Donkey genome and insight into the imprinting of fast karyotype evolution
The donkey, like the horse, is a promising model for exploring karyotypic instability. We report the de novo whole-genome assemblies of the donkey and the Asiatic wild ass. Our results reflect the distinct characteristics of donkeys, including more effective energy metabolism and better immunity tha...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2015-09, Vol.5 (1), p.14106-14106, Article 14106 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14106 |
---|---|
container_issue | 1 |
container_start_page | 14106 |
container_title | Scientific reports |
container_volume | 5 |
creator | Huang, Jinlong Zhao, Yiping Bai, Dongyi Shiraigol, Wunierfu Li, Bei Yang, Lihua Wu, Jing Bao, Wuyundalai Ren, Xiujuan Jin, Burenqiqige Zhao, Qinan Li, Anaer Bao, Sarula Bao, Wuyingga Xing, Zhencun An, Aoruga Gao, Yahan Wei, Ruiyuan Bao, Yirugeletu Bao, Taoketao Han, Haige Bai, Haitang Bao, Yanqing Zhang, Yuhong Daidiikhuu, Dorjsuren Zhao, Wenjing Liu, Shuyun Ding, Jinmei Ye, Weixing Ding, Fangmei Sun, Zikui Shi, Yixiang Zhang, Yan Meng, He Dugarjaviin, Manglai |
description | The donkey, like the horse, is a promising model for exploring karyotypic instability. We report the de novo whole-genome assemblies of the donkey and the Asiatic wild ass. Our results reflect the distinct characteristics of donkeys, including more effective energy metabolism and better immunity than horses. The donkey shows a steady demographic trajectory. We detected abundant satellite sequences in some inactive centromere regions but not in neocentromere regions, while ribosomal RNAs frequently emerged in neocentromere regions but not in the obsolete centromere regions. Expanded miRNA families and five newly discovered miRNA target genes involved in meiosis may be associated with fast karyotype evolution. APC/C, controlling sister chromatid segregation, cytokinesis and the establishment of the G1 cell cycle phase were identified by analysis of miRNA targets and rapidly evolving genes. |
doi_str_mv | 10.1038/srep14106 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4571621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1713530661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-ea30c0a041a595953535e8371e062d38d824dab9cc6f7684e439cb7770987c013</originalsourceid><addsrcrecordid>eNplkUtLAzEUhYMoKurCPyABNypU82qS2QjiGwQ3ug5p5s50dCapk4zQf29KtVTNXdyEfJx7koPQISXnlHB9EXuYUUGJ3EC7jIjxiHHGNtf2O-ggxjeS15gVghbbaIdJrrjWchc93gT_DnNcgw8dYOtL3PjY1NOUewo4TQE33azPh8bXOFS4sjHhd9vPQ5rPAMNnaIfUBL-PtirbRjj47nvo9e725fph9PR8_3h99TRygus0AsuJI5YIasdFLp4LNFcUiGQl16VmorSTwjlZKakFCF64iVKKFFo5QvkeulzqzoZJB6UDn3rbmmyxy6ZMsI35feObqanDpxFjRSVbCJx8C_ThY4CYTNdEB21rPYQhGqpoNkWkXKDHf9C3MPQ-P89QXRRKKKVFpk6XlOtDzHFUKzOUmEVGZpVRZo_W3a_In0QycLYE4uLTa-jXRv5T-wL6NZqj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899747784</pqid></control><display><type>article</type><title>Donkey genome and insight into the imprinting of fast karyotype evolution</title><source>Nature Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Huang, Jinlong ; Zhao, Yiping ; Bai, Dongyi ; Shiraigol, Wunierfu ; Li, Bei ; Yang, Lihua ; Wu, Jing ; Bao, Wuyundalai ; Ren, Xiujuan ; Jin, Burenqiqige ; Zhao, Qinan ; Li, Anaer ; Bao, Sarula ; Bao, Wuyingga ; Xing, Zhencun ; An, Aoruga ; Gao, Yahan ; Wei, Ruiyuan ; Bao, Yirugeletu ; Bao, Taoketao ; Han, Haige ; Bai, Haitang ; Bao, Yanqing ; Zhang, Yuhong ; Daidiikhuu, Dorjsuren ; Zhao, Wenjing ; Liu, Shuyun ; Ding, Jinmei ; Ye, Weixing ; Ding, Fangmei ; Sun, Zikui ; Shi, Yixiang ; Zhang, Yan ; Meng, He ; Dugarjaviin, Manglai</creator><creatorcontrib>Huang, Jinlong ; Zhao, Yiping ; Bai, Dongyi ; Shiraigol, Wunierfu ; Li, Bei ; Yang, Lihua ; Wu, Jing ; Bao, Wuyundalai ; Ren, Xiujuan ; Jin, Burenqiqige ; Zhao, Qinan ; Li, Anaer ; Bao, Sarula ; Bao, Wuyingga ; Xing, Zhencun ; An, Aoruga ; Gao, Yahan ; Wei, Ruiyuan ; Bao, Yirugeletu ; Bao, Taoketao ; Han, Haige ; Bai, Haitang ; Bao, Yanqing ; Zhang, Yuhong ; Daidiikhuu, Dorjsuren ; Zhao, Wenjing ; Liu, Shuyun ; Ding, Jinmei ; Ye, Weixing ; Ding, Fangmei ; Sun, Zikui ; Shi, Yixiang ; Zhang, Yan ; Meng, He ; Dugarjaviin, Manglai</creatorcontrib><description>The donkey, like the horse, is a promising model for exploring karyotypic instability. We report the de novo whole-genome assemblies of the donkey and the Asiatic wild ass. Our results reflect the distinct characteristics of donkeys, including more effective energy metabolism and better immunity than horses. The donkey shows a steady demographic trajectory. We detected abundant satellite sequences in some inactive centromere regions but not in neocentromere regions, while ribosomal RNAs frequently emerged in neocentromere regions but not in the obsolete centromere regions. Expanded miRNA families and five newly discovered miRNA target genes involved in meiosis may be associated with fast karyotype evolution. APC/C, controlling sister chromatid segregation, cytokinesis and the establishment of the G1 cell cycle phase were identified by analysis of miRNA targets and rapidly evolving genes.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep14106</identifier><identifier>PMID: 26373886</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/208/211 ; 631/208/212 ; Animals ; Cell cycle ; Centromere - genetics ; Computational Biology - methods ; Equidae - genetics ; Evolution ; Evolution, Molecular ; Gene Rearrangement ; Genome ; Genomes ; Genomic Imprinting ; Genomics - methods ; Horses ; Humanities and Social Sciences ; Karyotype ; Karyotypes ; MicroRNAs - genetics ; Molecular Sequence Annotation ; multidisciplinary ; Repetitive Sequences, Nucleic Acid ; RNA Interference ; RNA, Messenger - genetics ; Science</subject><ispartof>Scientific reports, 2015-09, Vol.5 (1), p.14106-14106, Article 14106</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Sep 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-ea30c0a041a595953535e8371e062d38d824dab9cc6f7684e439cb7770987c013</citedby><cites>FETCH-LOGICAL-c438t-ea30c0a041a595953535e8371e062d38d824dab9cc6f7684e439cb7770987c013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4571621/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4571621/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26373886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Jinlong</creatorcontrib><creatorcontrib>Zhao, Yiping</creatorcontrib><creatorcontrib>Bai, Dongyi</creatorcontrib><creatorcontrib>Shiraigol, Wunierfu</creatorcontrib><creatorcontrib>Li, Bei</creatorcontrib><creatorcontrib>Yang, Lihua</creatorcontrib><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Bao, Wuyundalai</creatorcontrib><creatorcontrib>Ren, Xiujuan</creatorcontrib><creatorcontrib>Jin, Burenqiqige</creatorcontrib><creatorcontrib>Zhao, Qinan</creatorcontrib><creatorcontrib>Li, Anaer</creatorcontrib><creatorcontrib>Bao, Sarula</creatorcontrib><creatorcontrib>Bao, Wuyingga</creatorcontrib><creatorcontrib>Xing, Zhencun</creatorcontrib><creatorcontrib>An, Aoruga</creatorcontrib><creatorcontrib>Gao, Yahan</creatorcontrib><creatorcontrib>Wei, Ruiyuan</creatorcontrib><creatorcontrib>Bao, Yirugeletu</creatorcontrib><creatorcontrib>Bao, Taoketao</creatorcontrib><creatorcontrib>Han, Haige</creatorcontrib><creatorcontrib>Bai, Haitang</creatorcontrib><creatorcontrib>Bao, Yanqing</creatorcontrib><creatorcontrib>Zhang, Yuhong</creatorcontrib><creatorcontrib>Daidiikhuu, Dorjsuren</creatorcontrib><creatorcontrib>Zhao, Wenjing</creatorcontrib><creatorcontrib>Liu, Shuyun</creatorcontrib><creatorcontrib>Ding, Jinmei</creatorcontrib><creatorcontrib>Ye, Weixing</creatorcontrib><creatorcontrib>Ding, Fangmei</creatorcontrib><creatorcontrib>Sun, Zikui</creatorcontrib><creatorcontrib>Shi, Yixiang</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Meng, He</creatorcontrib><creatorcontrib>Dugarjaviin, Manglai</creatorcontrib><title>Donkey genome and insight into the imprinting of fast karyotype evolution</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The donkey, like the horse, is a promising model for exploring karyotypic instability. We report the de novo whole-genome assemblies of the donkey and the Asiatic wild ass. Our results reflect the distinct characteristics of donkeys, including more effective energy metabolism and better immunity than horses. The donkey shows a steady demographic trajectory. We detected abundant satellite sequences in some inactive centromere regions but not in neocentromere regions, while ribosomal RNAs frequently emerged in neocentromere regions but not in the obsolete centromere regions. Expanded miRNA families and five newly discovered miRNA target genes involved in meiosis may be associated with fast karyotype evolution. APC/C, controlling sister chromatid segregation, cytokinesis and the establishment of the G1 cell cycle phase were identified by analysis of miRNA targets and rapidly evolving genes.</description><subject>631/208/211</subject><subject>631/208/212</subject><subject>Animals</subject><subject>Cell cycle</subject><subject>Centromere - genetics</subject><subject>Computational Biology - methods</subject><subject>Equidae - genetics</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Gene Rearrangement</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomic Imprinting</subject><subject>Genomics - methods</subject><subject>Horses</subject><subject>Humanities and Social Sciences</subject><subject>Karyotype</subject><subject>Karyotypes</subject><subject>MicroRNAs - genetics</subject><subject>Molecular Sequence Annotation</subject><subject>multidisciplinary</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>RNA Interference</subject><subject>RNA, Messenger - genetics</subject><subject>Science</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkUtLAzEUhYMoKurCPyABNypU82qS2QjiGwQ3ug5p5s50dCapk4zQf29KtVTNXdyEfJx7koPQISXnlHB9EXuYUUGJ3EC7jIjxiHHGNtf2O-ggxjeS15gVghbbaIdJrrjWchc93gT_DnNcgw8dYOtL3PjY1NOUewo4TQE33azPh8bXOFS4sjHhd9vPQ5rPAMNnaIfUBL-PtirbRjj47nvo9e725fph9PR8_3h99TRygus0AsuJI5YIasdFLp4LNFcUiGQl16VmorSTwjlZKakFCF64iVKKFFo5QvkeulzqzoZJB6UDn3rbmmyxy6ZMsI35feObqanDpxFjRSVbCJx8C_ThY4CYTNdEB21rPYQhGqpoNkWkXKDHf9C3MPQ-P89QXRRKKKVFpk6XlOtDzHFUKzOUmEVGZpVRZo_W3a_In0QycLYE4uLTa-jXRv5T-wL6NZqj</recordid><startdate>20150916</startdate><enddate>20150916</enddate><creator>Huang, Jinlong</creator><creator>Zhao, Yiping</creator><creator>Bai, Dongyi</creator><creator>Shiraigol, Wunierfu</creator><creator>Li, Bei</creator><creator>Yang, Lihua</creator><creator>Wu, Jing</creator><creator>Bao, Wuyundalai</creator><creator>Ren, Xiujuan</creator><creator>Jin, Burenqiqige</creator><creator>Zhao, Qinan</creator><creator>Li, Anaer</creator><creator>Bao, Sarula</creator><creator>Bao, Wuyingga</creator><creator>Xing, Zhencun</creator><creator>An, Aoruga</creator><creator>Gao