Gas-Phase Amidation of Carboxylic Acids with Woodward’s Reagent K Ions
Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward’s reagent K ( wrk ) in both positive and negative mode. Woodward’s reagent K, N -ethyl-3-phenylisoxazolium-3′-sulfonate, is a commonly used reagent that activates carboxylates to...
Gespeichert in:
Veröffentlicht in: | Journal of the American Society for Mass Spectrometry 2015-10, Vol.26 (10), p.1686-1694 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1694 |
---|---|
container_issue | 10 |
container_start_page | 1686 |
container_title | Journal of the American Society for Mass Spectrometry |
container_volume | 26 |
creator | Peng, Zhou Pilo, Alice L. Luongo, Carl A. McLuckey, Scott A. |
description | Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward’s reagent K (
wrk
) in both positive and negative mode. Woodward’s reagent K,
N
-ethyl-3-phenylisoxazolium-3′-sulfonate, is a commonly used reagent that activates carboxylates to form amide bonds with amines in solution. Here, we demonstrate that the analogous gas-phase chemistry occurs upon reaction of the
wrk
ions and doubly protonated (or doubly deprotonated) peptide ions containing the carboxylic acid functionality. The reaction involves the formation of the enol ester intermediate in the electrostatic complex. Upon collisional activation, the ethyl amine on the reagent is transferred to the activated carbonyl carbon on the peptide, resulting in the formation of an ethyl amide (addition of 27 Da to the peptide) with loss of a neutral ketene derivative. Further collision-induced dissociation (CID) of the products and comparison with solution-phase amidation product confirms the structure of the ethyl amide.
Graphical Abstract
ᅟ |
doi_str_mv | 10.1007/s13361-015-1209-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4567925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1950865751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-6a65b74c47ce3baaf0381f8be40c59d97d7ba9891f52870b206e4fd26c6914c03</originalsourceid><addsrcrecordid>eNp1kc9qFTEUhwdRbK0-gBsJuHETe07-TjbC5aJtsWARxWXIZDL3psyd1GSutTtfw9fzSUy5bakFV0k43_nlHL6meYnwFgH0YUHOFVJASZGBoe2jZh9bbSgi44_rHYSgwEHuNc9KOQdADUY_bfaYQsYk4_vN8ZEr9GztSiCLTezdHNNE0kCWLnfp59UYPVn42BdyGec1-ZZSf-ly_-fX70I-B7cK00w-kpM0lefNk8GNJby4OQ-arx_ef1ke09NPRyfLxSn1QsNMlVOy06I-fOCdcwPwFoe2CwK8NL3Rve6caQ0OkrUaOgYqiKFnyiuDwgM_aN7tci-23Sb0vk6Q3Wgvcty4fGWTi_bfyhTXdpV-WCGVNkzWgDc3ATl934Yy200sPoyjm0LaFosaUXJttKjo6wfoedrmqa5n0UholdQSK4U7yudUSg7D3TAI9tqT3Xmy1ZO99mTb2vPq_hZ3HbdiKsB2QKmlaRXyva__m_oXWoqdog</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1950865751</pqid></control><display><type>article</type><title>Gas-Phase Amidation of Carboxylic Acids with Woodward’s Reagent K Ions</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Peng, Zhou ; Pilo, Alice L. ; Luongo, Carl A. ; McLuckey, Scott A.</creator><creatorcontrib>Peng, Zhou ; Pilo, Alice L. ; Luongo, Carl A. ; McLuckey, Scott A.</creatorcontrib><description>Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward’s reagent K (
wrk
) in both positive and negative mode. Woodward’s reagent K,
N
-ethyl-3-phenylisoxazolium-3′-sulfonate, is a commonly used reagent that activates carboxylates to form amide bonds with amines in solution. Here, we demonstrate that the analogous gas-phase chemistry occurs upon reaction of the
wrk
ions and doubly protonated (or doubly deprotonated) peptide ions containing the carboxylic acid functionality. The reaction involves the formation of the enol ester intermediate in the electrostatic complex. Upon collisional activation, the ethyl amine on the reagent is transferred to the activated carbonyl carbon on the peptide, resulting in the formation of an ethyl amide (addition of 27 Da to the peptide) with loss of a neutral ketene derivative. Further collision-induced dissociation (CID) of the products and comparison with solution-phase amidation product confirms the structure of the ethyl amide.
