Retinal Conformation Changes Rhodopsin’s Dynamic Ensemble
G protein-coupled receptors are vital membrane proteins that allosterically transduce biomolecular signals across the cell membrane. However, the process by which ligand binding induces protein conformation changes is not well understood biophysically. Rhodopsin, the mammalian dim-light receptor, is...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2015-08, Vol.109 (3), p.608-617 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 617 |
---|---|
container_issue | 3 |
container_start_page | 608 |
container_title | Biophysical journal |
container_volume | 109 |
creator | Leioatts, Nicholas Romo, Tod D. Danial, Shairy Azmy Grossfield, Alan |
description | G protein-coupled receptors are vital membrane proteins that allosterically transduce biomolecular signals across the cell membrane. However, the process by which ligand binding induces protein conformation changes is not well understood biophysically. Rhodopsin, the mammalian dim-light receptor, is a unique test case for understanding these processes because of its switch-like activity; the ligand, retinal, is bound throughout the activation cycle, switching from inverse agonist to agonist after absorbing a photon. By contrast, the ligand-free opsin is outside the activation cycle and may behave differently. We find that retinal influences rhodopsin dynamics using an ensemble of all-atom molecular dynamics simulations that in aggregate contain 100 μs of sampling. Active retinal destabilizes the inactive state of the receptor, whereas the active ensemble was more structurally homogenous. By contrast, simulations of an active-like receptor without retinal present were much more heterogeneous than those containing retinal. These results suggest allosteric processes are more complicated than a ligand inducing protein conformational changes or simply capturing a shifted ensemble as outlined in classic models of allostery. |
doi_str_mv | 10.1016/j.bpj.2015.06.046 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4572577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349515006554</els_id><sourcerecordid>3773851841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-e3850d4bbf7df2856cebd93b9911c85b6ae67ea0a6f1a5e930c8b50f46bf628a3</originalsourceid><addsrcrecordid>eNp9kc9q3DAQh0VJabZJHyCXYsilF7sjWZJtAoGyTf9AoBCas5DkcVbGlraSN5BbX6Ov1yepwqYhzaGnOcw3P2bmI-SEQkWByvdjZbZjxYCKCmQFXL4gKyo4KwFaeUBWACDLmnfikLxOaQSgTAB9RQ6ZZJw3nK3I2RUuzuupWAc_hDjrxQVfrDfa32AqrjahD9vk_O-fv1Lx8c7r2dniwieczYTH5OWgp4RvHuoRuf508X39pbz89vnr-sNlaXnTLSXWrYCeGzM0_cBaIS2avqtN11FqW2GkRtmgBi0HqgV2NdjWCBi4NINkra6PyPk-d7szM_YW_RL1pLbRzTreqaCd-rfj3UbdhFvFRcNE0-SAdw8BMfzYYVrU7JLFadIewy4p2gCTohMgMnr6DB3DLuYH7alWUtZCpuiesjGkFHF4XIaCulejRpXVqHs1CqTKavLM26dXPE78dZGBsz2A-Ze3DqNK1qG32LuIdlF9cP-J_wMH16A_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1702861280</pqid></control><display><type>article</type><title>Retinal Conformation Changes Rhodopsin’s Dynamic Ensemble</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><source>PubMed Central</source><creator>Leioatts, Nicholas ; Romo, Tod D. ; Danial, Shairy Azmy ; Grossfield, Alan</creator><creatorcontrib>Leioatts, Nicholas ; Romo, Tod D. ; Danial, Shairy Azmy ; Grossfield, Alan</creatorcontrib><description>G protein-coupled receptors are vital membrane proteins that allosterically transduce biomolecular signals across the cell membrane. However, the process by which ligand binding induces protein conformation changes is not well understood biophysically. Rhodopsin, the mammalian dim-light receptor, is a unique test case for understanding these processes because of its switch-like activity; the ligand, retinal, is bound throughout the activation cycle, switching from inverse agonist to agonist after absorbing a photon. By contrast, the ligand-free opsin is outside the activation cycle and may behave differently. We find that retinal influences rhodopsin dynamics using an ensemble of all-atom molecular dynamics simulations that in aggregate contain 100 μs of sampling. Active retinal destabilizes the inactive state of the receptor, whereas the active ensemble was more structurally homogenous. By contrast, simulations of an active-like receptor without retinal present were much more heterogeneous than those containing retinal. These results suggest allosteric processes are more complicated than a ligand inducing protein conformational changes or simply capturing a shifted ensemble as outlined in classic models of allostery.