Hyperinsulinemia shifted energy supply from glucose to ketone bodies in early nonalcoholic steatohepatitis from high-fat high-sucrose diet induced Bama minipigs

The minipig can serve as a good pharmacological model for human subjects. However, the long-term pathogenesis of high-calorie diet-induced metabolic syndromes, including NASH, has not been well described in minipigs. We examined the development of metabolic syndromes in Bama minipigs that were fed a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2015-09, Vol.5 (1), p.13980-13980, Article 13980
Hauptverfasser: Yang, Shu-lin, Xia, Ji-han, Zhang, Yuan-yuan, Fan, Jian-gao, Wang, Hua, Yuan, Jing, Zhao, Zhan-zhao, Pan, Qin, Mu, Yu-lian, Xin, Lei-lei, Chen, Yao-xing, Li, Kui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13980
container_issue 1
container_start_page 13980
container_title Scientific reports
container_volume 5
creator Yang, Shu-lin
Xia, Ji-han
Zhang, Yuan-yuan
Fan, Jian-gao
Wang, Hua
Yuan, Jing
Zhao, Zhan-zhao
Pan, Qin
Mu, Yu-lian
Xin, Lei-lei
Chen, Yao-xing
Li, Kui
description The minipig can serve as a good pharmacological model for human subjects. However, the long-term pathogenesis of high-calorie diet-induced metabolic syndromes, including NASH, has not been well described in minipigs. We examined the development of metabolic syndromes in Bama minipigs that were fed a high-fat, high-sucrose diet (HFHSD) for 23 months, by using histology and serum biochemistry and by profiling the gene expression patterns in the livers of HFHSD pigs compared to controls. The pathology findings revealed microvesicular steatosis, iron overload, arachidonic acid synthesis, lipid peroxidation, reduced antioxidant capacity, increased cellular damage and inflammation in the liver. RNA-seq analysis revealed that 164 genes were differentially expressed between the livers of the HFHSD and control groups. The pathogenesis of early-stage NASH was characterized by hyperinsulinemia and by de novo synthesis of fatty acids and nascent triglycerides, which were deposited as lipid droplets in hepatocytes. Hyperinsulinemia shifted the energy supply from glucose to ketone bodies and the high ketone body concentration induced the overexpression of cytochrome P450 2E1 (CYP2E1). The iron overload, CYP2E1 and alcohol dehydrogenase 4 overexpression promoted reactive oxygen species (ROS) production, which resulted in arachidonic and linoleic acid peroxidation and, in turn, led to malondialdehyde production and a cellular response to ROS-mediated DNA damage.
doi_str_mv 10.1038/srep13980
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4566077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899733849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-dd70cb100428109bce2ceb17c6b58907a73c0ce512252fc68c0a0d65a50461c53</originalsourceid><addsrcrecordid>eNplkdtqFTEUhoMottRe-AIS8EYL0-YwmcONoKXaQqE3eh0ymTUzqTPJmIOw38ZHNZupm63mJoH15VuL9SP0mpJLSnhzFTyslLcNeYZOGSlFwThjz4_eJ-g8hEeSj2BtSduX6IRVXDS8qk_Rr9vdCt7YkGZjYTEKh8kMEXoMFvy4wyGt67zDg3cLHuekXQAcHf4O0VnAnesNBGwsBuUzZp1Vs3aTm43GIYKKboJVRRNN2ByTGadiUHF7hKT93pgtMVv6pHPnT2pReDHWrGYMr9CLQc0Bzp_uM_Tt883X69vi_uHL3fXH-0ILUsai72uiO0pIyRpK2k4D09DRWledaFpSq5prokFQxgQbdNVookhfCZV_V1QLfoY-bN41dQv0Gmz0aparN4vyO-mUkX9XrJnk6H7KUlQVqessePck8O5HghDlYoKGeVYWXAqS1pQKXpWMZvTtP-ijSz5vLlNN29acN2WbqfcbtV9RTnk4DEOJ3EcvD9Fn9s3x9AfyT9AZuNiAkEt2BH_U8j_bbz6svJE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899733849</pqid></control><display><type>article</type><title>Hyperinsulinemia shifted energy supply from glucose to ketone bodies in early nonalcoholic steatohepatitis from high-fat high-sucrose diet induced Bama minipigs</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Shu-lin ; Xia, Ji-han ; Zhang, Yuan-yuan ; Fan, Jian-gao ; Wang, Hua ; Yuan, Jing ; Zhao, Zhan-zhao ; Pan, Qin ; Mu, Yu-lian ; Xin, Lei-lei ; Chen, Yao-xing ; Li, Kui</creator><creatorcontrib>Yang, Shu-lin ; Xia, Ji-han ; Zhang, Yuan-yuan ; Fan, Jian-gao ; Wang, Hua ; Yuan, Jing ; Zhao, Zhan-zhao ; Pan, Qin ; Mu, Yu-lian ; Xin, Lei-lei ; Chen, Yao-xing ; Li, Kui</creatorcontrib><description>The minipig can serve as a good pharmacological model for