Graphical Abstract
ᅟ</description><identifier>ISSN: 1044-0305</identifier><identifier>ISSN: 1879-1123</identifier><identifier>EISSN: 1879-1123</identifier><identifier>DOI: 10.1007/s13361-015-1209-8</identifier><identifier>PMID: 26122523</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activated carbon ; Amides - chemistry ; Amines ; Analytical Chemistry ; Bioinformatics ; Biotechnology ; Carbonyls ; Carboxylates ; Carboxylic acids ; Carboxylic Acids - chemistry ; Chemical bonds ; Chemistry ; Chemistry and Materials Science ; Gases - chemistry ; Ions ; Ions - chemistry ; Isoxazoles - chemistry ; Mass spectrometry ; Organic Chemistry ; Peptide Fragments - analysis ; Peptide Fragments - chemistry ; Peptides ; Proteomics ; Research Article</subject><ispartof>Journal of the American Society for Mass Spectrometry, 2015-10, Vol.26 (10), p.1686-1694</ispartof><rights>American Society for Mass Spectrometry 2015</rights><rights>Journal of The American Society for Mass Spectrometry is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-6a65b74c47ce3baaf0381f8be40c59d97d7ba9891f52870b206e4fd26c6914c03</citedby><cites>FETCH-LOGICAL-c470t-6a65b74c47ce3baaf0381f8be40c59d97d7ba9891f52870b206e4fd26c6914c03</cites><orcidid>0000-0002-1648-5570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13361-015-1209-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13361-015-1209-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26122523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Zhou</creatorcontrib><creatorcontrib>Pilo, Alice L.</creatorcontrib><creatorcontrib>Luongo, Carl A.</creatorcontrib><creatorcontrib>McLuckey, Scott A.</creatorcontrib><title>Gas-Phase Amidation of Carboxylic Acids with Woodward’s Reagent K Ions</title><title>Journal of the American Society for Mass Spectrometry</title><addtitle>J. Am. Soc. Mass Spectrom</addtitle><addtitle>J Am Soc Mass Spectrom</addtitle><description>Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward’s reagent K (
wrk
) in both positive and negative mode. Woodward’s reagent K,
N
-ethyl-3-phenylisoxazolium-3′-sulfonate, is a commonly used reagent that activates carboxylates to form amide bonds with amines in solution. Here, we demonstrate that the analogous gas-phase chemistry occurs upon reaction of the
wrk
ions and doubly protonated (or doubly deprotonated) peptide ions containing the carboxylic acid functionality. The reaction involves the formation of the enol ester intermediate in the electrostatic complex. Upon collisional activation, the ethyl amine on the reagent is transferred to the activated carbonyl carbon on the peptide, resulting in the formation of an ethyl amide (addition of 27 Da to the peptide) with loss of a neutral ketene derivative. Further collision-induced dissociation (CID) of the products and comparison with solution-phase amidation product confirms the structure of the ethyl amide.
Graphical Abstract
ᅟ</description><subject>Activated carbon</subject><subject>Amides - chemistry</subject><subject>Amines</subject><subject>Analytical Chemistry</subject><subject>Bioinformatics</subject><subject>Biotechnology</subject><subject>Carbonyls</subject><subject>Carboxylates</subject><subject>Carboxylic acids</subject><subject>Carboxylic Acids - chemistry</subject><subject>Chemical bonds</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Gases - chemistry</subject><subject>Ions</subject><subject>Ions - chemistry</subject><subject>Isoxazoles - chemistry</subject><subject>Mass spectrometry</subject><subject>Organic Chemistry</subject><subject>Peptide Fragments - analysis</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptides</subject><subject>Proteomics</subject><subject>Research Article</subject><issn>1044-0305</issn><issn>1879-1123</issn><issn>1879-1123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kc9qFTEUhwdRbK0-gBsJuHETe07-TjbC5aJtsWARxWXIZDL3psyd1GSutTtfw9fzSUy5bakFV0k43_nlHL6meYnwFgH0YUHOFVJASZGBoe2jZh9bbSgi44_rHYSgwEHuNc9KOQdADUY_bfaYQsYk4_vN8ZEr9GztSiCLTezdHNNE0kCWLnfp59UYPVn42BdyGec1-ZZSf-ly_-fX70I-B7cK00w-kpM0lefNk8GNJby4OQ-arx_ef1ke09NPRyfLxSn1QsNMlVOy06I-fOCdcwPwFoe2CwK8NL3Rve6caQ0OkrUaOgYqiKFnyiuDwgM_aN7tci-23Sb0vk6Q3Wgvcty4fGWTi_bfyhTXdpV-WCGVNkzWgDc3ATl934Yy200sPoyjm0LaFosaUXJttKjo6wfoedrmqa5n0UholdQSK4U7yudUSg7D3TAI9tqT3Xmy1ZO99mTb2vPq_hZ3HbdiKsB2QKmlaRXyva__m_oXWoqdog</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Peng, Zhou</creator><creator>Pilo, Alice L.</creator><creator>Luongo, Carl A.