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2015.06.046</identifier><identifier>PMID: 26244742</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Allosteric Regulation ; Amino Acid Sequence ; Animals ; Biophysics ; Cattle ; Ligands ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Photons ; Protein Binding ; Protein Structure, Tertiary ; Proteins ; Proteins and Nucleic Acids ; Retinaldehyde - chemistry ; Retinaldehyde - metabolism ; Rhodopsin - chemistry ; Rhodopsin - metabolism ; Signal transduction</subject><ispartof>Biophysical journal, 2015-08, Vol.109 (3), p.608-617</ispartof><rights>2015 Biophysical Society</rights><rights>Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Aug 4, 2015</rights><rights>2015 by the Biophysical Society. 2015 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-e3850d4bbf7df2856cebd93b9911c85b6ae67ea0a6f1a5e930c8b50f46bf628a3</citedby><cites>FETCH-LOGICAL-c479t-e3850d4bbf7df2856cebd93b9911c85b6ae67ea0a6f1a5e930c8b50f46bf628a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4572577/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2015.06.046$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26244742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leioatts, Nicholas</creatorcontrib><creatorcontrib>Romo, Tod D.</creatorcontrib><creatorcontrib>Danial, Shairy Azmy</creatorcontrib><creatorcontrib>Grossfield, Alan</creatorcontrib><title>Retinal Conformation Changes Rhodopsin’s Dynamic Ensemble</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>G protein-coupled receptors are vital membrane proteins that allosterically transduce biomolecular signals across the cell membrane. However, the process by which ligand binding induces protein conformation changes is not well understood biophysically. Rhodopsin, the mammalian dim-light receptor, is a unique test case for understanding these processes because of its switch-like activity; the ligand, retinal, is bound throughout the activation cycle, switching from inverse agonist to agonist after absorbing a photon. By contrast, the ligand-free opsin is outside the activation cycle and may behave differently. We find that retinal influences rhodopsin dynamics using an ensemble of all-atom molecular dynamics simulations that in aggregate contain 100 μs of sampling. Active retinal destabilizes the inactive state of the receptor, whereas the active ensemble was more structurally homogenous. By contrast, simulations of an active-like receptor without retinal present were much more heterogeneous than those containing retinal. These results suggest allosteric processes are more complicated than a ligand inducing protein conformational changes or simply capturing a shifted ensemble as outlined in classic models of allostery.</description><subject>Allosteric Regulation</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Biophysics</subject><subject>Cattle</subject><subject>Ligands</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Sequence Data</subject><subject>Photons</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Proteins and Nucleic Acids</subject><subject>Retinaldehyde - chemistry</subject><subject>Retinaldehyde - metabolism</subject><subject>Rhodopsin - chemistry</subject><subject>Rhodopsin - metabolism</subject><subject>Signal transduction</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9q3DAQh0VJabZJHyCXYsilF7sjWZJtAoGyTf9AoBCas5DkcVbGlraSN5BbX6Ov1yepwqYhzaGnOcw3P2bmI-SEQkWByvdjZbZjxYCKCmQFXL4gKyo4KwFaeUBWACDLmnfikLxOaQSgTAB9RQ6ZZJw3nK3I2RUuzuupWAc_hDjrxQVfrDfa32AqrjahD9vk_O-fv1Lx8c7r2dniwieczYTH5OWgp4RvHuoRuf508X39pbz89vnr-sNlaXnTLSXWrYCeGzM0_cBaIS2avqtN11FqW2GkRtmgBi0HqgV2NdjWCBi4NINkra6PyPk-d7szM_YW_RL1pLbRzTreqaCd-rfj3UbdhFvFRcNE0-SAdw8BMfzYYVrU7JLFadIewy4p2gCTohMgMnr6DB3DLuYH7alWUtZCpuiesjGkFHF4XIaCulejRpXVqHs1CqTKavLM26dXPE78dZGBsz2A-Ze3DqNK1qG32LuIdlF9cP-J_wMH16A_</recordid><startdate>20150804</startdate><enddate>20150804</enddate><creator>Leioatts, Nicholas</creator><creator>Romo, Tod D.