The Hepatic Transcriptome of Young Suckling and Aging Intrauterine Growth Restricted Male Rats

ABSTRACT Intrauterine growth restriction leads to the development of adult onset obesity/metabolic syndrome, diabetes mellitus, cardiovascular disease, hypertension, stroke, dyslipidemia, and non‐alcoholic fatty liver disease/steatohepatitis. Continued postnatal growth restriction has been shown to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular biochemistry 2015-04, Vol.116 (4), p.566-579
Hauptverfasser: Freije, William A., Thamotharan, Shanthie, Lee, Regina, Shin, Bo-Chul, Devaskar, Sherin U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 579
container_issue 4
container_start_page 566
container_title Journal of cellular biochemistry
container_volume 116
creator Freije, William A.
Thamotharan, Shanthie
Lee, Regina
Shin, Bo-Chul
Devaskar, Sherin U.
description ABSTRACT Intrauterine growth restriction leads to the development of adult onset obesity/metabolic syndrome, diabetes mellitus, cardiovascular disease, hypertension, stroke, dyslipidemia, and non‐alcoholic fatty liver disease/steatohepatitis. Continued postnatal growth restriction has been shown to ameliorate many of these sequelae. To further our understanding of the mechanism of how intrauterine and early postnatal growth affects adult health we have employed Affymetrix microarray‐based expression profiling to characterize hepatic gene expression of male offspring in a rat model of maternal nutrient restriction in early and late life. At day 21 of life (p21) combined intrauterine and postnatal calorie restriction treatment led to expression changes in circadian, metabolic, and insulin‐like growth factor genes as part of a larger transcriptional response that encompasses 144 genes. Independent and controlled experiments at p21 confirm the early life circadian, metabolic, and growth factor perturbations. In contrast to the p21 transcriptional response, at day 450 of life (d450) only seven genes, largely uncharacterized, were differentially expressed. This lack of a transcriptional response identifies non‐transcriptional mechanisms mediating the adult sequelae of intrauterine growth restriction. Independent experiments at d450 identify a circadian defect as well as validate expression changes to four of the genes identified by the microarray screen which have a novel association with growth restriction. Emerging from this rich dataset is a portrait of how the liver responds to growth restriction through circadian dysregulation, energy/substrate management, and growth factor modulation. J. Cell. Biochem. 9999: 1–15, 2015. © 2014 Wiley Periodicals, Inc. J. Cell. Biochem. 116: 566–579, 2015. © 2014 Wiley Periodicals, Inc.
doi_str_mv 10.1002/jcb.25008
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4565187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3572781321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5518-5c0d9da2e615d860a2d98df783f10464fc3fba06cfa6cb0aff9ffeac6da6e1093</originalsourceid><addsrcrecordid>eNp1kU9vEzEQxS0EoqFw4AsgS1zgsO3YXnt3L0htBGmrAFIIQlywHP9JnG7Wwd6l9NvjkDYCJE4z0vzm6T09hJ4TOCEA9HStFyeUA9QP0IhAUxWlKMuHaAQVg4IyQo_Qk5TWANA0jD5GR5SzihAOI_RtvrL4wm5V7zWeR9UlHf22DxuLg8Nfw9At8adBX7c-L6oz-Gy52y67Pqqht9F3Fk9iuOlXeGZTH73urcHvVWvxTPXpKXrkVJvss7t5jD6_ezsfXxTTj5PL8dm00JyTuuAaTGMUtYJwUwtQ1DS1cVXNHIEcxmnmFgqEdkroBSjnGues0sIoYXNidoze7HW3w2JjjbY7f63cRr9R8VYG5eXfl86v5DL8kCUX2UCVBV7dCcTwfchJ5MYnbdtWdTYMSRLBaclqUomMvvwHXYchdjlepsq64XVNd4Kv95SOIaVo3cEMAblrTebW5O_WMvviT_cH8r6mDJzugRvf2tv_K8mr8fm9ZLH_8Km3Pw8fKl5LUbGKyy8fJvJqOmPVeTmXwH4BBrOxvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1648958827</pqid></control><display><type>article</type><title>The Hepatic Transcriptome of Young Suckling and Aging Intrauterine Growth Restricted Male Rats</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Freije, William A. ; Thamotharan, Shanthie ; Lee, Regina ; Shin, Bo-Chul ; Devaskar, Sherin U.</creator><creatorcontrib>Freije, William A. ; Thamotharan, Shanthie ; Lee, Regina ; Shin, Bo-Chul ; Devaskar, Sherin U.</creatorcontrib><description>ABSTRACT Intrauterine growth restriction leads to the development of adult onset obesity/metabolic syndrome, diabetes mellitus, cardiovascular disease, hypertension, stroke, dyslipidemia, and non‐alcoholic fatty liver disease/steatohepatitis. Continued postnatal growth restriction has been shown to ameliorate many of these sequelae. To further our understanding of the mechanism of how intrauterine and early postnatal growth affects adult health we have employed Affymetrix microarray‐based expression profiling to characterize hepatic gene expression of male offspring in a rat model of maternal nutrient restriction in early and late life. At day 21 of life (p21) combined intrauterine and postnatal calorie restriction treatment led to expression changes in circadian, metabolic, and insulin‐like growth factor