Altered Corticostriatal Connectivity and Exploration/Exploitation Imbalance Emerge as Intermediate Phenotypes for a Neonatal Dopamine Dysfunction

Findings showing that neonatal lesions of the forebrain dopaminergic system in rodents lead to juvenile locomotor hyperactivity and learning deficits have been taken as evidence of face validity for the attention deficit hyperactivity disorder. However, the core cognitive and physiological intermedi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuropsychopharmacology (New York, N.Y.) N.Y.), 2015-10, Vol.40 (11), p.2576-2587
Hauptverfasser: Braz, Barbara Y, Galiñanes, Gregorio L, Taravini, Irene R E, Belforte, Juan E, Murer, M Gustavo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2587
container_issue 11
container_start_page 2576
container_title Neuropsychopharmacology (New York, N.Y.)
container_volume 40
creator Braz, Barbara Y
Galiñanes, Gregorio L
Taravini, Irene R E
Belforte, Juan E
Murer, M Gustavo
description Findings showing that neonatal lesions of the forebrain dopaminergic system in rodents lead to juvenile locomotor hyperactivity and learning deficits have been taken as evidence of face validity for the attention deficit hyperactivity disorder. However, the core cognitive and physiological intermediate phenotypes underlying this rodent syndrome remain unknown. Here we show that early postnatal dopaminergic lesions cause long-lasting deficits in exploitation of shelter, social and nutritional resources, and an imbalanced exploratory behavior, where nondirected local exploration is exacerbated, whereas sophisticated search behaviors involving sequences of goal directed actions are degraded. Importantly, some behavioral deficits do not diminish after adolescence but instead worsen or mutate, particularly those related to the exploration of wide and spatially complex environments. The in vivo electrophysiological recordings and morphological reconstructions of striatal medium spiny neurons reveal corticostriatal alterations associated to the behavioral phenotype. More specifically, an attenuation of corticostriatal functional connectivity, affecting medial prefrontal inputs more markedly than cingulate and motor inputs, is accompanied by a contraction of the dendritic arbor of striatal projection neurons in this animal model. Thus, dopaminergic neurons are essential during postnatal development for the functional and structural maturation of corticostriatal connections. From a bottom-up viewpoint, our findings suggest that neuropsychiatric conditions presumably linked to developmental alterations of the dopaminergic system should be evaluated for deficits in foraging decision making, alterations in the recruitment of corticostriatal circuits during foraging tasks, and structural disorganization of the frontostriatal connections.
doi_str_mv 10.1038/npp.2015.104
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4569947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3803743561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c581t-bfc7babad6bd1934771bcc20efe2c25855a9de0d2b2cc0dbef6ccba6b6b01df93</originalsourceid><addsrcrecordid>eNqNkkFv1DAUhC0EokvhxhlZ4sKhae04sZMLUrVdYKWqcACpN8t2XlpXiR1sp2J_Rv8xzrZUwKkne-RP43lPg9BbSo4pYc2Jm6bjktA6q-oZWlFRkYKz6vI5WpGmZQVl7PIAvYrxhmRK8OYlOijrRpQt5St0dzokCNDhtQ_JGh9TsCqpIWvnwCR7a9MOK9fhza9p8EEl693J_m7TXuDtqNWgnAG8GSFcAVYRb112HaHLXoC_XYPzaTdBxL0PWOEL8G7_yZmf1Ggd4LNd7GdnFr_X6EWvhghvHs5D9OPT5vv6S3H-9fN2fXpemLqhqdC9EVpp1XHd0ZZVQlBtTEmgh9Lk-epatR2QrtSlMaTT0HNjtOKaa0K7vmWH6OO97zTrnNSAS0ENcgp2VGEnvbLy3xdnr-WVv5VVzdu2Etngw4NB8D9niEmONhoY8i7Az1FSUZa0IXnrT0AprZngNcvo-__QGz8HlzexUKRtsuMS_uieMsHHGKB_zE2JXGohcy3kUousqoy_-3vWR_hPD9hvOfi5UA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1710988009</pqid></control><display><type>article</type><title>Altered Corticostriatal Connectivity and