human subjects. However, the long-term pathogenesis of high-calorie diet-induced metabolic syndromes, including NASH, has not been well described in minipigs. We examined the development of metabolic syndromes in Bama minipigs that were fed a high-fat, high-sucrose diet (HFHSD) for 23 months, by using histology and serum biochemistry and by profiling the gene expression patterns in the livers of HFHSD pigs compared to controls. The pathology findings revealed microvesicular steatosis, iron overload, arachidonic acid synthesis, lipid peroxidation, reduced antioxidant capacity, increased cellular damage and inflammation in the liver. RNA-seq analysis revealed that 164 genes were differentially expressed between the livers of the HFHSD and control groups. The pathogenesis of early-stage NASH was characterized by hyperinsulinemia and by de novo synthesis of fatty acids and nascent triglycerides, which were deposited as lipid droplets in hepatocytes. Hyperinsulinemia shifted the energy supply from glucose to ketone bodies and the high ketone body concentration induced the overexpression of cytochrome P450 2E1 (CYP2E1). The iron overload, CYP2E1 and alcohol dehydrogenase 4 overexpression promoted reactive oxygen species (ROS) production, which resulted in arachidonic and linoleic acid peroxidation and, in turn, led to malondialdehyde production and a cellular response to ROS-mediated DNA damage.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep13980</identifier><identifier>PMID: 26358367</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/208/1348 ; 692/163/2743/2037 ; 692/699/317 ; Alcohol dehydrogenase ; Animals ; Antioxidants - metabolism ; Arachidonic acid ; Body Weight ; Cholesterol - blood ; Cholesterol - metabolism ; Cytochrome P450 ; Diet ; Diet, High-Fat ; Disease Models, Animal ; DNA Damage ; Energy ; Fatty acids ; Fatty Acids - metabolism ; Fibrosis ; Gene expression ; Gene Expression Profiling ; Glucose - metabolism ; Hepatocytes ; Hepatocytes - metabolism ; Hepatocytes - pathology ; Hepatocytes - ultrastructure ; Histology ; Humanities and Social Sciences ; Hyperinsulinemia ; Hyperinsulinism - complications ; Hyperinsulinism - metabolism ; Hyperplasia ; Insulin Resistance ; Iron ; Islets of Langerhans - metabolism ; Islets of Langerhans - pathology ; Ketone Bodies - metabolism ; Ketones ; Linoleic acid ; Lipid Metabolism ; Lipid Peroxidation ; Liver ; Liver - metabolism ; Liver - pathology ; Malondialdehyde ; Metabolic disorders ; Metabolic syndrome ; multidisciplinary ; Non-alcoholic Fatty Liver Disease - etiology ; Non-alcoholic Fatty Liver Disease - metabolism ; Non-alcoholic Fatty Liver Disease - pathology ; Oxidative Stress ; Pathogenesis ; Peroxidation ; Phenotype ; Reactive oxygen species ; Ribonucleic acid ; RNA ; Science ; Steatosis ; Sucrose ; Swine ; Transcriptome ; Triglycerides ; Triglycerides - blood ; Triglycerides - metabolism</subject><ispartof>Scientific reports, 2015-09, Vol.5 (1), p.13980-13980, Article 13980</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Sep 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-dd70cb100428109bce2ceb17c6b58907a73c0ce512252fc68c0a0d65a50461c53</citedby><cites>FETCH-LOGICAL-c504t-dd70cb100428109bce2ceb17c6b58907a73c0ce512252fc68c0a0d65a50461c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566077/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566077/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26358367$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Shu-lin</creatorcontrib><creatorcontrib>Xia, Ji-han</creatorcontrib><creatorcontrib>Zhang, Yuan-yuan</creatorcontrib><creatorcontrib>Fan, Jian-gao</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Yuan, Jing</creatorcontrib><creatorcontrib>Zhao, Zhan-zhao</creatorcontrib><creatorcontrib>Pan, Qin</creatorcontrib><creatorcontrib>Mu, Yu-lian</creatorcontrib><creatorcontrib>Xin, Lei-lei</creatorcontrib><creatorcontrib>Chen, Yao-xing</creatorcontrib><creatorcontrib>Li, Kui</creatorcontrib><title>Hyperinsulinemia shifted energy supply from glucose to ketone bodies in early nonalcoholic steatohepatitis from high-fat high-sucrose diet induced Bama