Analysis of Conserved Glutamate and Aspartate Residues in Drosophila Rhodopsin 1 and Their Influence on Spectral Tuning
The molecular mechanisms that regulate invertebrate visual pigment absorption are poorly understood. Studies of amphioxus Go-opsin have demonstrated that Glu-181 functions as the counterion in this pigment. This finding has led to the proposal that Glu-181 may function as the counterion in other inv...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2015-09, Vol.290 (36), p.21951-21961 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21961 |
---|---|
container_issue | 36 |
container_start_page | 21951 |
container_title | The Journal of biological chemistry |
container_volume | 290 |
creator | Zheng, Lijun Farrell, David M. Fulton, Ruth M. Bagg, Eve E. Salcedo, Ernesto Manino, Meridee Britt, Steven G. |
description | The molecular mechanisms that regulate invertebrate visual pigment absorption are poorly understood. Studies of amphioxus Go-opsin have demonstrated that Glu-181 functions as the counterion in this pigment. This finding has led to the proposal that Glu-181 may function as the counterion in other invertebrate visual pigments as well. Here we describe a series of mutagenesis experiments to test this hypothesis and to also test whether other conserved acidic amino acids in Drosophila Rhodopsin 1 (Rh1) may serve as the counterion of this visual pigment. Of the 5 Glu and Asp residues replaced by Gln or Asn in our experiments, none of the mutant pigments shift the absorption of Rh1 by more than 6 nm. In combination with prior studies, these results suggest that the counterion in Drosophila Rh1 may not be located at Glu-181 as in amphioxus, or at Glu-113 as in bovine rhodopsin. Conversely, the extremely low steady state levels of the E194Q mutant pigment (bovine opsin site Glu-181), and the rhabdomere degeneration observed in flies expressing this mutant demonstrate that a negatively charged residueat this position is essential for normal rhodopsin function in vivo. This work also raises the possibility that another residue or physiologic anion may compensate for the missing counterion in the E194Q mutant.
Background: Rhodopsin absorption is regulated by interactions between the retinal chromophore and amino acids within the opsin apoprotein.
Results: Site-directed mutagenesis of conserved residues has only modest effects on Drosophila Rhodopsin 1 absorption.
Conclusion: The counterion may reside at another site within the protein or other mechanisms may compensate.
Significance: Determining the molecular basis for rhodopsin spectral tuning is essential for understanding rhodopsin function and evolution. |
doi_str_mv | 10.1074/jbc.M115.677765 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4571949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820448574</els_id><sourcerecordid>1753470170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-9758c5dc36cab076a844b4e74a364d07ebff29792f5160ab2f1a7647dc93df3f3</originalsourceid><addsrcrecordid>eNp1kc9vFCEUx4nR2LV69mY4etktzPBjuZhsVq1NakzqmngjDDy6NLMwwsya_vcybm30IBcCfN73Pb5fhF5TsqJEsou7zq4-U8pXQkop-BO0oGTdLltOvz9FC0IaulQNX5-hF6XckbqYos_RWSOo4qKRC_RzE01_X0LByeNtigXyERy-7KfRHMwI2ESHN2UweZxPN1CCm6DgEPH7nEoa9qE3-GafXBpKvaS_C3Z7CBlfRd9PEC3gFPHXAeyYTY93Uwzx9iV65k1f4NXDfo6-ffyw235aXn-5vNpurpeWSTEuleRry51thTUdkcKsGesYSGZawRyR0HnfKKkaz6kgpms8NVIw6axqnW99e47enXSHqTuAsxDnIfSQw8Hke51M0P--xLDXt-moGZdUMVUF3j4I5PSj_nzUh1As9L2JkKaiqeQtk4RKUtGLE2qrMyWDf2xDiZ7j0jUuPcelT3HVijd_T_fI_8mnAuoEQPXoGCDrYsNsqQu5-qldCv8V_wVMzKbp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753470170</pqid></control><display><type>article</type><title>Analysis of Conserved Glutamate and Aspartate Residues in Drosophila Rhodopsin 1 and Their Influence on Spectral Tuning</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zheng, Lijun ; Farrell, David M. ; Fulton, Ruth M. ; Bagg, Eve E. ; Salcedo, Ernesto ; Manino, Meridee ; Britt, Steven G.</creator><creatorcontrib>Zheng, Lijun ; Farrell, David M. ; Fulton, Ruth M. ; Bagg, Eve E. ; Salcedo, Ernesto ; Manino, Meridee ; Britt, Steven G.</creatorcontrib><description>The molecular mechanisms that regulate invertebrate visual pigment absorption are poorly understood. Studies of amphioxus Go-opsin have demonstrated that Glu-181 functions as the counterion in this pigment. This finding has led to the proposal that Glu-181 may function as the counterion in other invertebrate visual pigments as well. Here we describe a series of mutagenesis experiments to test this hypothesis and to also test whether other conserved acidic amino acids in Drosophila Rhodopsin 1 (Rh1) may serve as the counterion of this visual pigment. Of the 5 Glu and Asp residues replaced by Gln or Asn in our experiments, none of the mutant pigments shift the absorption of Rh1 by more than 6 nm. In combination with prior studies, these results suggest that the counterion in Drosophila Rh1 may not be located at Glu-181 as in amphioxus, or at Glu-113 as in bovine rhodopsin. Conversely, the extremely low steady state levels of the E194Q mutant pigment (bovine opsin site Glu-181), and the rhabdomere degeneration observed in flies expressing this mutant demonstrate that a negatively charged residueat this position is essential for normal rhodopsin function in vivo. This work also raises the possibility that another residue or physiologic anion may compensate for the missing counterion in the E194Q mutant.
