REDD2-mediated inhibition of mTOR promotes dendrite retraction induced by axonal injury

Dendritic defects occur in neurodegenerative diseases accompanied by axonopathy, yet the mechanisms that regulate these pathologic changes are poorly understood. Using Thy1-YFPH mice subjected to optic nerve axotomy, we demonstrate early retraction of retinal ganglion cell (RGC) dendrites and select...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death and differentiation 2015-04, Vol.22 (4), p.612-625
Hauptverfasser: Morquette, B, Morquette, P, Agostinone, J, Feinstein, E, McKinney, R A, Kolta, A, Di Polo, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 625
container_issue 4
container_start_page 612
container_title Cell death and differentiation
container_volume 22
creator Morquette, B
Morquette, P
Agostinone, J
Feinstein, E
McKinney, R A
Kolta, A
Di Polo, A
description Dendritic defects occur in neurodegenerative diseases accompanied by axonopathy, yet the mechanisms that regulate these pathologic changes are poorly understood. Using Thy1-YFPH mice subjected to optic nerve axotomy, we demonstrate early retraction of retinal ganglion cell (RGC) dendrites and selective loss of mammalian target of rapamycin (mTOR) activity, which precede soma loss. Axonal injury triggered rapid upregulation of the stress-induced protein REDD2 (regulated in development and DNA damage response 2), a potent inhibitor of mTOR. Short interfering RNA-mediated REDD2 knockdown restored mTOR activity and rescued dendritic length, area and branch complexity in a rapamycin-dependent manner. Whole-cell recordings demonstrated that REDD2 depletion leading to mTOR activation in RGCs restored their light response properties. Lastly, we show that REDD2-dependent mTOR activity extended RGC survival following axonal damage. These results indicate that injury-induced stress leads to REDD2 upregulation, mTOR inhibition and dendrite pathology causing neuronal dysfunction and subsequent cell death.
doi_str_mv 10.1038/cdd.2014.149
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4572858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1661993479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-b954351e5413974d91c087638aff8f3d5e7dc2bc668c93734afd511d755683e73</originalsourceid><addsrcrecordid>eNptkd1LHDEUxUNR6tb2rc8y4EsfnDWZfL8IovYDFgTZ0seQSTKaZSZZkxnp_vdG18pWfMol93fPvYcDwFcE5whicWqsnTcQkTki8gOYIcJZTQnEe6XGFNYSEn4APuW8ghAyLtlHcNDQhnLE2Qz8ubm6vGzqwVmvR2crH-5860cfQxW7alhe31TrFIc4ulxZF2zyo6uSG5M2z5APdjJlrt1U-m8Mui8_qyltPoP9TvfZfXl5D8Hv71fLi5_14vrHr4vzRW2oYGPdSkowRY4ShCUnViIDBWdY6K4THbbUcWua1jAmjMQcE91ZipDllDKBHceH4Gyru57aYsK4UE7r1Tr5QaeNitqr_zvB36nb-KAI5Y2gogh8exFI8X5yeVSDz8b1vQ4uTlkhxpCUmHBZ0OM36CpOqXjeUrhpJIaFOtlSJsWck-tej0FQPSWmSmLqKTFVEiv40a6BV_hfRAWot0AurXDr0s7W9wQfAf3YoEM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1661322930</pqid></control><display><type>article</type><title>REDD2-mediated inhibition of mTOR promotes dendrite retraction induced by axonal injury</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Morquette, B ; Morquette, P ; Agostinone, J ; Feinstein, E ; McKinney, R A ; Kolta, A ; Di Polo, A</creator><creatorcontrib>Morquette, B ; Morquette, P ; Agostinone, J ; Feinstein, E ; McKinney, R A ; Kolta, A ; Di Polo, A</creatorcontrib><description>Dendritic defects occur in neurodegenerative diseases accompanied by axonopathy, yet the mechanisms that regulate these pathologic changes are poorly understood. Using Thy1-YFPH mice subjected to optic nerve axotomy, we demonstrate early retraction of retinal ganglion cell (RGC) dendrites and selective loss of mammalian target of rapamycin (mTOR) activity, which precede soma loss. Axonal injury triggered rapid upregulation of the stress-induced protein REDD2 (regulated in development and DNA damage response 2), a potent inhibitor of mTOR. Short interfering RNA-mediated REDD2 knockdown restored mTOR activity and rescued dendritic length, area and branch complexity in a rapamycin-dependent manner. Whole-cell recordings demonstrated that REDD2 depletion leading to mTOR activation in RGCs restored their light response properties. Lastly, we show that REDD2-dependent mTOR activity extended RGC survival following axonal damage. These results indicate that injury-induced stress leads to REDD2 upregulation, mTOR inhibition and dendrite pathology causing neuronal dysfunction and subsequent cell death.