, Yahan</creator><creator>Wei, Ruiyuan</creator><creator>Bao, Yirugeletu</creator><creator>Bao, Taoketao</creator><creator>Han, Haige</creator><creator>Bai, Haitang</creator><creator>Bao, Yanqing</creator><creator>Zhang, Yuhong</creator><creator>Daidiikhuu, Dorjsuren</creator><creator>Zhao, Wenjing</creator><creator>Liu, Shuyun</creator><creator>Ding, Jinmei</creator><creator>Ye, Weixing</creator><creator>Ding, Fangmei</creator><creator>Sun, Zikui</creator><creator>Shi, Yixiang</creator><creator>Zhang, Yan</creator><creator>Meng, He</creator><creator>Dugarjaviin, Manglai</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150916</creationdate><title>Donkey genome and insight into the imprinting of fast karyotype evolution</title><author>Huang, Jinlong ; Zhao, Yiping ; Bai, Dongyi ; Shiraigol, Wunierfu ; Li, Bei ; Yang, Lihua ; Wu, Jing ; Bao, Wuyundalai ; Ren, Xiujuan ; Jin, Burenqiqige ; Zhao, Qinan ; Li, Anaer ; Bao, Sarula ; Bao, Wuyingga ; Xing, Zhencun ; An, Aoruga ; Gao, Yahan ; Wei, Ruiyuan ; Bao, Yirugeletu ; Bao, Taoketao ; Han, Haige ; Bai, Haitang ; Bao, Yanqing ; Zhang, Yuhong ; Daidiikhuu, Dorjsuren ; Zhao, Wenjing ; Liu, Shuyun ; Ding, Jinmei ; Ye, Weixing ; Ding, Fangmei ; Sun, Zikui ; Shi, Yixiang ; Zhang, Yan ; Meng, He ; Dugarjaviin, Manglai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-ea30c0a041a595953535e8371e062d38d824dab9cc6f7684e439cb7770987c013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>631/208/211</topic><topic>631/208/212</topic><topic>Animals</topic><topic>Cell cycle</topic><topic>Centromere - genetics</topic><topic>Computational Biology - methods</topic><topic>Equidae - genetics</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Gene Rearrangement</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomic Imprinting</topic><topic>Genomics - methods</topic><topic>Horses</topic><topic>Humanities and Social Sciences</topic><topic>Karyotype</topic><topic>Karyotypes</topic><topic>MicroRNAs - genetics</topic><topic>Molecular Sequence Annotation</topic><topic>multidisciplinary</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>RNA Interference</topic><topic>RNA, Messenger - genetics</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jinlong</creatorcontrib><creatorcontrib>Zhao, Yiping</creatorcontrib><creatorcontrib>Bai, Dongyi</creatorcontrib><creatorcontrib>Shiraigol, Wunierfu</creatorcontrib><creatorcontrib>Li, Bei</creatorcontrib><creatorcontrib>Yang, Lihua</creatorcontrib><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Bao, Wuyundalai</creatorcontrib><creatorcontrib>Ren, Xiujuan</creatorcontrib><creatorcontrib>Jin, Burenqiqige</creatorcontrib><creatorcontrib>Zhao, Qinan</creatorcontrib><creatorcontrib>Li, Anaer</creatorcontrib><creatorcontrib>Bao, Sarula</creatorcontrib><creatorcontrib>Bao, Wuyingga</creatorcontrib><creatorcontrib>Xing, Zhencun</creatorcontrib><creatorcontrib>An, Aoruga</creatorcontrib><creatorcontrib>Gao, Yahan</creatorcontrib><creatorcontrib>Wei, Ruiyuan</creatorcontrib><creatorcontrib>Bao, Yirugeletu</creatorcontrib><creatorcontrib>Bao, Taoketao</creatorcontrib><creatorcontrib>Han, Haige</creatorcontrib><creatorcontrib>Bai, Haitang</creatorcontrib><creatorcontrib>Bao, Yanqing</creatorcontrib><creatorcontrib>Zhang, Yuhong</creatorcontrib><creatorcontrib>Daidiikhuu, Dorjsuren</creatorcontrib><creatorcontrib>Zhao, Wenjing</creatorcontrib><creatorcontrib>Liu, Shuyun</creatorcontrib><creatorcontrib>Ding, Jinmei</creatorcontrib><creatorcontrib>Ye, Weixing</creatorcontrib><creatorcontrib>Ding, Fangmei</creatorcontrib><creatorcontrib>Sun, Zikui</creatorcontrib><creatorcontrib>Shi, Yixiang</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Meng, He</creatorcontrib><creatorcontrib>Dugarjaviin, Manglai</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jinlong</au><au>Zhao, Yiping</au><au>Bai, Dongyi</au><au>Shiraigol, Wunierfu</au><au>Li, Bei</au><au>Yang, Lihua</au><au>Wu, Jing</au><au>Bao, Wuyundalai</au><au>Ren, Xiujuan</au><au>Jin, Burenqiqige</au><au>Zhao, Qinan</au><au>Li, Anaer</au><au>Bao, Sarula</au><au>Bao, Wuyingga</au><au>Xing, Zhencun</au><au>An, Aoruga</au><au>Gao, Yahan</au><au>Wei, Ruiyuan</au><au>Bao, Yirugeletu</au><au>Bao, Taoketao</au><au>Han, Haige</au><au>Bai, Haitang</au><au>Bao, Yanqing</au><au>Zhang, Yuhong</au><au>Daidiikhuu, Dorjsuren</au><au>Zhao, Wenjing</au><au>Liu, Shuyun</au><au>Ding, Jinmei</au><au>Ye, Weixing</au><au>Ding, Fangmei</au><au>Sun, Zikui</au><au>Shi, Yixiang</au><au>Zhang, Yan</au><au>Meng, He</au><au>Dugarjaviin, Manglai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Donkey genome and insight into the imprinting of fast karyotype evolution</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-09-16</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>14106</spage><epage>14106</epage><pages>14106-14106</pages><artnum>14106</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The donkey, like the horse, is a promising model for exploring karyotypic instability. We report the de novo whole-genome assemblies of the donkey and the Asiatic wild ass. Our results reflect the distinct characteristics of donkeys, including more effective energy metabolism and better immunity than horses. The donkey shows a steady demographic trajectory. We detected abundant satellite sequences in some inactive centromere regions but not in neocentromere regions, while ribosomal RNAs frequently emerged in neocentromere regions but not in the obsolete centromere regions. Expanded miRNA families and five newly discovered miRNA target genes involved in meiosis may be associated with fast karyotype evolution. APC/C, controlling sister chromatid segregation, cytokinesis and the establishment of the G1 cell cycle phase were identified by analysis of miRNA targets and rapidly evolving genes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26373886</pmid><doi>10.1038/srep14106</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2015-09, Vol.5 (1), p.14106-14106, Article 14106 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4571621 |
source | Nature Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | 631/208/211 631/208/212 Animals Cell cycle Centromere - genetics Computational Biology - methods Equidae - genetics Evolution Evolution, Molecular Gene Rearrangement Genome Genomes Genomic Imprinting Genomics - methods Horses Humanities and Social Sciences Karyotype Karyotypes MicroRNAs - genetics Molecular Sequence Annotation multidisciplinary Repetitive Sequences, Nucleic Acid RNA Interference RNA, Messenger - genetics Science |
title | Donkey genome and insight into the imprinting of fast karyotype evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A26%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Donkey%20genome%20and%20insight%20into%20the%20imprinting%20of%20fast%20karyotype%20evolution&rft.jtitle=Scientific%20reports&rft.au=Huang,%20Jinlong&rft.date=2015-09-16&rft.volume=5&rft.issue=1&rft.spage=14106&rft.epage=14106&rft.pages=14106-14106&rft.artnum=14106&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep14106&rft_dat=%3Cproquest_pubme%3E1713530661%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899747784&rft_id=info:pmid/26373886&rfr_iscdi=true |