mTOR) activity, which precede soma loss. Axonal injury triggered rapid upregulation of the stress-induced protein REDD2 (regulated in development and DNA damage response 2), a potent inhibitor of mTOR. Short interfering RNA-mediated REDD2 knockdown restored mTOR activity and rescued dendritic length, area and branch complexity in a rapamycin-dependent manner. Whole-cell recordings demonstrated that REDD2 depletion leading to mTOR activation in RGCs restored their light response properties. Lastly, we show that REDD2-dependent mTOR activity extended RGC survival following axonal damage. These results indicate that injury-induced stress leads to REDD2 upregulation, mTOR inhibition and dendrite pathology causing neuronal dysfunction and subsequent cell death.</description><identifier>ISSN: 1350-9047</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/cdd.2014.149</identifier><identifier>PMID: 25257176</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/1934 ; 631/80/86 ; 692/699/375/365 ; Alzheimer's disease ; Animals ; Apoptosis ; Axons - metabolism ; Biochemistry ; Biomedical and Life Sciences ; Cell Biology ; Cell Cycle Analysis ; Cell death ; Dendrites - drug effects ; Dendrites - physiology ; DNA damage ; Hypoxia ; Immunosuppressive Agents - pharmacology ; Kinases ; Life Sciences ; Mice ; Mice, Transgenic ; Morphology ; Nervous system ; Neurodegeneration ; Neurons ; Neurosciences ; Optic nerve ; Optic Nerve Injuries - metabolism ; Optic Nerve Injuries - pathology ; Original Paper ; Patch-Clamp Techniques ; Pathology ; Proteins ; Proteins - antagonists & inhibitors ; Proteins - genetics ; Proteins - metabolism ; Research centers ; Retinal Ganglion Cells - cytology ; Retinal Ganglion Cells - metabolism ; RNA Interference ; RNA, Small Interfering - metabolism ; Sirolimus - pharmacology ; Stem Cells ; Thy-1 Antigens - genetics ; TOR Serine-Threonine Kinases - antagonists & inhibitors ; TOR Serine-Threonine Kinases - metabolism ; Up-Regulation ; Variance analysis</subject><ispartof>Cell death and differentiation, 2015-04, Vol.22 (4), p.612-625</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Apr 2015</rights><rights>Copyright © 2015 Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-b954351e5413974d91c087638aff8f3d5e7dc2bc668c93734afd511d755683e73</citedby><cites>FETCH-LOGICAL-c586t-b954351e5413974d91c087638aff8f3d5e7dc2bc668c93734afd511d755683e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4572858/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4572858/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25257176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morquette, B</creatorcontrib><creatorcontrib>Morquette, P</creatorcontrib><creatorcontrib>Agostinone, J</creatorcontrib><creatorcontrib>Feinstein, E</creatorcontrib><creatorcontrib>McKinney, R A</creatorcontrib><creatorcontrib>Kolta, A</creatorcontrib><creatorcontrib>Di Polo, A</creatorcontrib><title>REDD2-mediated inhibition of mTOR promotes dendrite retraction induced by axonal injury</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>Dendritic defects occur in neurodegenerative diseases accompanied by axonopathy, yet the mechanisms that regulate these pathologic changes are poorly understood. Using Thy1-YFPH mice subjected to optic nerve axotomy, we demonstrate early retraction of retinal ganglion cell (RGC) dendrites and selective loss of mammalian target of rapamycin (mTOR) activity, which precede soma loss. Axonal injury triggered rapid upregulation of the stress-induced protein REDD2 (regulated in development and DNA damage response 2), a potent inhibitor of mTOR. Short interfering RNA-mediated REDD2 knockdown restored mTOR activity and rescued dendritic length, area and branch complexity in a rapamycin-dependent manner. Whole-cell recordings demonstrated that REDD2 depletion leading to mTOR activation in RGCs restored their light response properties. Lastly, we show that REDD2-dependent mTOR activity extended RGC survival following axonal damage. These results indicate that injury-induced stress leads to REDD2 upregulation, mTOR inhibition and dendrite pathology causing neuronal dysfunction and subsequent cell death.