Hyperinsulinemia shifted energy supply from glucose to ketone bodies in early nonalcoholic steatohepatitis from high-fat high-sucrose diet induced Bama minipigs
The minipig can serve as a good pharmacological model for human subjects. However, the long-term pathogenesis of high-calorie diet-induced metabolic syndromes, including NASH, has not been well described in minipigs. We examined the development of metabolic syndromes in Bama minipigs that were fed a...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2015-09, Vol.5 (1), p.13980-13980, Article 13980 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13980 |
---|---|
container_issue | 1 |
container_start_page | 13980 |
container_title | Scientific reports |
container_volume | 5 |
creator | Yang, Shu-lin Xia, Ji-han Zhang, Yuan-yuan Fan, Jian-gao Wang, Hua Yuan, Jing Zhao, Zhan-zhao Pan, Qin Mu, Yu-lian Xin, Lei-lei Chen, Yao-xing Li, Kui |
description | The minipig can serve as a good pharmacological model for human subjects. However, the long-term pathogenesis of high-calorie diet-induced metabolic syndromes, including NASH, has not been well described in minipigs. We examined the development of metabolic syndromes in Bama minipigs that were fed a high-fat, high-sucrose diet (HFHSD) for 23 months, by using histology and serum biochemistry and by profiling the gene expression patterns in the livers of HFHSD pigs compared to controls. The pathology findings revealed microvesicular steatosis, iron overload, arachidonic acid synthesis, lipid peroxidation, reduced antioxidant capacity, increased cellular damage and inflammation in the liver. RNA-seq analysis revealed that 164 genes were differentially expressed between the livers of the HFHSD and control groups. The pathogenesis of early-stage NASH was characterized by hyperinsulinemia and by
de novo
synthesis of fatty acids and nascent triglycerides, which were deposited as lipid droplets in hepatocytes. Hyperinsulinemia shifted the energy supply from glucose to ketone bodies and the high ketone body concentration induced the overexpression of cytochrome P450 2E1 (CYP2E1). The iron overload, CYP2E1 and alcohol dehydrogenase 4 overexpression promoted reactive oxygen species (ROS) production, which resulted in arachidonic and linoleic acid peroxidation and, in turn, led to malondialdehyde production and a cellular response to ROS-mediated DNA damage. |
doi_str_mv | 10.1038/srep13980 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4566077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899733849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-dd70cb100428109bce2ceb17c6b58907a73c0ce512252fc68c0a0d65a50461c53</originalsourceid><addsrcrecordid>eNplkdtqFTEUhoMottRe-AIS8EYL0-YwmcONoKXaQqE3eh0ymTUzqTPJmIOw38ZHNZupm63mJoH15VuL9SP0mpJLSnhzFTyslLcNeYZOGSlFwThjz4_eJ-g8hEeSj2BtSduX6IRVXDS8qk_Rr9vdCt7YkGZjYTEKh8kMEXoMFvy4wyGt67zDg3cLHuekXQAcHf4O0VnAnesNBGwsBuUzZp1Vs3aTm43GIYKKboJVRRNN2ByTGadiUHF7hKT93pgtMVv6pHPnT2pReDHWrGYMr9CLQc0Bzp_uM_Tt883X69vi_uHL3fXH-0ILUsai72uiO0pIyRpK2k4D09DRWledaFpSq5prokFQxgQbdNVookhfCZV_V1QLfoY-bN41dQv0Gmz0aparN4vyO-mUkX9XrJnk6H7KUlQVqessePck8O5HghDlYoKGeVYWXAqS1pQKXpWMZvTtP-ijSz5vLlNN29acN2WbqfcbtV9RTnk4DEOJ3EcvD9Fn9s3x9AfyT9AZuNiAkEt2BH_U8j_bbz6svJE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899733849</pqid></control><display><type>article</type><title>Hyperinsulinemia shifted energy supply from glucose to ketone bodies in early nonalcoholic steatohepatitis from high-fat high-sucrose diet induced Bama minipigs</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Shu-lin ; Xia, Ji-han ; Zhang, Yuan-yuan ; Fan, Jian-gao ; Wang, Hua ; Yuan, Jing ; Zhao, Zhan-zhao ; Pan, Qin ; Mu, Yu-lian ; Xin, Lei-lei ; Chen, Yao-xing ; Li, Kui</creator><creatorcontrib>Yang, Shu-lin ; Xia, Ji-han ; Zhang, Yuan-yuan ; Fan, Jian-gao ; Wang, Hua ; Yuan, Jing ; Zhao, Zhan-zhao ; Pan, Qin ; Mu, Yu-lian ; Xin, Lei-lei ; Chen, Yao-xing ; Li, Kui</creatorcontrib><description>The minipig can serve as a good pharmacological model for human subjects. However, the long-term pathogenesis of high-calorie diet-induced metabolic syndromes, including