Background: Rhodopsin absorption is regulated by interactions between the retinal chromophore and amino acids within the opsin apoprotein.
Results: Site-directed mutagenesis of conserved residues has only modest effects on Drosophila Rhodopsin 1 absorption.
Conclusion: The counterion may reside at another site within the protein or other mechanisms may compensate.
Significance: Determining the molecular basis for rhodopsin spectral tuning is essential for understanding rhodopsin function and evolution.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M115.677765</identifier><identifier>PMID: 26195627</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Aspartic Acid - chemistry ; Aspartic Acid - genetics ; Aspartic Acid - metabolism ; Blotting, Western ; Branchiostoma lanceolatum ; color perception ; Conserved Sequence - genetics ; Drosophila ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; Drosophila Proteins - chemistry ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Glutamic Acid - chemistry ; Glutamic Acid - genetics ; Glutamic Acid - metabolism ; Microspectrophotometry ; Mutation ; Neurobiology ; Opsins - classification ; Opsins - genetics ; Opsins - metabolism ; photoreceptor ; Phylogeny ; Protein Structure, Secondary ; retina ; Retinal Degeneration - genetics ; Retinal Degeneration - metabolism ; rhodopsin ; Rhodopsin - chemistry ; Rhodopsin - genetics ; Rhodopsin - metabolism ; site-directed mutagenesis</subject><ispartof>The Journal of biological chemistry, 2015-09, Vol.290 (36), p.21951-21961</ispartof><rights>2015 © 2015 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2015 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2015 by The American Society for Biochemistry and Molecular Biology, Inc. 2015 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-9758c5dc36cab076a844b4e74a364d07ebff29792f5160ab2f1a7647dc93df3f3</citedby><cites>FETCH-LOGICAL-c476t-9758c5dc36cab076a844b4e74a364d07ebff29792f5160ab2f1a7647dc93df3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4571949/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4571949/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26195627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Lijun</creatorcontrib><creatorcontrib>Farrell, David M.</creatorcontrib><creatorcontrib>Fulton, Ruth M.</creatorcontrib><creatorcontrib>Bagg, Eve E.</creatorcontrib><creatorcontrib>Salcedo, Ernesto</creatorcontrib><creatorcontrib>Manino, Meridee</creatorcontrib><creatorcontrib>Britt, Steven G.</creatorcontrib><title>Analysis of Conserved Glutamate and Aspartate Residues in Drosophila Rhodopsin 1 and Their Influence on Spectral Tuning</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The molecular mechanisms that regulate invertebrate visual pigment absorption are poorly understood. Studies of amphioxus Go-opsin have demonstrated that Glu-181 functions as the counterion in this pigment. This finding has led to the proposal that Glu-181 may function as the counterion in other invertebrate visual pigments as well. Here we describe a series of mutagenesis experiments to test this hypothesis and to also test whether other conserved acidic amino acids in Drosophila Rhodopsin 1 (Rh1) may serve as the counterion of this visual pigment. Of the 5 Glu and Asp residues replaced by Gln or Asn in our experiments, none of the mutant pigments shift the absorption of Rh1 by more than 6 nm. In combination with prior studies, these results suggest that the counterion in Drosophila Rh1 may not be located at Glu-181 as in amphioxus, or at Glu-113 as in bovine rhodopsin. Conversely, the extremely low steady state levels of the E194Q mutant pigment (bovine opsin site Glu-181), and the rhabdomere degeneration observed in flies expressing this mutant demonstrate that a negatively charged residueat this position is essential for normal rhodopsin function in vivo. This work also raises the possibility that another residue or physiologic anion may compensate for the missing counterion in the E194Q mutant.
