Mixed Model with Correction for Case-Control Ascertainment Increases Association Power

We introduce a Liability Threshold Mixed Linear Model (LTMLM) association statistic for ascertained case-control studies that increases power vs. existing mixed model methods for diseases with low prevalence, with a well-controlled false-positive rate. Existing mixed model methods suffer a loss in p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of human genetics 2015-05, Vol.96 (5), p.720-730
Hauptverfasser: Hayeck, Tristan, Zaitlen, Noah A., Loh, Po-Ru, Vilhjalmsson, Bjarni, Pollack, Samuela, Gusev, Alexander, Yang, Jian, Chen, Guo-Bo, Goddard, Michael E., Visscher, Peter M., Patterson, Nick, Price, Alkes L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 730
container_issue 5
container_start_page 720
container_title American journal of human genetics
container_volume 96
creator Hayeck, Tristan
Zaitlen, Noah A.
Loh, Po-Ru
Vilhjalmsson, Bjarni
Pollack, Samuela
Gusev, Alexander
Yang, Jian
Chen, Guo-Bo
Goddard, Michael E.
Visscher, Peter M.
Patterson, Nick
Price, Alkes L.
description We introduce a Liability Threshold Mixed Linear Model (LTMLM) association statistic for ascertained case-control studies that increases power vs. existing mixed model methods for diseases with low prevalence, with a well-controlled false-positive rate. Existing mixed model methods suffer a loss in power under case-control ascertainment, but no solution has been proposed. Here, we solve this problem using a chi-square score statistic computed from posterior mean liabilities (PML) under the liability threshold model. Each individual’s PML is conditional not only on that individual’s case-control status, but also on every individual’s case-control status and on the genetic relationship matrix obtained from the data. The PML are estimated using a multivariate Gibbs sampler, with the liability-scale phenotypic covariance matrix based on the genetic relationship matrix (GRM) and a heritability parameter estimated via Haseman-Elston regression on case-control phenotypes followed by transformation to liability scale. In simulations of unrelated individuals, the LTMLM statistic was correctly calibrated and achieved higher power than existing mixed model methods for diseases with low prevalence, with the magnitude of the improvement depending on sample size and severity of case-control ascertainment. In a WTCCC2 multiple sclerosis data set with >10,000 samples, LTMLM was correctly calibrated and attained a 4.3% improvement (P=0.005) in chi-square statistics (vs. existing mixed model methods) at 75 known associated SNPs, consistent with simulations. Larger increases in power are expected at larger sample sizes. In conclusion, an increase in power over existing mixed model methods is available for ascertained case-control studies of diseases with low prevalence.
doi_str_mv 10.1016/j.ajhg.2015.03.004
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4570278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002929715001056</els_id><sourcerecordid>1680210596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-e99d1b394b8783462cdbdce756f329c42f78bb7c859792604955f618eb8688b33</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EosPAC7BAkdh0k3Btx44tIaQq4qdSK1gAWytxbjqOMnaxMy28PQ5TKmDBypLvd47v8SHkOYWKApWvpqqbdlcVAyoq4BVA_YBsqOBNKSWIh2QDAKzUTDcn5ElKEwClCvhjcsKE0oxSuiFfL913HIrLMOBc3LplV7QhRrSLC74YQyzaLmHZBr_EMBdnyWJcOuf36Jfi3NuIeZzyfQrWdb9En8Itxqfk0djNCZ_dnVvy5d3bz-2H8uLj-_P27KK0QvClRK0H2nNd96pRvJbMDv1gsRFy5Ezbmo2N6vvGKqEbzSTUWohRUoW9kkr1nG_Jm6Pv9aHfY5bmPbvZXEe37-IPEzpn_p54tzNX4cbUogGW39yS0zuDGL4dMC1m73LIee48hkMyVCpgFISWGX35DzqFQ_Q53koxqbVWK8WOlI0hpYjj_TIUzFqbmcxam1lrM8BNri2LXvwZ417yu6cMvD4CmD_zxmE0yTr0Fge3lmWG4P7n_xPaoakf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1682699986</pqid></control><display><type>article</type><title>Mixed Model with Correction for Case-Control Ascertainment Increases Association Power</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><source>PubMed Central</source><creator>Hayeck, Tristan ; Zaitlen, Noah A. ; Loh, Po-Ru ; Vilhjalmsson, Bjarni ; Pollack, Samuela ; Gusev, Alexander ; Yang, Jian ; Chen, Guo-Bo ; Goddard, Michael E. ; Visscher, Peter M. ; Patterson, Nick ; Price, Alkes L.</creator><creatorcontrib>Hayeck, Tristan ; Zaitlen, Noah A. ; Loh, Po-Ru ; Vilhjalmsson, Bjarni ; Pollack, Samuela ; Gusev, Alexander ; Yang, Jian ; Chen, Guo-Bo ; Goddard, Michael E. ; Visscher, Peter M. ; Patterson, Nick ; Price, Alkes L.