Exploration/Exploitation Imbalance Emerge as Intermediate Phenotypes for a Neonatal Dopamine Dysfunction</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Braz, Barbara Y ; Galiñanes, Gregorio L ; Taravini, Irene R E ; Belforte, Juan E ; Murer, M Gustavo</creator><creatorcontrib>Braz, Barbara Y ; Galiñanes, Gregorio L ; Taravini, Irene R E ; Belforte, Juan E ; Murer, M Gustavo</creatorcontrib><description>Findings showing that neonatal lesions of the forebrain dopaminergic system in rodents lead to juvenile locomotor hyperactivity and learning deficits have been taken as evidence of face validity for the attention deficit hyperactivity disorder. However, the core cognitive and physiological intermediate phenotypes underlying this rodent syndrome remain unknown. Here we show that early postnatal dopaminergic lesions cause long-lasting deficits in exploitation of shelter, social and nutritional resources, and an imbalanced exploratory behavior, where nondirected local exploration is exacerbated, whereas sophisticated search behaviors involving sequences of goal directed actions are degraded. Importantly, some behavioral deficits do not diminish after adolescence but instead worsen or mutate, particularly those related to the exploration of wide and spatially complex environments. The in vivo electrophysiological recordings and morphological reconstructions of striatal medium spiny neurons reveal corticostriatal alterations associated to the behavioral phenotype. More specifically, an attenuation of corticostriatal functional connectivity, affecting medial prefrontal inputs more markedly than cingulate and motor inputs, is accompanied by a contraction of the dendritic arbor of striatal projection neurons in this animal model. Thus, dopaminergic neurons are essential during postnatal development for the functional and structural maturation of corticostriatal connections. From a bottom-up viewpoint, our findings suggest that neuropsychiatric conditions presumably linked to developmental alterations of the dopaminergic system should be evaluated for deficits in foraging decision making, alterations in the recruitment of corticostriatal circuits during foraging tasks, and structural disorganization of the frontostriatal connections.</description><identifier>ISSN: 0893-133X</identifier><identifier>EISSN: 1740-634X</identifier><identifier>DOI: 10.1038/npp.2015.104</identifier><identifier>PMID: 25872916</identifier><identifier>CODEN: NEROEW</identifier><language>eng</language><publisher>England: Nature Publishing Group</publisher><subject>Animals ; Animals, Newborn ; Attention deficit hyperactivity disorder ; Biophysics ; Cerebral Cortex - growth &amp; development ; Cerebral Cortex - pathology ; Cerebral Cortex - physiopathology ; Child development ; Corpus Striatum - growth &amp; development ; Corpus Striatum - pathology ; Corpus Striatum - physiopathology ; Dendrites - pathology ; Dendrites - physiology ; Disease Models, Animal ; Dopamine ; Dopamine - metabolism ; Electrodes, Implanted ; Exploitation ; Exploratory Behavior - physiology ; Foraging behavior ; Hyperactivity ; Immunohistochemistry ; Mice ; Morphology ; Motor Activity - physiology ; Neural Pathways - growth &amp; development ; Neural Pathways - pathology ; Neural Pathways - physiopathology ; Neurons ; Neurosciences ; Original ; Oxidopamine ; Phenotype ; Physiology ; Social Behavior ; Spatial Behavior - physiology</subject><ispartof>Neuropsychopharmacology (New York, N.Y.), 2015-10, Vol.40 (11), p.2576-2587</ispartof><rights>Copyright Nature Publishing Group Oct 2015</rights><rights>Copyright © 2015 American College of Neuropsychopharmacology 2015 American College of