NASH, has not been well described in minipigs. We examined the development of metabolic syndromes in Bama minipigs that were fed a high-fat, high-sucrose diet (HFHSD) for 23 months, by using histology and serum biochemistry and by profiling the gene expression patterns in the livers of HFHSD pigs compared to controls. The pathology findings revealed microvesicular steatosis, iron overload, arachidonic acid synthesis, lipid peroxidation, reduced antioxidant capacity, increased cellular damage and inflammation in the liver. RNA-seq analysis revealed that 164 genes were differentially expressed between the livers of the HFHSD and control groups. The pathogenesis of early-stage NASH was characterized by hyperinsulinemia and by
de novo
synthesis of fatty acids and nascent triglycerides, which were deposited as lipid droplets in hepatocytes. Hyperinsulinemia shifted the energy supply from glucose to ketone bodies and the high ketone body concentration induced the overexpression of cytochrome P450 2E1 (CYP2E1). The iron overload, CYP2E1 and alcohol dehydrogenase 4 overexpression promoted reactive oxygen species (ROS) production, which resulted in arachidonic and linoleic acid peroxidation and, in turn, led to malondialdehyde production and a cellular response to ROS-mediated DNA damage.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep13980</identifier><identifier>PMID: 26358367</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/208/1348 ; 692/163/2743/2037 ; 692/699/317 ; Alcohol dehydrogenase ; Animals ; Antioxidants - metabolism ; Arachidonic acid ; Body Weight ; Cholesterol - blood ; Cholesterol - metabolism ; Cytochrome P450 ; Diet ; Diet, High-Fat ; Disease Models, Animal ; DNA Damage ; Energy ; Fatty acids ; Fatty Acids - metabolism ; Fibrosis ; Gene expression ; Gene Expression Profiling ; Glucose - metabolism ; Hepatocytes ; Hepatocytes - metabolism ; Hepatocytes - pathology ; Hepatocytes - ultrastructure ; Histology ; Humanities and Social Sciences ; Hyperinsulinemia ; Hyperinsulinism - complications ; Hyperinsulinism - metabolism ; Hyperplasia ; Insulin Resistance ; Iron ; Islets of Langerhans - metabolism ; Islets of Langerhans - pathology ; Ketone Bodies - metabolism ; Ketones ; Linoleic acid ; Lipid Metabolism ; Lipid Peroxidation ; Liver ; Liver - metabolism ; Liver - pathology ; Malondialdehyde ; Metabolic disorders ; Metabolic syndrome ; multidisciplinary ; Non-alcoholic Fatty Liver Disease - etiology ; Non-alcoholic Fatty Liver Disease - metabolism ; Non-alcoholic Fatty Liver Disease - pathology ; Oxidative Stress ; Pathogenesis ; Peroxidation ; Phenotype ; Reactive oxygen species ; Ribonucleic acid ; RNA ; Science ; Steatosis ; Sucrose ; Swine ; Transcriptome ; Triglycerides ; Triglycerides - blood ; Triglycerides - metabolism</subject><ispartof>Scientific reports, 2015-09, Vol.5 (1), p.13980-13980, Article 13980</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Sep 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-dd70cb100428109bce2ceb17c6b58907a73c0ce512252fc68c0a0d65a50461c53</citedby><cites>FETCH-LOGICAL-c504t-dd70cb100428109bce2ceb17c6b58907a73c0ce512252fc68c0a0d65a50461c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566077/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566077/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26358367$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Shu-lin</creatorcontrib><creatorcontrib>Xia, Ji-han</creatorcontrib><creatorcontrib>Zhang, Yuan-yuan</creatorcontrib><creatorcontrib>Fan, Jian-gao</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Yuan, Jing</creatorcontrib><creatorcontrib>Zhao, Zhan-zhao</creatorcontrib><creatorcontrib>Pan, Qin</creatorcontrib><creatorcontrib>Mu, Yu-lian</creatorcontrib><creatorcontrib>Xin, Lei-lei</creatorcontrib><creatorcontrib>Chen, Yao-xing</creatorcontrib><creatorcontrib>Li, Kui</creatorcontrib><title>Hyperinsulinemia shifted energy supply from glucose to ketone bodies in early nonalcoholic steatohepatitis from high-fat high-sucrose diet induced Bama minipigs</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The minipig can serve as a