Background: Rhodopsin absorption is regulated by interactions between the retinal chromophore and amino acids within the opsin apoprotein.
Results: Site-directed mutagenesis of conserved residues has only modest effects on Drosophila Rhodopsin 1 absorption.
Conclusion: The counterion may reside at another site within the protein or other mechanisms may compensate.
Significance: Determining the molecular basis for rhodopsin spectral tuning is essential for understanding rhodopsin function and evolution.</description><subject>Animals</subject><subject>Aspartic Acid - chemistry</subject><subject>Aspartic Acid - genetics</subject><subject>Aspartic Acid - metabolism</subject><subject>Blotting, Western</subject><subject>Branchiostoma lanceolatum</subject><subject>color perception</subject><subject>Conserved Sequence - genetics</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - chemistry</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Glutamic Acid - chemistry</subject><subject>Glutamic Acid - genetics</subject><subject>Glutamic Acid - metabolism</subject><subject>Microspectrophotometry</subject><subject>Mutation</subject><subject>Neurobiology</subject><subject>Opsins - classification</subject><subject>Opsins - genetics</subject><subject>Opsins - metabolism</subject><subject>photoreceptor</subject><subject>Phylogeny</subject><subject>Protein Structure, Secondary</subject><subject>retina</subject><subject>Retinal Degeneration - genetics</subject><subject>Retinal Degeneration - metabolism</subject><subject>rhodopsin</subject><subject>Rhodopsin - chemistry</subject><subject>Rhodopsin - genetics</subject><subject>Rhodopsin - metabolism</subject><subject>site-directed mutagenesis</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9vFCEUx4nR2LV69mY4etktzPBjuZhsVq1NakzqmngjDDy6NLMwwsya_vcybm30IBcCfN73Pb5fhF5TsqJEsou7zq4-U8pXQkop-BO0oGTdLltOvz9FC0IaulQNX5-hF6XckbqYos_RWSOo4qKRC_RzE01_X0LByeNtigXyERy-7KfRHMwI2ESHN2UweZxPN1CCm6DgEPH7nEoa9qE3-GafXBpKvaS_C3Z7CBlfRd9PEC3gFPHXAeyYTY93Uwzx9iV65k1f4NXDfo6-ffyw235aXn-5vNpurpeWSTEuleRry51thTUdkcKsGesYSGZawRyR0HnfKKkaz6kgpms8NVIw6axqnW99e47enXSHqTuAsxDnIfSQw8Hke51M0P--xLDXt-moGZdUMVUF3j4I5PSj_nzUh1As9L2JkKaiqeQtk4RKUtGLE2qrMyWDf2xDiZ7j0jUuPcelT3HVijd_T_fI_8mnAuoEQPXoGCDrYsNsqQu5-qldCv8V_wVMzKbp</recordid><startdate>20150904</startdate><enddate>20150904</enddate><creator>Zheng, Lijun</creator><creator>Farrell, David M.</creator><creator>Fulton, Ruth M.</creator><creator>Bagg, Eve E.</creator><creator>Salcedo, Ernesto</creator><creator>Manino, Meridee</creator><creator>Britt, Steven G.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20150904</creationdate><title>Analysis of Conserved Glutamate and Aspartate Residues in Drosophila Rhodopsin 1 and Their Influence on Spectral Tuning</title><author>Zheng, Lijun ; Farrell, David M. ; Fulton, Ruth M. ; Bagg, Eve E. ; Salcedo, Ernesto ; Manino, Meridee ; Britt, Steven G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-9758c5dc36cab076a844b4e74a364d07ebff29792f5160ab2f1a7647dc93df3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Aspartic Acid - chemistry</topic><topic>Aspartic Acid - genetics</topic><topic>Aspartic Acid - metabolism</topic><topic>Blotting, Western</topic><topic>Branchiostoma lanceolatum</topic><topic>color perception</topic><topic>Conserved Sequence - genetics</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - chemistry</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Glutamic Acid - chemistry</topic><topic>Glutamic Acid - genetics</topic><topic>Glutamic Acid - metabolism</topic><topic>Microspectrophotometry</topic><topic>Mutation</topic><topic>Neurobiology</topic><topic>Opsins - classification</topic><topic>Opsins - genetics</topic><topic>Opsins - metabolism</topic><topic>photoreceptor</topic><topic>Phylogeny</topic><topic>Protein Structure, Secondary</topic><topic>retina</topic><topic>Retinal Degeneration - genetics</topic><topic>Retinal Degeneration - metabolism</topic><topic>rhodopsin</topic><topic>Rhodopsin - chemistry</topic><topic>Rhodopsin - genetics</topic><topic>Rhodopsin - metabolism</topic><topic>site-directed mutagenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Lijun</creatorcontrib><creatorcontrib>Farrell, David M.</creatorcontrib><creatorcontrib>Fulton, Ruth M.</creatorcontrib><creatorcontrib>Bagg, Eve E.