minipigs</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The minipig can serve as a good pharmacological model for human subjects. However, the long-term pathogenesis of high-calorie diet-induced metabolic syndromes, including NASH, has not been well described in minipigs. We examined the development of metabolic syndromes in Bama minipigs that were fed a high-fat, high-sucrose diet (HFHSD) for 23 months, by using histology and serum biochemistry and by profiling the gene expression patterns in the livers of HFHSD pigs compared to controls. The pathology findings revealed microvesicular steatosis, iron overload, arachidonic acid synthesis, lipid peroxidation, reduced antioxidant capacity, increased cellular damage and inflammation in the liver. RNA-seq analysis revealed that 164 genes were differentially expressed between the livers of the HFHSD and control groups. The pathogenesis of early-stage NASH was characterized by hyperinsulinemia and by de novo synthesis of fatty acids and nascent triglycerides, which were deposited as lipid droplets in hepatocytes. Hyperinsulinemia shifted the energy supply from glucose to ketone bodies and the high ketone body concentration induced the overexpression of cytochrome P450 2E1 (CYP2E1). The iron overload, CYP2E1 and alcohol dehydrogenase 4 overexpression promoted reactive oxygen species (ROS) production, which resulted in arachidonic and linoleic acid peroxidation and, in turn, led to malondialdehyde production and a cellular response to ROS-mediated DNA damage.</description><subject>631/208/1348</subject><subject>692/163/2743/2037</subject><subject>692/699/317</subject><subject>Alcohol dehydrogenase</subject><subject>Animals</subject><subject>Antioxidants - metabolism</subject><subject>Arachidonic acid</subject><subject>Body Weight</subject><subject>Cholesterol - blood</subject><subject>Cholesterol - metabolism</subject><subject>Cytochrome P450</subject><subject>Diet</subject><subject>Diet, High-Fat</subject><subject>Disease Models, Animal</subject><subject>DNA Damage</subject><subject>Energy</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Fibrosis</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Glucose - metabolism</subject><subject>Hepatocytes</subject><subject>Hepatocytes - metabolism</subject><subject>Hepatocytes - pathology</subject><subject>Hepatocytes - ultrastructure</subject><subject>Histology</subject><subject>Humanities and Social Sciences</subject><subject>Hyperinsulinemia</subject><subject>Hyperinsulinism - complications</subject><subject>Hyperinsulinism - metabolism</subject><subject>Hyperplasia</subject><subject>Insulin Resistance</subject><subject>Iron</subject><subject>Islets of Langerhans - metabolism</subject><subject>Islets of Langerhans - pathology</subject><subject>Ketone Bodies - metabolism</subject><subject>Ketones</subject><subject>Linoleic acid</subject><subject>Lipid Metabolism</subject><subject>Lipid Peroxidation</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Malondialdehyde</subject><subject>Metabolic disorders</subject><subject>Metabolic syndrome</subject><subject>multidisciplinary</subject><subject>Non-alcoholic Fatty Liver Disease - etiology</subject><subject>Non-alcoholic Fatty Liver Disease - metabolism</subject><subject>Non-alcoholic Fatty Liver Disease - pathology</subject><subject>Oxidative Stress</subject><subject>Pathogenesis</subject><subject>Peroxidation</subject><subject>Phenotype</subject><subject>Reactive oxygen species</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Science</subject><subject>Steatosis</subject><subject>Sucrose</subject><subject>Swine</subject><subject>Transcriptome</subject><subject>Triglycerides</subject><subject>Triglycerides - blood</subject><subject>Triglycerides - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkdtqFTEUhoMottRe-AIS8EYL0-YwmcONoKXaQqE3eh0ymTUzqTPJmIOw38ZHNZupm63mJoH15VuL9SP0mpJLSnhzFTyslLcNeYZOGSlFwThjz4_eJ-g8hEeSj2BtSduX6IRVXDS8qk_Rr9vdCt7YkGZjYTEKh8kMEXoMFvy4wyGt67zDg3cLHuekXQAcHf4O0VnAnesNBGwsBuUzZp1Vs3aTm43GIYKKboJVRRNN2ByTGadiUHF7hKT93pgtMVv6pHPnT2pReDHWrGYMr9CLQc0Bzp_uM_Tt883X69vi_uHL3fXH-0ILUsai72uiO0pIyRpK2k4D09DRWledaFpSq5prokFQxgQbdNVookhfCZV_V1QLfoY-bN41dQv0Gmz0aparN4vyO-mUkX9XrJnk6H7KUlQVqessePck8O5HghDlYoKGeVYWXAqS1pQKXpWMZvTtP-ijSz5vLlNN29acN2WbqfcbtV9RTnk4DEOJ3EcvD9Fn9s3x9AfyT9AZuNiAkEt2BH_U8j_bbz6svJE</recordid><startdate>20150911</startdate><enddate>20150911</enddate><creator>Yang, Shu-lin</creator><creator>Xia, Ji-han</creator><creator>Zhang, Yuan-yuan</creator><creator>Fan, Jian-gao</creator><creator>Wang, Hua</creator><creator>Yuan, Jing</creator><creator>Zhao, Zhan-zhao</creator><creator>Pan, Qin</creator><creator>Mu, Yu-lian</creator><creator>Xin, Lei-lei</creator><creator>Chen, Yao-xing</creator><creator>Li, Kui</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150911</creationdate><title>Hyperinsulinemia shifted energy supply from glucose to ketone bodies in early nonalcoholic steatohepatitis from high-fat high-sucrose diet induced Bama minipigs</title><author>Yang, Shu-lin ; Xia, Ji-han ; Zhang, Yuan-yuan ; Fan, Jian-gao ; Wang, Hua ; Yuan, Jing ; Zhao, Zhan-zhao ; Pan, Qin ; Mu, Yu-lian ; Xin, Lei-lei ; Chen, Yao-xing ; Li, Kui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-dd70cb100428109bce2ceb17c6b58907a73c0ce512252fc68c0a0d65a50461c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>631/208/1348</topic><topic>692/163/2743/2037</topic><topic>692/699/317</topic><topic>Alcohol dehydrogenase</topic><topic>Animals</topic><topic>Antioxidants - metabolism</topic><topic>Arachidonic acid</topic><topic>Body Weight</topic><topic>Cholesterol - blood</topic><topic>Cholesterol - metabolism</topic><topic>Cytochrome P450</topic><topic>Diet</topic><topic>Diet, High-Fat</topic><topic>Disease Models, Animal</topic><topic>DNA Damage</topic><topic>Energy</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Fibrosis</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Glucose - metabolism</topic><topic>Hepatocytes</topic><topic>Hepatocytes - metabolism</topic><topic>Hepatocytes - pathology</topic><topic>Hepatocytes - ultrastructure</topic><topic>Histology</topic><topic>Humanities and Social Sciences</topic><topic>Hyperinsulinemia</topic><topic>Hyperinsulinism - complications</topic><topic>Hyperinsulinism - metabolism</topic><topic>Hyperplasia</topic><topic>Insulin Resistance</topic><topic>Iron</topic><topic>Islets of Langerhans - metabolism</topic><topic>Islets of Langerhans - pathology</topic><topic>Ketone Bodies - metabolism</topic><topic>Ketones</topic><topic>Linoleic acid</topic><topic>Lipid Metabolism</topic><topic>Lipid Peroxidation</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Malondialdehyde</topic><topic>Metabolic disorders</topic><topic>Metabolic syndrome</topic><topic>multidisciplinary</topic><topic>Non-alcoholic Fatty Liver Disease - etiology</topic><topic>Non-alcoholic Fatty Liver Disease - metabolism</topic><topic>Non-alcoholic Fatty Liver Disease - pathology</topic><topic>Oxidative Stress</topic><topic>Pathogenesis</topic><topic>Peroxidation</topic><topic>Phenotype</topic><topic>Reactive oxygen species</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Science</topic><topic>Steatosis</topic><topic>Sucrose</topic><topic>Swine</topic><topic>Transcriptome</topic><topic>Triglycerides</topic><topic>Triglycerides - blood</topic><topic>Triglycerides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Shu-lin</creatorcontrib><creatorcontrib>Xia, Ji-han</creatorcontrib><creatorcontrib>Zhang, Yuan-yuan</creatorcontrib><creatorcontrib>Fan, Jian-gao</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Yuan, Jing</creatorcontrib><creatorcontrib>Zhao, Zhan-zhao</creatorcontrib><creatorcontrib>Pan, Qin</creatorcontrib><creatorcontrib>Mu, Yu-lian</creatorcontrib><creatorcontrib>Xin, Lei-lei</creatorcontrib><creatorcontrib>Chen, Yao-xing</creatorcontrib><creatorcontrib>Li, Kui</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Shu-lin</au><au>Xia, Ji-han</au><au>Zhang, Yuan-yuan</au><au>Fan, Jian-gao</au><au>Wang, Hua</au><au>Yuan, Jing</au><au>Zhao, Zhan-zhao</au><au>Pan, Qin</au><au>Mu, Yu-lian</au><au>Xin, Lei-lei</au><au>Chen, Yao-xing</au><au>Li, Kui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperinsulinemia shifted energy supply from glucose to ketone bodies in early