good pharmacological model for human subjects. However, the long-term pathogenesis of high-calorie diet-induced metabolic syndromes, including NASH, has not been well described in minipigs. We examined the development of metabolic syndromes in Bama minipigs that were fed a high-fat, high-sucrose diet (HFHSD) for 23 months, by using histology and serum biochemistry and by profiling the gene expression patterns in the livers of HFHSD pigs compared to controls. The pathology findings revealed microvesicular steatosis, iron overload, arachidonic acid synthesis, lipid peroxidation, reduced antioxidant capacity, increased cellular damage and inflammation in the liver. RNA-seq analysis revealed that 164 genes were differentially expressed between the livers of the HFHSD and control groups. The pathogenesis of early-stage NASH was characterized by hyperinsulinemia and by
de novo
synthesis of fatty acids and nascent triglycerides, which were deposited as lipid droplets in hepatocytes. Hyperinsulinemia shifted the energy supply from glucose to ketone bodies and the high ketone body concentration induced the overexpression of cytochrome P450 2E1 (CYP2E1). The iron overload, CYP2E1 and alcohol dehydrogenase 4 overexpression promoted reactive oxygen species (ROS) production, which resulted in arachidonic and linoleic acid peroxidation and, in turn, led to malondialdehyde production and a cellular response to ROS-mediated DNA damage.</description><subject>631/208/1348</subject><subject>692/163/2743/2037</subject><subject>692/699/317</subject><subject>Alcohol dehydrogenase</subject><subject>Animals</subject><subject>Antioxidants - metabolism</subject><subject>Arachidonic acid</subject><subject>Body Weight</subject><subject>Cholesterol - blood</subject><subject>Cholesterol - metabolism</subject><subject>Cytochrome P450</subject><subject>Diet</subject><subject>Diet, High-Fat</subject><subject>Disease Models, Animal</subject><subject>DNA Damage</subject><subject>Energy</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Fibrosis</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Glucose - metabolism</subject><subject>Hepatocytes</subject><subject>Hepatocytes - metabolism</subject><subject>Hepatocytes - pathology</subject><subject>Hepatocytes - ultrastructure</subject><subject>Histology</subject><subject>Humanities and Social Sciences</subject><subject>Hyperinsulinemia</subject><subject>Hyperinsulinism - complications</subject><subject>Hyperinsulinism - metabolism</subject><subject>Hyperplasia</subject><subject>Insulin Resistance</subject><subject>Iron</subject><subject>Islets of Langerhans - metabolism</subject><subject>Islets of Langerhans - pathology</subject><subject>Ketone Bodies - metabolism</subject><subject>Ketones</subject><subject>Linoleic acid</subject><subject>Lipid Metabolism</subject><subject>Lipid Peroxidation</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Malondialdehyde</subject><subject>Metabolic disorders</subject><subject>Metabolic syndrome</subject><subject>multidisciplinary</subject><subject>Non-alcoholic Fatty Liver Disease - etiology</subject><subject>Non-alcoholic Fatty Liver Disease - metabolism</subject><subject>Non-alcoholic Fatty Liver Disease - pathology</subject><subject>Oxidative Stress</subject><subject>Pathogenesis</subject><subject>Peroxidation</subject><subject>Phenotype</subject><subject>Reactive oxygen species</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Science</subject><subject>Steatosis</subject><subject>Sucrose</subject><subject>Swine</subject><subject>Transcriptome</subject><subject>Triglycerides</subject><subject>Triglycerides - blood</subject><subject>Triglycerides - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkdtqFTEUhoMottRe-AIS8EYL0-YwmcONoKXaQqE3eh0ymTUzqTPJmIOw38ZHNZupm63mJoH15VuL9SP0mpJLSnhzFTyslLcNeYZOGSlFwThjz4_eJ-g8hEeSj2BtSduX6IRVXDS8qk_Rr9vdCt7YkGZjYTEKh8kMEXoMFvy4wyGt67zDg3cLHuekXQAcHf4O0VnAnesNBGwsBuUzZp1Vs3aTm43GIYKKboJVRRNN2ByTGadiUHF7hKT93pgtMVv6pHPnT2pReDHWrGYMr9CLQc0Bzp_uM_Tt883X69vi_uHL3fXH-0ILUsai72uiO0pIyRpK2k4D09DRWledaFpSq5prokFQxgQbdNVookhfCZV_V1QLfoY-bN41dQv0Gmz0aparN4vyO-mUkX9XrJnk6H7KUlQVqessePck8O5HghDlYoKGeVYWXAqS1pQKXpWMZvTtP-ijSz5vLlNN29acN2WbqfcbtV9RTnk4DEOJ3EcvD9Fn9s3x9AfyT9AZuNiAkEt2BH_U8j_bbz6svJE</recordid><startdate>20150911</startdate><enddate>20150911</enddate><creator>Yang, Shu-lin</creator><creator>Xia, Ji-han</creator><creator>Zhang, Yuan-yuan</creator><creator>Fan, Jian-gao</creator><creator>Wang, Hua</creator><creator>Yuan, Jing</creator><creator>Zhao, Zhan-zhao</creator><creator>Pan, Qin</creator><creator>Mu, Yu-lian</creator><creator>Xin, Lei-lei</creator><creator>Chen, Yao-xing</creator><creator>Li, Kui</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150911</creationdate><title>Hyperinsulinemia shifted energy supply from glucose to ketone bodies in early nonalcoholic steatohepatitis from high-fat high-sucrose diet induced Bama minipigs</title><author>Yang, Shu-lin ; Xia, Ji-han ; Zhang, Yuan-yuan ; Fan, Jian-gao ; Wang, Hua ; Yuan, Jing ; Zhao, Zhan-zhao ; Pan, Qin ; Mu, Yu-lian ; Xin, Lei-lei ; Chen, Yao-xing ; Li, Kui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-dd70cb100428109bce2ceb17c6b58907a73c0ce512252fc68c0a0d65a50461c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>631/208/1348</topic><topic>692/163/2743/2037</topic><topic>692/699/317</topic><topic>Alcohol dehydrogenase</topic><topic>Animals</topic><topic>Antioxidants - metabolism</topic><topic>Arachidonic acid</topic><topic>Body Weight</topic><topic>Cholesterol - blood</topic><topic>Cholesterol - metabolism</topic><topic>Cytochrome P450</topic><topic>Diet</topic><topic>Diet, High-Fat</topic><topic>Disease Models, Animal</topic><topic>DNA Damage</topic><topic>Energy</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Fibrosis</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Glucose - metabolism</topic><topic>Hepatocytes</topic><topic>Hepatocytes - metabolism</topic><topic>Hepatocytes - pathology</topic><topic>Hepatocytes - ultrastructure</topic><topic>Histology</topic><topic>Humanities and Social Sciences</topic><topic>Hyperinsulinemia</topic><topic>Hyperinsulinism - complications</topic><topic>Hyperinsulinism - metabolism</topic><topic>Hyperplasia</topic><topic>Insulin Resistance</topic><topic>Iron</topic><topic>Islets of Langerhans - metabolism</topic><topic>Islets of Langerhans - pathology</topic><topic>Ketone Bodies - metabolism</topic><topic>Ketones</topic><topic>Linoleic acid</topic><topic>Lipid Metabolism</topic><topic>Lipid Peroxidation</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Malondialdehyde</topic><topic>Metabolic disorders</topic><topic>Metabolic syndrome</topic><topic>multidisciplinary</topic><topic>Non-alcoholic Fatty Liver Disease - etiology</topic><topic>Non-alcoholic Fatty Liver Disease - metabolism</topic><topic>Non-alcoholic Fatty Liver Disease - pathology</topic><topic>Oxidative Stress</topic><topic>Pathogenesis</topic><topic>Peroxidation</topic><topic>Phenotype</topic><topic>Reactive oxygen species</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Science</topic><topic>Steatosis</topic><topic>Sucrose</topic><topic>Swine</topic><topic>Transcriptome</topic><topic>Triglycerides</topic><topic>Triglycerides - blood</topic><topic>Triglycerides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Shu-lin</creatorcontrib><creatorcontrib>Xia, Ji-han</creatorcontrib><creatorcontrib>Zhang, Yuan-yuan</creatorcontrib><creatorcontrib>Fan, Jian-gao</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Yuan, Jing</creatorcontrib><creatorcontrib>Zhao, Zhan-zhao</creatorcontrib><creatorcontrib>Pan, Qin</creatorcontrib><creatorcontrib>Mu, Yu-lian</creatorcontrib><creatorcontrib>Xin, Lei-lei</creatorcontrib><creatorcontrib>Chen, Yao-xing</creatorcontrib><creatorcontrib>Li, Kui</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Shu-lin</au><au>Xia, Ji-han</au><au>Zhang, Yuan-yuan</au><au>Fan, Jian-gao</au><au>Wang, Hua</au><au>Yuan, Jing</au><au>Zhao, Zhan-zhao</au><au>Pan, Qin</au><au>Mu, Yu-lian</au><au>Xin, Lei-lei</au><au>Chen, Yao-xing</au><au>Li, Kui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperinsulinemia shifted energy supply from glucose to ketone bodies in early nonalcoholic steatohepatitis from