</description><identifier>ISSN: 1350-9047</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/cdd.2014.149</identifier><identifier>PMID: 25257176</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/1934 ; 631/80/86 ; 692/699/375/365 ; Alzheimer's disease ; Animals ; Apoptosis ; Axons - metabolism ; Biochemistry ; Biomedical and Life Sciences ; Cell Biology ; Cell Cycle Analysis ; Cell death ; Dendrites - drug effects ; Dendrites - physiology ; DNA damage ; Hypoxia ; Immunosuppressive Agents - pharmacology ; Kinases ; Life Sciences ; Mice ; Mice, Transgenic ; Morphology ; Nervous system ; Neurodegeneration ; Neurons ; Neurosciences ; Optic nerve ; Optic Nerve Injuries - metabolism ; Optic Nerve Injuries - pathology ; Original Paper ; Patch-Clamp Techniques ; Pathology ; Proteins ; Proteins - antagonists &amp; inhibitors ; Proteins - genetics ; Proteins - metabolism ; Research centers ; Retinal Ganglion Cells - cytology ; Retinal Ganglion Cells - metabolism ; RNA Interference ; RNA, Small Interfering - metabolism ; Sirolimus - pharmacology ; Stem Cells ; Thy-1 Antigens - genetics ; TOR Serine-Threonine Kinases - antagonists &amp; inhibitors ; TOR Serine-Threonine Kinases - metabolism ; Up-Regulation ; Variance analysis</subject><ispartof>Cell death and differentiation, 2015-04, Vol.22 (4), p.612-625</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Apr 2015</rights><rights>Copyright © 2015 Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-b954351e5413974d91c087638aff8f3d5e7dc2bc668c93734afd511d755683e73</citedby><cites>FETCH-LOGICAL-c586t-b954351e5413974d91c087638aff8f3d5e7dc2bc668c93734afd511d755683e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4572858/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4572858/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25257176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morquette, B</creatorcontrib><creatorcontrib>Morquette, P</creatorcontrib><creatorcontrib>Agostinone, J</creatorcontrib><creatorcontrib>Feinstein, E</creatorcontrib><creatorcontrib>McKinney, R A</creatorcontrib><creatorcontrib>Kolta, A</creatorcontrib><creatorcontrib>Di Polo, A</creatorcontrib><title>REDD2-mediated inhibition of mTOR promotes dendrite retraction induced by axonal injury</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>Dendritic defects occur in neurodegenerative diseases accompanied by axonopathy, yet the mechanisms that regulate these pathologic changes are poorly understood. Using Thy1-YFPH mice subjected to optic nerve axotomy, we demonstrate early retraction of retinal ganglion cell (RGC) dendrites and selective loss of mammalian target of rapamycin (mTOR) activity, which precede soma loss. Axonal injury triggered rapid upregulation of the stress-induced protein REDD2 (regulated in development and DNA damage response 2), a potent inhibitor of mTOR. Short interfering RNA-mediated REDD2 knockdown restored mTOR activity and rescued dendritic length, area and branch complexity in a rapamycin-dependent manner. Whole-cell recordings demonstrated that REDD2 depletion leading to mTOR activation in RGCs restored their light response properties. Lastly, we show that REDD2-dependent mTOR activity extended RGC survival following axonal damage. These results indicate that injury-induced stress leads to REDD2 upregulation, mTOR inhibition and dendrite pathology causing neuronal dysfunction and subsequent cell death.