</creator><creator>Danial, Shairy Azmy</creator><creator>Grossfield, Alan</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150804</creationdate><title>Retinal Conformation Changes Rhodopsin’s Dynamic Ensemble</title><author>Leioatts, Nicholas ; Romo, Tod D. ; Danial, Shairy Azmy ; Grossfield, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-e3850d4bbf7df2856cebd93b9911c85b6ae67ea0a6f1a5e930c8b50f46bf628a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Allosteric Regulation</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Biophysics</topic><topic>Cattle</topic><topic>Ligands</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Sequence Data</topic><topic>Photons</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Proteins and Nucleic Acids</topic><topic>Retinaldehyde - chemistry</topic><topic>Retinaldehyde - metabolism</topic><topic>Rhodopsin - chemistry</topic><topic>Rhodopsin - metabolism</topic><topic>Signal transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leioatts, Nicholas</creatorcontrib><creatorcontrib>Romo, Tod D.</creatorcontrib><creatorcontrib>Danial, Shairy Azmy</creatorcontrib><creatorcontrib>Grossfield, Alan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leioatts, Nicholas</au><au>Romo, Tod D.</au><au>Danial, Shairy Azmy</au><au>Grossfield, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Retinal Conformation Changes Rhodopsin’s Dynamic Ensemble</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2015-08-04</date><risdate>2015</risdate><volume>109</volume><issue>3</issue><spage>608</spage><epage>617</epage><pages>608-617</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>G protein-coupled receptors are vital membrane proteins that allosterically transduce biomolecular signals across the cell membrane. However, the process by which ligand binding induces protein conformation changes is not well understood biophysically. Rhodopsin, the mammalian dim-light receptor, is a unique test case for understanding these processes because of its switch-like activity; the ligand, retinal, is bound throughout the activation cycle, switching from inverse agonist to agonist after absorbing a photon. By contrast, the ligand-free opsin is outside the activation cycle and may behave differently. We find that retinal influences rhodopsin dynamics using an ensemble of all-atom molecular dynamics simulations that in aggregate contain 100 μs of sampling. Active retinal destabilizes the inactive state of the receptor, whereas the active ensemble was more structurally homogenous. By contrast, simulations of an active-like receptor without retinal present were much more heterogeneous than those containing retinal. These results suggest allosteric processes are more complicated than a ligand inducing protein conformational changes or simply capturing a shifted ensemble as outlined in classic models of allostery.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26244742</pmid><doi>10.1016/j.bpj.2015.06.046</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2015-08, Vol.109 (3), p.608-617 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4572577 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present); PubMed Central |
subjects | Allosteric Regulation Amino Acid Sequence Animals Biophysics Cattle Ligands Molecular Dynamics Simulation Molecular Sequence Data Photons Protein Binding Protein Structure, Tertiary Proteins Proteins and Nucleic Acids Retinaldehyde - chemistry Retinaldehyde - metabolism Rhodopsin - chemistry Rhodopsin - metabolism Signal transduction |
title | Retinal Conformation Changes Rhodopsin’s Dynamic Ensemble |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A51%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Retinal%20Conformation%20Changes%20Rhodopsin%E2%80%99s%20Dynamic%20Ensemble&rft.jtitle=Biophysical%20journal&rft.au=Leioatts,%20Nicholas&rft.date=2015-08-04&rft.volume=109&rft.issue=3&rft.spage=608&rft.epage=617&rft.pages=608-617&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2015.06.046&rft_dat=%3Cproquest_pubme%3E3773851841%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1702861280&rft_id=info:pmid/26244742&rft_els_id=S0006349515006554&rfr_iscdi=true |