</creatorcontrib><description>We introduce a Liability Threshold Mixed Linear Model (LTMLM) association statistic for ascertained case-control studies that increases power vs. existing mixed model methods for diseases with low prevalence, with a well-controlled false-positive rate. Existing mixed model methods suffer a loss in power under case-control ascertainment, but no solution has been proposed. Here, we solve this problem using a chi-square score statistic computed from posterior mean liabilities (PML) under the liability threshold model. Each individual’s PML is conditional not only on that individual’s case-control status, but also on every individual’s case-control status and on the genetic relationship matrix obtained from the data. The PML are estimated using a multivariate Gibbs sampler, with the liability-scale phenotypic covariance matrix based on the genetic relationship matrix (GRM) and a heritability parameter estimated via Haseman-Elston regression on case-control phenotypes followed by transformation to liability scale. In simulations of unrelated individuals, the LTMLM statistic was correctly calibrated and achieved higher power than existing mixed model methods for diseases with low prevalence, with the magnitude of the improvement depending on sample size and severity of case-control ascertainment. In a WTCCC2 multiple sclerosis data set with &gt;10,000 samples, LTMLM was correctly calibrated and attained a 4.3% improvement (P=0.005) in chi-square statistics (vs. existing mixed model methods) at 75 known associated SNPs, consistent with simulations. Larger increases in power are expected at larger sample sizes. In conclusion, an increase in power over existing mixed model methods is available for ascertained case-control studies of diseases with low prevalence.</description><identifier>ISSN: 0002-9297</identifier><identifier>EISSN: 1537-6605</identifier><identifier>DOI: 10.1016/j.ajhg.2015.03.004</identifier><identifier>PMID: 25892111</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Case-Control Studies ; Chromosome Mapping ; Computer Simulation ; Genetic Association Studies ; Genotype &amp; phenotype ; Humans ; Matrix ; Models, Genetic ; Models, Theoretical ; Multiple sclerosis ; Multiple Sclerosis - genetics ; Multiple Sclerosis - pathology ; Phenotype ; Polymorphism, Single Nucleotide ; Regression analysis ; Sample Size ; Simulation</subject><ispartof>American journal of human genetics, 2015-05, Vol.96 (5), p.720-730</ispartof><rights>2015 The American Society of Human Genetics</rights><rights>Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Cell Press May 7, 2015</rights><rights>2015 The American Society of Human Genetics. Published by Elsevier Ltd. All right reserved. 2015 The American Society of Human Genetics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-e99d1b394b8783462cdbdce756f329c42f78bb7c859792604955f618eb8688b33</citedby><cites>FETCH-LOGICAL-c553t-e99d1b394b8783462cdbdce756f329c42f78bb7c859792604955f618eb8688b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4570278/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ajhg.2015.03.004$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25892111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hayeck, Tristan</creatorcontrib><creatorcontrib>Zaitlen, Noah A.</creatorcontrib><creatorcontrib>Loh, Po-Ru</creatorcontrib><creatorcontrib>Vilhjalmsson, Bjarni</creatorcontrib><creatorcontrib>Pollack, Samuela</creatorcontrib><creatorcontrib>Gusev, Alexander</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Chen, Guo-Bo</creatorcontrib><creatorcontrib>Goddard, Michael E.</creatorcontrib><creatorcontrib>Visscher, Peter M.</creatorcontrib><creatorcontrib>Patterson, Nick</creatorcontrib><creatorcontrib>Price, Alkes L.