Neuropsychopharmacology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c581t-bfc7babad6bd1934771bcc20efe2c25855a9de0d2b2cc0dbef6ccba6b6b01df93</citedby><cites>FETCH-LOGICAL-c581t-bfc7babad6bd1934771bcc20efe2c25855a9de0d2b2cc0dbef6ccba6b6b01df93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4569947/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4569947/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25872916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Braz, Barbara Y</creatorcontrib><creatorcontrib>Galiñanes, Gregorio L</creatorcontrib><creatorcontrib>Taravini, Irene R E</creatorcontrib><creatorcontrib>Belforte, Juan E</creatorcontrib><creatorcontrib>Murer, M Gustavo</creatorcontrib><title>Altered Corticostriatal Connectivity and Exploration/Exploitation Imbalance Emerge as Intermediate Phenotypes for a Neonatal Dopamine Dysfunction</title><title>Neuropsychopharmacology (New York, N.Y.)</title><addtitle>Neuropsychopharmacology</addtitle><description>Findings showing that neonatal lesions of the forebrain dopaminergic system in rodents lead to juvenile locomotor hyperactivity and learning deficits have been taken as evidence of face validity for the attention deficit hyperactivity disorder. However, the core cognitive and physiological intermediate phenotypes underlying this rodent syndrome remain unknown. Here we show that early postnatal dopaminergic lesions cause long-lasting deficits in exploitation of shelter, social and nutritional resources, and an imbalanced exploratory behavior, where nondirected local exploration is exacerbated, whereas sophisticated search behaviors involving sequences of goal directed actions are degraded. Importantly, some behavioral deficits do not diminish after adolescence but instead worsen or mutate, particularly those related to the exploration of wide and spatially complex environments. The in vivo electrophysiological recordings and morphological reconstructions of striatal medium spiny neurons reveal corticostriatal alterations associated to the behavioral phenotype. More specifically, an attenuation of corticostriatal functional connectivity, affecting medial prefrontal inputs more markedly than cingulate and motor inputs, is accompanied by a contraction of the dendritic arbor of striatal projection neurons in this animal model. Thus, dopaminergic neurons are essential during postnatal development for the functional and structural maturation of corticostriatal connections. From a bottom-up viewpoint, our findings suggest that neuropsychiatric conditions presumably linked to developmental alterations of the dopaminergic system should be evaluated for deficits in foraging decision making, alterations in the recruitment of corticostriatal circuits during foraging tasks, and structural disorganization of the frontostriatal connections.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Attention deficit hyperactivity disorder</subject><subject>Biophysics</subject><subject>Cerebral Cortex - growth &amp; development</subject><subject>Cerebral Cortex - pathology</subject><subject>Cerebral Cortex - physiopathology</subject><subject>Child development</subject><subject>Corpus Striatum - growth &amp; development</subject><subject>Corpus Striatum - pathology</subject><subject>Corpus Striatum - physiopathology</subject><subject>Dendrites - pathology</subject><subject>Dendrites - physiology</subject><subject>Disease Models, Animal</subject><subject>Dopamine</subject><subject>Dopamine - metabolism</subject><subject>Electrodes, Implanted</subject><subject>Exploitation</subject><subject>Exploratory Behavior - physiology</subject><subject>Foraging behavior</subject><subject>Hyperactivity</subject><subject>Immunohistochemistry</subject><subject>Mice</subject><subject>Morphology</subject><subject>Motor Activity - physiology</subject><subject>Neural Pathways - growth &amp; development</subject><subject>Neural Pathways - pathology</subject><subject>Neural Pathways - physiopathology</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Original</subject><subject>Oxidopamine</subject><subject>Phenotype</subject><subject>Physiology</subject><subject>Social Behavior</subject><subject>Spatial Behavior - physiology</subject><issn>0893-133X</issn><issn>1740-634X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkkFv1DAUhC0EokvhxhlZ4sKhae04sZMLUrVdYKWqcACpN8t2XlpXiR1sp2J_Rv8xzrZUwKkne-RP43lPg9BbSo4pYc2Jm6bjktA6q-oZWlFRkYKz6vI5WpGmZQVl7PIAvYrxhmRK8OYlOijrRpQt5St0dzokCNDhtQ_JGh9TsCqpIWvnwCR7a9MOK9fhza9p8EEl693J_m7TXuDtqNWgnAG8GSFcAVYRb112HaHLXoC_XYPzaTdBxL0PWOEL8G7_yZmf1Ggd4LNd7GdnFr_X6EWvhghvHs5D9OPT5vv6S3H-9fN2fXpemLqhqdC9EVpp1XHd0ZZVQlBtTEmgh9Lk-epatR2QrtSlMaTT0HNjtOKaa0K7vmWH6OO97zTrnNSAS0ENcgp2VGEnvbLy3xdnr-WVv5VVzdu2Etngw4NB8D9niEmONhoY8i7Az1FSUZa0IXnrT0AprZngNcvo-__QGz8HlzexUKRtsuMS_uieMsHHGKB_zE2JXGohcy3kUousqoy_-3vWR_hPD9hvOfi5UA</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Braz, Barbara Y</creator><creator>Galiñanes, Gregorio L</creator><creator>Taravini, Irene R E</creator><creator>Belforte, Juan E</creator><creator>Murer, M Gustavo</creator><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151001</creationdate><title>Altered Corticostriatal Connectivity and Exploration/Exploitation Imbalance Emerge as Intermediate Phenotypes for a Neonatal Dopamine Dysfunction</title><author>Braz, Barbara Y ; Galiñanes, Gregorio L ; Taravini, Irene R E ; Belforte, Juan E ; Murer, M Gustavo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c581t-bfc7babad6bd1934771bcc20efe2c25855a9de0d2b2cc0dbef6ccba6b6b01df93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Attention deficit hyperactivity disorder</topic><topic>Biophysics</topic><topic>Cerebral Cortex - growth &amp; development</topic><topic>Cerebral Cortex - pathology</topic><topic>Cerebral Cortex - physiopathology</topic><topic>Child development</topic><topic>Corpus Striatum - growth &amp; development</topic><topic>Corpus Striatum - pathology</topic><topic>Corpus Striatum - physiopathology</topic><topic>Dendrites - pathology</topic><topic>Dendrites - physiology</topic><topic>Disease Models, Animal</topic><topic>Dopamine</topic><topic>Dopamine - metabolism</topic><topic>Electrodes, Implanted</topic><topic>Exploitation</topic><topic>Exploratory Behavior - physiology</topic><topic>Foraging behavior</topic><topic>Hyperactivity</topic><topic>Immunohistochemistry</topic><topic>Mice</topic><topic>Morphology</topic><topic>Motor Activity - physiology</topic><topic>Neural Pathways - growth &amp; development</topic><topic>Neural Pathways - pathology</topic><topic>Neural Pathways - physiopathology</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Original</topic><topic>Oxidopamine</topic><topic>Phenotype</topic><topic>Physiology</topic><topic>Social Behavior</topic><topic>Spatial Behavior - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braz, Barbara Y</creatorcontrib><creatorcontrib>Galiñanes, Gregorio L</creatorcontrib><creatorcontrib>Taravini, Irene R E</creatorcontrib><creatorcontrib>Belforte, Juan E</creatorcontrib><creatorcontrib>Murer, M Gustavo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuropsychopharmacology (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braz, Barbara Y</au><au>Galiñanes, Gregorio L</au><au>Taravini, Irene R E</au><au>Belforte, Juan E</au><au>Murer, M Gustavo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Altered Corticostriatal Connectivity and Exploration/Exploitation Imbalance Emerge as Intermediate Phenotypes for a Neonatal Dopamine Dysfunction</atitle><jtitle>Neuropsychopharmacology (New York, N.Y.)