</description><subject>631/378/1934</subject><subject>631/80/86</subject><subject>692/699/375/365</subject><subject>Alzheimer's disease</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Axons - metabolism</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Cell death</subject><subject>Dendrites - drug effects</subject><subject>Dendrites - physiology</subject><subject>DNA damage</subject><subject>Hypoxia</subject><subject>Immunosuppressive Agents - pharmacology</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Morphology</subject><subject>Nervous system</subject><subject>Neurodegeneration</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Optic nerve</subject><subject>Optic Nerve Injuries - metabolism</subject><subject>Optic Nerve Injuries - pathology</subject><subject>Original Paper</subject><subject>Patch-Clamp Techniques</subject><subject>Pathology</subject><subject>Proteins</subject><subject>Proteins - antagonists & inhibitors</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Research centers</subject><subject>Retinal Ganglion Cells - cytology</subject><subject>Retinal Ganglion Cells - metabolism</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Sirolimus - pharmacology</subject><subject>Stem Cells</subject><subject>Thy-1 Antigens - genetics</subject><subject>TOR Serine-Threonine Kinases - antagonists & inhibitors</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Up-Regulation</subject><subject>Variance analysis</subject><issn>1350-9047</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkd1LHDEUxUNR6tb2rc8y4EsfnDWZfL8IovYDFgTZ0seQSTKaZSZZkxnp_vdG18pWfMol93fPvYcDwFcE5whicWqsnTcQkTki8gOYIcJZTQnEe6XGFNYSEn4APuW8ghAyLtlHcNDQhnLE2Qz8ubm6vGzqwVmvR2crH-5860cfQxW7alhe31TrFIc4ulxZF2zyo6uSG5M2z5APdjJlrt1U-m8Mui8_qyltPoP9TvfZfXl5D8Hv71fLi5_14vrHr4vzRW2oYGPdSkowRY4ShCUnViIDBWdY6K4THbbUcWua1jAmjMQcE91ZipDllDKBHceH4Gyru57aYsK4UE7r1Tr5QaeNitqr_zvB36nb-KAI5Y2gogh8exFI8X5yeVSDz8b1vQ4uTlkhxpCUmHBZ0OM36CpOqXjeUrhpJIaFOtlSJsWck-tej0FQPSWmSmLqKTFVEiv40a6BV_hfRAWot0AurXDr0s7W9wQfAf3YoEM</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Morquette, B</creator><creator>Morquette, P</creator><creator>Agostinone, J</creator><creator>Feinstein, E</creator><creator>McKinney, R A</creator><creator>Kolta, A</creator><creator>Di Polo, A</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150401</creationdate><title>REDD2-mediated inhibition of mTOR promotes dendrite retraction induced by axonal injury</title><author>Morquette, B ; Morquette, P ; Agostinone, J ; Feinstein, E ; McKinney, R A ; Kolta, A ; Di Polo, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-b954351e5413974d91c087638aff8f3d5e7dc2bc668c93734afd511d755683e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>631/378/1934</topic><topic>631/80/86</topic><topic>692/699/375/365</topic><topic>Alzheimer's disease</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Axons - metabolism</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Cell death</topic><topic>Dendrites - drug effects</topic><topic>Dendrites - physiology</topic><topic>DNA damage</topic><topic>Hypoxia</topic><topic>Immunosuppressive Agents - pharmacology</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Morphology</topic><topic>Nervous system</topic><topic>Neurodegeneration</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Optic nerve</topic><topic>Optic Nerve Injuries - metabolism</topic><topic>Optic Nerve Injuries - pathology</topic><topic>Original Paper</topic><topic>Patch-Clamp Techniques</topic><topic>Pathology</topic><topic>Proteins</topic><topic>Proteins - antagonists & inhibitors</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Research centers</topic><topic>Retinal Ganglion Cells - cytology</topic><topic>Retinal Ganglion Cells - metabolism</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Sirolimus - pharmacology</topic><topic>Stem Cells</topic><topic>Thy-1 Antigens - genetics</topic><topic>TOR Serine-Threonine Kinases - antagonists & inhibitors</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Up-Regulation</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morquette, B</creatorcontrib><creatorcontrib>Morquette, P</creatorcontrib><creatorcontrib>Agostinone, J</creatorcontrib><creatorcontrib>Feinstein, E</creatorcontrib><creatorcontrib>McKinney, R A</creatorcontrib><creatorcontrib>Kolta, A</creatorcontrib><creatorcontrib>Di Polo, A</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morquette, B</au><au>Morquette, P</au><au>Agostinone, J</au><au>Feinstein, E</au><au>McKinney, R A</au><au>Kolta, A</au><au>Di Polo, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>REDD2-mediated inhibition of mTOR promotes dendrite retraction induced by axonal injury</atitle><jtitle>Cell death and differentiation</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>22</volume><issue>4</issue><spage>612</spage><epage>625</epage><pages>612-625</pages><issn>1350-9047</issn><eissn>1476-5403</eissn><abstract>Dendritic defects occur in neurodegenerative diseases accompanied by axonopathy, yet the mechanisms that regulate these pathologic changes are poorly understood. Using Thy1-YFPH mice subjected to optic nerve axotomy, we demonstrate early retraction of retinal ganglion cell (RGC) dendrites and selective loss of mammalian target of rapamycin (mTOR) activity, which precede soma loss. Axonal injury triggered rapid upregulation of the stress-induced protein REDD2 (regulated in development and DNA damage response 2), a potent inhibitor of mTOR. Short interfering RNA-mediated REDD2 knockdown restored mTOR activity and rescued dendritic length, area and branch complexity in a rapamycin-dependent manner. Whole-cell recordings demonstrated that REDD2 depletion leading to mTOR activation in RGCs restored their light response properties. Lastly, we show that REDD2-dependent mTOR activity extended RGC survival following axonal damage. These results indicate that injury-induced stress leads to REDD2 upregulation, mTOR inhibition and dendrite pathology causing neuronal dysfunction and subsequent cell death.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25257176</pmid><doi>10.1038/cdd.2014.149</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-9047 |
ispartof | Cell death and differentiation, 2015-04, Vol.22 (4), p.612-625 |
issn | 1350-9047 1476-5403 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4572858 |
source | MEDLINE; SpringerNature Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 631/378/1934 631/80/86 692/699/375/365 Alzheimer's disease Animals Apoptosis Axons - metabolism Biochemistry Biomedical and Life Sciences Cell Biology Cell Cycle Analysis Cell death Dendrites - drug effects Dendrites - physiology DNA damage Hypoxia Immunosuppressive Agents - pharmacology Kinases Life Sciences Mice Mice, Transgenic Morphology Nervous system Neurodegeneration Neurons Neurosciences Optic nerve Optic Nerve Injuries - metabolism Optic Nerve Injuries - pathology Original Paper Patch-Clamp Techniques Pathology Proteins Proteins - antagonists & inhibitors Proteins - genetics Proteins - metabolism Research centers Retinal Ganglion Cells - cytology Retinal Ganglion Cells - metabolism RNA Interference RNA, Small Interfering - metabolism Sirolimus - pharmacology Stem Cells Thy-1 Antigens - genetics TOR Serine-Threonine Kinases - antagonists & inhibitors TOR Serine-Threonine Kinases - metabolism Up-Regulation Variance analysis |
title | REDD2-mediated inhibition of mTOR promotes dendrite retraction induced by axonal injury |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=REDD2-mediated%20inhibition%20of%20mTOR%20promotes%20dendrite%20retraction%20induced%20by%20axonal%20injury&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Morquette,%20B&rft.date=2015-04-01&rft.volume=22&rft.issue=4&rft.spage=612&rft.epage=625&rft.pages=612-625&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/cdd.2014.149&rft_dat=%3Cproquest_pubme%3E1661993479%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1661322930&rft_id=info:pmid/25257176&rfr_iscdi=true |