</creator><creator>McLuckey, Scott A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1648-5570</orcidid></search><sort><creationdate>20151001</creationdate><title>Gas-Phase Amidation of Carboxylic Acids with Woodward’s Reagent K Ions</title><author>Peng, Zhou ; Pilo, Alice L. ; Luongo, Carl A. ; McLuckey, Scott A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-6a65b74c47ce3baaf0381f8be40c59d97d7ba9891f52870b206e4fd26c6914c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Activated carbon</topic><topic>Amides - chemistry</topic><topic>Amines</topic><topic>Analytical Chemistry</topic><topic>Bioinformatics</topic><topic>Biotechnology</topic><topic>Carbonyls</topic><topic>Carboxylates</topic><topic>Carboxylic acids</topic><topic>Carboxylic Acids - chemistry</topic><topic>Chemical bonds</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Gases - chemistry</topic><topic>Ions</topic><topic>Ions - chemistry</topic><topic>Isoxazoles - chemistry</topic><topic>Mass spectrometry</topic><topic>Organic Chemistry</topic><topic>Peptide Fragments - analysis</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptides</topic><topic>Proteomics</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Zhou</creatorcontrib><creatorcontrib>Pilo, Alice L.</creatorcontrib><creatorcontrib>Luongo, Carl A.</creatorcontrib><creatorcontrib>McLuckey, Scott A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Society for Mass Spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Zhou</au><au>Pilo, Alice L.</au><au>Luongo, Carl A.</au><au>McLuckey, Scott A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas-Phase Amidation of Carboxylic Acids with Woodward’s Reagent K Ions</atitle><jtitle>Journal of the American Society for Mass Spectrometry</jtitle><stitle>J. Am. Soc. Mass Spectrom</stitle><addtitle>J Am Soc Mass Spectrom</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>26</volume><issue>10</issue><spage>1686</spage><epage>1694</epage><pages>1686-1694</pages><issn>1044-0305</issn><issn>1879-1123</issn><eissn>1879-1123</eissn><abstract>Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward’s reagent K (
wrk
) in both positive and negative mode. Woodward’s reagent K,
N
-ethyl-3-phenylisoxazolium-3′-sulfonate, is a commonly used reagent that activates carboxylates to form amide bonds with amines in solution. Here, we demonstrate that the analogous gas-phase chemistry occurs upon reaction of the
wrk
ions and doubly protonated (or doubly deprotonated) peptide ions containing the carboxylic acid functionality. The reaction involves the formation of the enol ester intermediate in the electrostatic complex. Upon collisional activation, the ethyl amine on the reagent is transferred to the activated carbonyl carbon on the peptide, resulting in the formation of an ethyl amide (addition of 27 Da to the peptide) with loss of a neutral ketene derivative. Further collision-induced dissociation (CID) of the products and comparison with solution-phase amidation product confirms the structure of the ethyl amide.
Graphical Abstract
ᅟ</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26122523</pmid><doi>10.1007/s13361-015-1209-8</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1648-5570</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1044-0305 |
ispartof | Journal of the American Society for Mass Spectrometry, 2015-10, Vol.26 (10), p.1686-1694 |
issn | 1044-0305 1879-1123 1879-1123 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4567925 |
source | MEDLINE; SpringerNature Journals |
subjects | Activated carbon Amides - chemistry Amines Analytical Chemistry Bioinformatics Biotechnology Carbonyls Carboxylates Carboxylic acids Carboxylic Acids - chemistry Chemical bonds Chemistry Chemistry and Materials Science Gases - chemistry Ions Ions - chemistry Isoxazoles - chemistry Mass spectrometry Organic Chemistry Peptide Fragments - analysis Peptide Fragments - chemistry Peptides Proteomics Research Article |
title | Gas-Phase Amidation of Carboxylic Acids with Woodward’s Reagent K Ions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas-Phase%20Amidation%20of%20Carboxylic%20Acids%20with%20Woodward%E2%80%99s%20Reagent%20K%20Ions&rft.jtitle=Journal%20of%20the%20American%20Society%20for%20Mass%20Spectrometry&rft.au=Peng,%20Zhou&rft.date=2015-10-01&rft.volume=26&rft.issue=10&rft.spage=1686&rft.epage=1694&rft.pages=1686-1694&rft.issn=1044-0305&rft.eissn=1879-1123&rft_id=info:doi/10.1007/s13361-015-1209-8&rft_dat=%3Cproquest_pubme%3E1950865751%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1950865751&rft_id=info:pmid/26122523&rfr_iscdi=true |