</jtitle><addtitle>Neuropsychopharmacology</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>40</volume><issue>11</issue><spage>2576</spage><epage>2587</epage><pages>2576-2587</pages><issn>0893-133X</issn><eissn>1740-634X</eissn><coden>NEROEW</coden><abstract>Findings showing that neonatal lesions of the forebrain dopaminergic system in rodents lead to juvenile locomotor hyperactivity and learning deficits have been taken as evidence of face validity for the attention deficit hyperactivity disorder. However, the core cognitive and physiological intermediate phenotypes underlying this rodent syndrome remain unknown. Here we show that early postnatal dopaminergic lesions cause long-lasting deficits in exploitation of shelter, social and nutritional resources, and an imbalanced exploratory behavior, where nondirected local exploration is exacerbated, whereas sophisticated search behaviors involving sequences of goal directed actions are degraded. Importantly, some behavioral deficits do not diminish after adolescence but instead worsen or mutate, particularly those related to the exploration of wide and spatially complex environments. The in vivo electrophysiological recordings and morphological reconstructions of striatal medium spiny neurons reveal corticostriatal alterations associated to the behavioral phenotype. More specifically, an attenuation of corticostriatal functional connectivity, affecting medial prefrontal inputs more markedly than cingulate and motor inputs, is accompanied by a contraction of the dendritic arbor of striatal projection neurons in this animal model. Thus, dopaminergic neurons are essential during postnatal development for the functional and structural maturation of corticostriatal connections. From a bottom-up viewpoint, our findings suggest that neuropsychiatric conditions presumably linked to developmental alterations of the dopaminergic system should be evaluated for deficits in foraging decision making, alterations in the recruitment of corticostriatal circuits during foraging tasks, and structural disorganization of the frontostriatal connections.</abstract><cop>England</cop><pub>Nature Publishing Group</pub><pmid>25872916</pmid><doi>10.1038/npp.2015.104</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-133X
ispartof Neuropsychopharmacology (New York, N.Y.), 2015-10, Vol.40 (11), p.2576-2587
issn 0893-133X
1740-634X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4569947
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Animals, Newborn
Attention deficit hyperactivity disorder
Biophysics
Cerebral Cortex - growth & development
Cerebral Cortex - pathology
Cerebral Cortex - physiopathology
Child development
Corpus Striatum - growth & development
Corpus Striatum - pathology
Corpus Striatum - physiopathology
Dendrites - pathology
Dendrites - physiology
Disease Models, Animal
Dopamine
Dopamine - metabolism
Electrodes, Implanted
Exploitation
Exploratory Behavior - physiology
Foraging behavior
Hyperactivity
Immunohistochemistry
Mice
Morphology
Motor Activity - physiology
Neural Pathways - growth & development
Neural Pathways - pathology
Neural Pathways - physiopathology
Neurons
Neurosciences
Original
Oxidopamine
Phenotype
Physiology
Social Behavior
Spatial Behavior - physiology
title Altered Corticostriatal Connectivity and Exploration/Exploitation Imbalance Emerge as Intermediate Phenotypes for a Neonatal Dopamine Dysfunction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A09%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Altered%20Corticostriatal%20Connectivity%20and%20Exploration/Exploitation%20Imbalance%20Emerge%20as%20Intermediate%20Phenotypes%20for%20a%20Neonatal%20Dopamine%20Dysfunction&rft.jtitle=Neuropsychopharmacology%20(New%20York,%20N.Y.)&rft.au=Braz,%20Barbara%20Y&rft.date=2015-10-01&rft.volume=40&rft.issue=11&rft.spage=2576&rft.epage=2587&rft.pages=2576-2587&rft.issn=0893-133X&rft.eissn=1740-634X&rft.coden=NEROEW&rft_id=info:doi/10.1038/npp.2015.104&rft_dat=%3Cproquest_pubme%3E3803743561%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1710988009&rft_id=info:pmid/25872916&rfr_iscdi=true