</creatorcontrib><creatorcontrib>Salcedo, Ernesto</creatorcontrib><creatorcontrib>Manino, Meridee</creatorcontrib><creatorcontrib>Britt, Steven G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Lijun</au><au>Farrell, David M.</au><au>Fulton, Ruth M.</au><au>Bagg, Eve E.</au><au>Salcedo, Ernesto</au><au>Manino, Meridee</au><au>Britt, Steven G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Conserved Glutamate and Aspartate Residues in Drosophila Rhodopsin 1 and Their Influence on Spectral Tuning</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2015-09-04</date><risdate>2015</risdate><volume>290</volume><issue>36</issue><spage>21951</spage><epage>21961</epage><pages>21951-21961</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The molecular mechanisms that regulate invertebrate visual pigment absorption are poorly understood. Studies of amphioxus Go-opsin have demonstrated that Glu-181 functions as the counterion in this pigment. This finding has led to the proposal that Glu-181 may function as the counterion in other invertebrate visual pigments as well. Here we describe a series of mutagenesis experiments to test this hypothesis and to also test whether other conserved acidic amino acids in Drosophila Rhodopsin 1 (Rh1) may serve as the counterion of this visual pigment. Of the 5 Glu and Asp residues replaced by Gln or Asn in our experiments, none of the mutant pigments shift the absorption of Rh1 by more than 6 nm. In combination with prior studies, these results suggest that the counterion in Drosophila Rh1 may not be located at Glu-181 as in amphioxus, or at Glu-113 as in bovine rhodopsin. Conversely, the extremely low steady state levels of the E194Q mutant pigment (bovine opsin site Glu-181), and the rhabdomere degeneration observed in flies expressing this mutant demonstrate that a negatively charged residueat this position is essential for normal rhodopsin function in vivo. This work also raises the possibility that another residue or physiologic anion may compensate for the missing counterion in the E194Q mutant.
Background: Rhodopsin absorption is regulated by interactions between the retinal chromophore and amino acids within the opsin apoprotein.
Results: Site-directed mutagenesis of conserved residues has only modest effects on Drosophila Rhodopsin 1 absorption.
Conclusion: The counterion may reside at another site within the protein or other mechanisms may compensate.
Significance: Determining the molecular basis for rhodopsin spectral tuning is essential for understanding rhodopsin function and evolution.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26195627</pmid><doi>10.1074/jbc.M115.677765</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2015-09, Vol.290 (36), p.21951-21961 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4571949 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Aspartic Acid - chemistry Aspartic Acid - genetics Aspartic Acid - metabolism Blotting, Western Branchiostoma lanceolatum color perception Conserved Sequence - genetics Drosophila Drosophila melanogaster - genetics Drosophila melanogaster - metabolism Drosophila Proteins - chemistry Drosophila Proteins - genetics Drosophila Proteins - metabolism Glutamic Acid - chemistry Glutamic Acid - genetics Glutamic Acid - metabolism Microspectrophotometry Mutation Neurobiology Opsins - classification Opsins - genetics Opsins - metabolism photoreceptor Phylogeny Protein Structure, Secondary retina Retinal Degeneration - genetics Retinal Degeneration - metabolism rhodopsin Rhodopsin - chemistry Rhodopsin - genetics Rhodopsin - metabolism site-directed mutagenesis |
title | Analysis of Conserved Glutamate and Aspartate Residues in Drosophila Rhodopsin 1 and Their Influence on Spectral Tuning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A26%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Conserved%20Glutamate%20and%20Aspartate%20Residues%20in%20Drosophila%20Rhodopsin%201%20and%20Their%20Influence%20on%20Spectral%20Tuning&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Zheng,%20Lijun&rft.date=2015-09-04&rft.volume=290&rft.issue=36&rft.spage=21951&rft.epage=21961&rft.pages=21951-21961&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M115.677765&rft_dat=%3Cproquest_pubme%3E1753470170%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753470170&rft_id=info:pmid/26195627&rft_els_id=S0021925820448574&rfr_iscdi=true |