</creatorcontrib><title>Mixed Model with Correction for Case-Control Ascertainment Increases Association Power</title><title>American journal of human genetics</title><addtitle>Am J Hum Genet</addtitle><description>We introduce a Liability Threshold Mixed Linear Model (LTMLM) association statistic for ascertained case-control studies that increases power vs. existing mixed model methods for diseases with low prevalence, with a well-controlled false-positive rate. Existing mixed model methods suffer a loss in power under case-control ascertainment, but no solution has been proposed. Here, we solve this problem using a chi-square score statistic computed from posterior mean liabilities (PML) under the liability threshold model. Each individual’s PML is conditional not only on that individual’s case-control status, but also on every individual’s case-control status and on the genetic relationship matrix obtained from the data. The PML are estimated using a multivariate Gibbs sampler, with the liability-scale phenotypic covariance matrix based on the genetic relationship matrix (GRM) and a heritability parameter estimated via Haseman-Elston regression on case-control phenotypes followed by transformation to liability scale. In simulations of unrelated individuals, the LTMLM statistic was correctly calibrated and achieved higher power than existing mixed model methods for diseases with low prevalence, with the magnitude of the improvement depending on sample size and severity of case-control ascertainment. In a WTCCC2 multiple sclerosis data set with &gt;10,000 samples, LTMLM was correctly calibrated and attained a 4.3% improvement (P=0.005) in chi-square statistics (vs. existing mixed model methods) at 75 known associated SNPs, consistent with simulations. Larger increases in power are expected at larger sample sizes. In conclusion, an increase in power over existing mixed model methods is available for ascertained case-control studies of diseases with low prevalence.</description><subject>Case-Control Studies</subject><subject>Chromosome Mapping</subject><subject>Computer Simulation</subject><subject>Genetic Association Studies</subject><subject>Genotype &amp; phenotype</subject><subject>Humans</subject><subject>Matrix</subject><subject>Models, Genetic</subject><subject>Models, Theoretical</subject><subject>Multiple sclerosis</subject><subject>Multiple Sclerosis - genetics</subject><subject>Multiple Sclerosis - pathology</subject><subject>Phenotype</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Regression analysis</subject><subject>Sample Size</subject><subject>Simulation</subject><issn>0002-9297</issn><issn>1537-6605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS0EosPAC7BAkdh0k3Btx44tIaQq4qdSK1gAWytxbjqOMnaxMy28PQ5TKmDBypLvd47v8SHkOYWKApWvpqqbdlcVAyoq4BVA_YBsqOBNKSWIh2QDAKzUTDcn5ElKEwClCvhjcsKE0oxSuiFfL913HIrLMOBc3LplV7QhRrSLC74YQyzaLmHZBr_EMBdnyWJcOuf36Jfi3NuIeZzyfQrWdb9En8Itxqfk0djNCZ_dnVvy5d3bz-2H8uLj-_P27KK0QvClRK0H2nNd96pRvJbMDv1gsRFy5Ezbmo2N6vvGKqEbzSTUWohRUoW9kkr1nG_Jm6Pv9aHfY5bmPbvZXEe37-IPEzpn_p54tzNX4cbUogGW39yS0zuDGL4dMC1m73LIee48hkMyVCpgFISWGX35DzqFQ_Q53koxqbVWK8WOlI0hpYjj_TIUzFqbmcxam1lrM8BNri2LXvwZ417yu6cMvD4CmD_zxmE0yTr0Fge3lmWG4P7n_xPaoakf</recordid><startdate>20150507</startdate><enddate>20150507</enddate><creator>Hayeck, Tristan</creator><creator>Zaitlen, Noah A.</creator><creator>Loh, Po-Ru</creator><creator>Vilhjalmsson, Bjarni</creator><creator>Pollack, Samuela</creator><creator>Gusev, Alexander</creator><creator>Yang, Jian</creator><creator>Chen, Guo-Bo</creator><creator>Goddard, Michael E.</creator><creator>Visscher, Peter M.</creator><creator>Patterson, Nick</creator><creator>Price, Alkes L.</creator><general>Elsevier Inc</general><general>Cell Press</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150507</creationdate><title>Mixed Model with Correction for Case-Control Ascertainment Increases Association Power</title><author>Hayeck, Tristan ; Zaitlen, Noah A. ; Loh, Po-Ru ; Vilhjalmsson, Bjarni ; Pollack, Samuela ; Gusev, Alexander ; Yang, Jian ; Chen, Guo-Bo ; Goddard, Michael E. ; Visscher, Peter M. ; Patterson, Nick ; Price, Alkes L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-e99d1b394b8783462cdbdce756f329c42f78bb7c859792604955f618eb8688b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Case-Control Studies</topic><topic>Chromosome Mapping</topic><topic>Computer Simulation</topic><topic>Genetic Association Studies</topic><topic>Genotype &amp; phenotype</topic><topic>Humans</topic><topic>Matrix</topic><topic>Models, Genetic</topic><topic>Models, Theoretical</topic><topic>Multiple sclerosis</topic><topic>Multiple Sclerosis - genetics</topic><topic>Multiple Sclerosis - pathology</topic><topic>Phenotype</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Regression analysis</topic><topic>Sample Size</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayeck, Tristan</creatorcontrib><creatorcontrib>Zaitlen, Noah A.</creatorcontrib><creatorcontrib>Loh, Po-Ru</creatorcontrib><creatorcontrib>Vilhjalmsson, Bjarni</creatorcontrib><creatorcontrib>Pollack, Samuela</creatorcontrib><creatorcontrib>Gusev, Alexander</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Chen, Guo-Bo</creatorcontrib><creatorcontrib>Goddard, Michael E.</creatorcontrib><creatorcontrib>Visscher, Peter M.</creatorcontrib><creatorcontrib>Patterson, Nick</creatorcontrib><creatorcontrib>Price, Alkes L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayeck, Tristan</au><au>Zaitlen, Noah A.</au><au>Loh, Po-Ru</au><au>Vilhjalmsson, Bjarni</au><au>Pollack, Samuela</au><au>Gusev, Alexander</au><au>Yang, Jian</au><au>Chen, Guo-Bo</au><au>Goddard, Michael E.</au><au>Visscher, Peter M.</au><au>Patterson, Nick</au><au>Price, Alkes L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed Model with Correction for Case-Control Ascertainment Increases Association Power</atitle><jtitle>American journal of human genetics</jtitle><addtitle>Am J Hum Genet</addtitle><date>2015-05-07</date><risdate>2015</risdate><volume>96</volume><issue>5</issue><spage>720</spage><epage>730</epage><pages>720-730</pages><issn>0002-9297</issn><eissn>1537-6605</eissn><abstract>We introduce a Liability Threshold Mixed Linear Model (LTMLM) association statistic for ascertained case-control studies that increases power vs. existing mixed model methods for diseases with low prevalence, with a well-controlled false-positive rate. Existing mixed model methods suffer a loss in power under case-control ascertainment, but no solution has been proposed. Here, we solve this problem using a chi-square score statistic computed from posterior mean liabilities (PML) under the liability threshold model. Each individual’s PML is conditional not only on that individual’s case-control status, but also on every individual’s case-control status and on the genetic relationship matrix obtained from the data. The PML are estimated using a multivariate Gibbs sampler, with the liability-scale phenotypic covariance matrix based on the genetic relationship matrix (GRM) and a heritability parameter estimated via Haseman-Elston regression on case-control phenotypes followed by transformation to liability scale. In simulations of unrelated individuals, the LTMLM statistic was correctly calibrated and achieved higher power than existing mixed model methods for diseases with low prevalence, with the magnitude of the improvement depending on sample size and severity of case-control ascertainment. In a WTCCC2 multiple sclerosis data set with &gt;10,000 samples, LTMLM was correctly calibrated and attained a 4.3% improvement (P=0.005) in chi-square statistics (vs. existing mixed model methods) at 75 known associated SNPs, consistent with simulations. Larger increases in power are expected at larger sample sizes. In conclusion, an increase in power over existing mixed model methods is available for ascertained case-control studies of diseases with low prevalence.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25892111</pmid><doi>10.1016/j.ajhg.2015.03.004</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9297
ispartof American journal of human genetics, 2015-05, Vol.96 (5), p.720-730
issn 0002-9297
1537-6605
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4570278
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present); PubMed Central
subjects Case-Control Studies
Chromosome Mapping
Computer Simulation
Genetic Association Studies
Genotype & phenotype
Humans
Matrix
Models, Genetic
Models, Theoretical
Multiple sclerosis
Multiple Sclerosis - genetics
Multiple Sclerosis - pathology
Phenotype
Polymorphism, Single Nucleotide
Regression analysis
Sample Size
Simulation
title Mixed Model with Correction for Case-Control Ascertainment Increases Association Power
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed%20Model%20with%20Correction%20for%20Case-Control%20Ascertainment%20Increases%20Association%20Power&rft.jtitle=American%20journal%20of%20human%20genetics&rft.au=Hayeck,%20Tristan&rft.date=2015-05-07&rft.volume=96&rft.issue=5&rft.spage=720&rft.epage=730&rft.pages=720-730&rft.issn=0002-9297&rft.eissn=1537-6605&rft_id=info:doi/10.1016/j.ajhg.2015.03.004&rft_dat=%3Cproquest_pubme%3E1680210596%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1682699986&rft_id=info:pmid/25892111&rft_els_id=S0002929715001056&rfr_iscdi=true