high-fat high-sucrose diet induced Bama minipigs</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-09-11</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>13980</spage><epage>13980</epage><pages>13980-13980</pages><artnum>13980</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The minipig can serve as a good pharmacological model for human subjects. However, the long-term pathogenesis of high-calorie diet-induced metabolic syndromes, including NASH, has not been well described in minipigs. We examined the development of metabolic syndromes in Bama minipigs that were fed a high-fat, high-sucrose diet (HFHSD) for 23 months, by using histology and serum biochemistry and by profiling the gene expression patterns in the livers of HFHSD pigs compared to controls. The pathology findings revealed microvesicular steatosis, iron overload, arachidonic acid synthesis, lipid peroxidation, reduced antioxidant capacity, increased cellular damage and inflammation in the liver. RNA-seq analysis revealed that 164 genes were differentially expressed between the livers of the HFHSD and control groups. The pathogenesis of early-stage NASH was characterized by hyperinsulinemia and by
de novo
synthesis of fatty acids and nascent triglycerides, which were deposited as lipid droplets in hepatocytes. Hyperinsulinemia shifted the energy supply from glucose to ketone bodies and the high ketone body concentration induced the overexpression of cytochrome P450 2E1 (CYP2E1). The iron overload, CYP2E1 and alcohol dehydrogenase 4 overexpression promoted reactive oxygen species (ROS) production, which resulted in arachidonic and linoleic acid peroxidation and, in turn, led to malondialdehyde production and a cellular response to ROS-mediated DNA damage.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26358367</pmid><doi>10.1038/srep13980</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2015-09, Vol.5 (1), p.13980-13980, Article 13980 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4566077 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 631/208/1348 692/163/2743/2037 692/699/317 Alcohol dehydrogenase Animals Antioxidants - metabolism Arachidonic acid Body Weight Cholesterol - blood Cholesterol - metabolism Cytochrome P450 Diet Diet, High-Fat Disease Models, Animal DNA Damage Energy Fatty acids Fatty Acids - metabolism Fibrosis Gene expression Gene Expression Profiling Glucose - metabolism Hepatocytes Hepatocytes - metabolism Hepatocytes - pathology Hepatocytes - ultrastructure Histology Humanities and Social Sciences Hyperinsulinemia Hyperinsulinism - complications Hyperinsulinism - metabolism Hyperplasia Insulin Resistance Iron Islets of Langerhans - metabolism Islets of Langerhans - pathology Ketone Bodies - metabolism Ketones Linoleic acid Lipid Metabolism Lipid Peroxidation Liver Liver - metabolism Liver - pathology Malondialdehyde Metabolic disorders Metabolic syndrome multidisciplinary Non-alcoholic Fatty Liver Disease - etiology Non-alcoholic Fatty Liver Disease - metabolism Non-alcoholic Fatty Liver Disease - pathology Oxidative Stress Pathogenesis Peroxidation Phenotype Reactive oxygen species Ribonucleic acid RNA Science Steatosis Sucrose Swine Transcriptome Triglycerides Triglycerides - blood Triglycerides - metabolism |
title | Hyperinsulinemia shifted energy supply from glucose to ketone bodies in early nonalcoholic steatohepatitis from high-fat high-sucrose diet induced Bama minipigs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A49%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperinsulinemia%20shifted%20energy%20supply%20from%20glucose%20to%20ketone%20bodies%20in%20early%20nonalcoholic%20steatohepatitis%20from%20high-fat%20high-sucrose%20diet%20induced%20Bama%20minipigs&rft.jtitle=Scientific%20reports&rft.au=Yang,%20Shu-lin&rft.date=2015-09-11&rft.volume=5&rft.issue=1&rft.spage=13980&rft.epage=13980&rft.pages=13980-13980&rft.artnum=13980&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep13980&rft_dat=%3Cproquest_pubme%3E1899733849%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899733849&rft_id=info:pmid/26358367&rfr_iscdi=true |