nonalcoholic steatohepatitis from high-fat high-sucrose diet induced Bama minipigs</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-09-11</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>13980</spage><epage>13980</epage><pages>13980-13980</pages><artnum>13980</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The minipig can serve as a good pharmacological model for human subjects. However, the long-term pathogenesis of high-calorie diet-induced metabolic syndromes, including NASH, has not been well described in minipigs. We examined the development of metabolic syndromes in Bama minipigs that were fed a high-fat, high-sucrose diet (HFHSD) for 23 months, by using histology and serum biochemistry and by profiling the gene expression patterns in the livers of HFHSD pigs compared to controls. The pathology findings revealed microvesicular steatosis, iron overload, arachidonic acid synthesis, lipid peroxidation, reduced antioxidant capacity, increased cellular damage and inflammation in the liver. RNA-seq analysis revealed that 164 genes were differentially expressed between the livers of the HFHSD and control groups. The pathogenesis of early-stage NASH was characterized by hyperinsulinemia and by de novo synthesis of fatty acids and nascent triglycerides, which were deposited as lipid droplets in hepatocytes. Hyperinsulinemia shifted the energy supply from glucose to ketone bodies and the high ketone body concentration induced the overexpression of cytochrome P450 2E1 (CYP2E1). The iron overload, CYP2E1 and alcohol dehydrogenase 4 overexpression promoted reactive oxygen species (ROS) production, which resulted in arachidonic and linoleic acid peroxidation and, in turn, led to malondialdehyde production and a cellular response to ROS-mediated DNA damage.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26358367</pmid><doi>10.1038/srep13980</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2015-09, Vol.5 (1), p.13980-13980, Article 13980
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4566077
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 631/208/1348
692/163/2743/2037
692/699/317
Alcohol dehydrogenase
Animals
Antioxidants - metabolism
Arachidonic acid
Body Weight
Cholesterol - blood
Cholesterol - metabolism
Cytochrome P450
Diet
Diet, High-Fat
Disease Models, Animal
DNA Damage
Energy
Fatty acids
Fatty Acids - metabolism
Fibrosis
Gene expression
Gene Expression Profiling
Glucose - metabolism
Hepatocytes
Hepatocytes - metabolism
Hepatocytes - pathology
Hepatocytes - ultrastructure
Histology
Humanities and Social Sciences
Hyperinsulinemia
Hyperinsulinism - complications
Hyperinsulinism - metabolism
Hyperplasia
Insulin Resistance
Iron
Islets of Langerhans - metabolism
Islets of Langerhans - pathology
Ketone Bodies - metabolism
Ketones
Linoleic acid
Lipid Metabolism
Lipid Peroxidation
Liver
Liver - metabolism
Liver - pathology
Malondialdehyde
Metabolic disorders
Metabolic syndrome
multidisciplinary
Non-alcoholic Fatty Liver Disease - etiology
Non-alcoholic Fatty Liver Disease - metabolism
Non-alcoholic Fatty Liver Disease - pathology
Oxidative Stress
Pathogenesis
Peroxidation
Phenotype
Reactive oxygen species
Ribonucleic acid
RNA
Science
Steatosis
Sucrose
Swine
Transcriptome
Triglycerides
Triglycerides - blood
Triglycerides - metabolism
title Hyperinsulinemia shifted energy supply from glucose to ketone bodies in early nonalcoholic steatohepatitis from high-fat high-sucrose diet induced Bama minipigs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A49%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperinsulinemia%20shifted%20energy%20supply%20from%20glucose%20to%20ketone%20bodies%20in%20early%20nonalcoholic%20steatohepatitis%20from%20high-fat%20high-sucrose%20diet%20induced%20Bama%20minipigs&rft.jtitle=Scientific%20reports&rft.au=Yang,%20Shu-lin&rft.date=2015-09-11&rft.volume=5&rft.issue=1&rft.spage=13980&rft.epage=13980&rft.pages=13980-13980&rft.artnum=13980&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep13980&rft_dat=%3Cproquest_pubme%3E1899733849%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899733849&rft_id=info:pmid/26358367&rfr_iscdi=true