</description><subject>631/378/1934</subject><subject>631/80/86</subject><subject>692/699/375/365</subject><subject>Alzheimer's disease</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Axons - metabolism</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Cell death</subject><subject>Dendrites - drug effects</subject><subject>Dendrites - physiology</subject><subject>DNA damage</subject><subject>Hypoxia</subject><subject>Immunosuppressive Agents - pharmacology</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Morphology</subject><subject>Nervous system</subject><subject>Neurodegeneration</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Optic nerve</subject><subject>Optic Nerve Injuries - metabolism</subject><subject>Optic Nerve Injuries - pathology</subject><subject>Original Paper</subject><subject>Patch-Clamp Techniques</subject><subject>Pathology</subject><subject>Proteins</subject><subject>Proteins - antagonists &amp; inhibitors</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Research centers</subject><subject>Retinal Ganglion Cells - cytology</subject><subject>Retinal Ganglion Cells - metabolism</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Sirolimus - pharmacology</subject><subject>Stem Cells</subject><subject>Thy-1 Antigens - genetics</subject><subject>TOR Serine-Threonine Kinases - antagonists &amp; inhibitors</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Up-Regulation</subject><subject>Variance analysis</subject><issn>1350-9047</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkd1LHDEUxUNR6tb2rc8y4EsfnDWZfL8IovYDFgTZ0seQSTKaZSZZkxnp_vdG18pWfMol93fPvYcDwFcE5whicWqsnTcQkTki8gOYIcJZTQnEe6XGFNYSEn4APuW8ghAyLtlHcNDQhnLE2Qz8ubm6vGzqwVmvR2crH-5860cfQxW7alhe31TrFIc4ulxZF2zyo6uSG5M2z5APdjJlrt1U-m8Mui8_qyltPoP9TvfZfXl5D8Hv71fLi5_14vrHr4vzRW2oYGPdSkowRY4ShCUnViIDBWdY6K4THbbUcWua1jAmjMQcE91ZipDllDKBHceH4Gyru57aYsK4UE7r1Tr5QaeNitqr_zvB36nb-KAI5Y2gogh8exFI8X5yeVSDz8b1vQ4uTlkhxpCUmHBZ0OM36CpOqXjeUrhpJIaFOtlSJsWck-tej0FQPSWmSmLqKTFVEiv40a6BV_hfRAWot0AurXDr0s7W9wQfAf3YoEM</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Morquette, B</creator><creator>Morquette, P</creator><creator>Agostinone, J</creator><creator>Feinstein, E</creator><creator>McKinney, R A</creator><creator>Kolta, A</creator><creator>Di Polo, A</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150401</creationdate><title>REDD2-mediated inhibition of mTOR promotes dendrite retraction induced by axonal injury</title><author>Morquette, B ; Morquette, P ; Agostinone, J ; Feinstein, E ; McKinney, R A ; Kolta, A ; Di Polo, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-b954351e5413974d91c087638aff8f3d5e7dc2bc668c93734afd511d755683e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>631/378/1934</topic><topic>631/80/86</topic><topic>692/699/375/365</topic><topic>Alzheimer's disease</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Axons - metabolism</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Cell death</topic><topic>Dendrites - drug effects</topic><topic>Dendrites - physiology</topic><topic>DNA damage</topic><topic>Hypoxia</topic><topic>Immunosuppressive Agents - pharmacology</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Morphology</topic><topic>Nervous system</topic><topic>Neurodegeneration</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Optic nerve</topic><topic>Optic Nerve Injuries - metabolism</topic><topic>Optic Nerve Injuries - pathology</topic><topic>Original Paper</topic><topic>Patch-Clamp Techniques</topic><topic>Pathology</topic><topic>Proteins</topic><topic>Proteins - antagonists &amp; inhibitors</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Research centers</topic><topic>Retinal Ganglion Cells - cytology</topic><topic>Retinal Ganglion Cells - metabolism</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Sirolimus - pharmacology</topic><topic>Stem Cells</topic><topic>Thy-1 Antigens - genetics</topic><topic>TOR Serine-Threonine Kinases - antagonists &amp; inhibitors</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Up-Regulation</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morquette, B</creatorcontrib><creatorcontrib>Morquette, P</creatorcontrib><creatorcontrib>Agostinone, J</creatorcontrib><creatorcontrib>Feinstein, E</creatorcontrib><creatorcontrib>McKinney, R A</creatorcontrib><creatorcontrib>Kolta, A</creatorcontrib><creatorcontrib>Di Polo, A</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morquette, B</au><au>Morquette, P</au><au>Agostinone, J</au><au>Feinstein, E</au><au>McKinney, R A</au><au>Kolta, A</au><au>Di Polo, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>REDD2-mediated inhibition of mTOR promotes dendrite retraction induced by axonal injury</atitle><jtitle>Cell death and differentiation</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>22</volume><issue>4</issue><spage>612</spage><epage>625</epage><pages>612-625</pages><issn>1350-9047</issn><eissn>1476-5403</eissn><abstract>Dendritic defects occur in neurodegenerative diseases accompanied by axonopathy, yet the mechanisms that regulate these pathologic changes are poorly understood. Using Thy1-YFPH mice subjected to optic nerve axotomy, we demonstrate early retraction of retinal ganglion cell (RGC) dendrites and selective loss of mammalian target of rapamycin (mTOR) activity, which precede soma loss. Axonal injury triggered rapid upregulation of the stress-induced protein REDD2 (regulated in development and DNA damage response 2), a potent inhibitor of mTOR. Short interfering RNA-mediated REDD2 knockdown restored mTOR activity and rescued dendritic length, area and branch complexity in a rapamycin-dependent manner. Whole-cell recordings demonstrated that REDD2 depletion leading to mTOR activation in RGCs restored their light response properties. Lastly, we show that REDD2-dependent mTOR activity extended RGC survival following axonal damage. These results indicate that injury-induced stress leads to REDD2 upregulation, mTOR inhibition and dendrite pathology causing neuronal dysfunction and subsequent cell death.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25257176</pmid><doi>10.1038/cdd.2014.149</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-9047
ispartof Cell death and differentiation, 2015-04, Vol.22 (4), p.612-625
issn 1350-9047
1476-5403
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4572858
source MEDLINE; SpringerNature Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 631/378/1934
631/80/86
692/699/375/365
Alzheimer's disease
Animals
Apoptosis
Axons - metabolism
Biochemistry
Biomedical and Life Sciences
Cell Biology
Cell Cycle Analysis
Cell death
Dendrites - drug effects
Dendrites - physiology
DNA damage
Hypoxia
Immunosuppressive Agents - pharmacology
Kinases
Life Sciences
Mice
Mice, Transgenic
Morphology
Nervous system
Neurodegeneration
Neurons
Neurosciences
Optic nerve
Optic Nerve Injuries - metabolism
Optic Nerve Injuries - pathology
Original Paper
Patch-Clamp Techniques
Pathology
Proteins
Proteins - antagonists & inhibitors
Proteins - genetics
Proteins - metabolism
Research centers
Retinal Ganglion Cells - cytology
Retinal Ganglion Cells - metabolism
RNA Interference
RNA, Small Interfering - metabolism
Sirolimus - pharmacology
Stem Cells
Thy-1 Antigens - genetics
TOR Serine-Threonine Kinases - antagonists & inhibitors
TOR Serine-Threonine Kinases - metabolism
Up-Regulation
Variance analysis
title REDD2-mediated inhibition of mTOR promotes dendrite retraction induced by axonal injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=REDD2-mediated%20inhibition%20of%20mTOR%20promotes%20dendrite%20retraction%20induced%20by%20axonal%20injury&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Morquette,%20B&rft.date=2015-04-01&rft.volume=22&rft.issue=4&rft.spage=612&rft.epage=625&rft.pages=612-625&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/cdd.2014.149&rft_dat=%3Cproquest_pubme%3E1661993479%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1661322930&rft_id=info:pmid/25257176&rfr_iscdi=true