genes as part of a larger transcriptional response that encompasses 144 genes. Independent and controlled experiments at p21 confirm the early life circadian, metabolic, and growth factor perturbations. In contrast to the p21 transcriptional response, at day 450 of life (d450) only seven genes, largely uncharacterized, were differentially expressed. This lack of a transcriptional response identifies non‐transcriptional mechanisms mediating the adult sequelae of intrauterine growth restriction. Independent experiments at d450 identify a circadian defect as well as validate expression changes to four of the genes identified by the microarray screen which have a novel association with growth restriction. Emerging from this rich dataset is a portrait of how the liver responds to growth restriction through circadian dysregulation, energy/substrate management, and growth factor modulation. J. Cell. Biochem. 9999: 1–15, 2015. © 2014 Wiley Periodicals, Inc. J. Cell. Biochem. 116: 566–579, 2015. © 2014 Wiley Periodicals, Inc.</description><identifier>ISSN: 0730-2312</identifier><identifier>EISSN: 1097-4644</identifier><identifier>DOI: 10.1002/jcb.25008</identifier><identifier>PMID: 25371150</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Animals ; Animals, Newborn - growth &amp; development ; Body Weight ; Caloric Restriction - adverse effects ; CIRCADIAN ; Circadian Rhythm ; DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE ; Female ; Fetal Growth Retardation - etiology ; Fetal Growth Retardation - genetics ; Gene Expression Profiling - methods ; Gene Expression Regulation, Developmental ; INTRAUTERINE GROWTH RESTRICTION (IUGR) ; LIVER ; Liver - growth &amp; development ; Male ; MICROARRAY ; OBESITY ; Oligonucleotide Array Sequence Analysis - methods ; Pregnancy ; Prenatal Exposure Delayed Effects - genetics ; Rats ; Rats, Sprague-Dawley ; TRANSCRIPTOME</subject><ispartof>Journal of cellular biochemistry, 2015-04, Vol.116 (4), p.566-579</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5518-5c0d9da2e615d860a2d98df783f10464fc3fba06cfa6cb0aff9ffeac6da6e1093</citedby><cites>FETCH-LOGICAL-c5518-5c0d9da2e615d860a2d98df783f10464fc3fba06cfa6cb0aff9ffeac6da6e1093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcb.25008$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcb.25008$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25371150$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Freije, William A.</creatorcontrib><creatorcontrib>Thamotharan, Shanthie</creatorcontrib><creatorcontrib>Lee, Regina</creatorcontrib><creatorcontrib>Shin, Bo-Chul</creatorcontrib><creatorcontrib>Devaskar, Sherin U.</creatorcontrib><title>The Hepatic Transcriptome of Young Suckling and Aging Intrauterine Growth Restricted Male Rats</title><title>Journal of cellular biochemistry</title><addtitle>J. Cell. Biochem</addtitle><description>ABSTRACT Intrauterine growth restriction leads to the development of adult onset obesity/metabolic syndrome, diabetes mellitus, cardiovascular disease, hypertension, stroke, dyslipidemia, and non‐alcoholic fatty liver disease/steatohepatitis. Continued postnatal growth restriction has been shown to ameliorate many of these sequelae. To further our understanding of the mechanism of how intrauterine and early postnatal growth affects adult health we have employed Affymetrix microarray‐based expression profiling to characterize hepatic gene expression of male offspring in a rat model of maternal nutrient restriction in early and late life. At day 21 of life (p21) combined intrauterine and postnatal calorie restriction treatment led to expression changes in circadian, metabolic, and insulin‐like growth factor genes as part of a larger transcriptional response that encompasses 144 genes. Independent and controlled experiments at p21 confirm the early life circadian, metabolic, and growth factor perturbations. In contrast to the p21 transcriptional response, at day 450 of life (d450) only seven genes, largely uncharacterized, were differentially expressed. This lack of a transcriptional response identifies non‐transcriptional mechanisms mediating the adult sequelae of intrauterine growth restriction. Independent experiments at d450 identify a circadian defect as well as validate expression changes to four of the genes identified by the microarray screen which have a novel association with growth restriction. Emerging from this rich dataset is a portrait of how the liver responds to growth restriction through circadian dysregulation, energy/substrate management, and growth factor modulation. J. Cell. Biochem. 9999: 1–15, 2015. © 2014 Wiley Periodicals, Inc. J. Cell. Biochem. 116: 566–579, 2015. © 2014 Wiley Periodicals, Inc.</description><subject>Animals</subject><subject>Animals, Newborn - growth &amp; development</subject><subject>Body Weight</subject><subject>Caloric Restriction - adverse effects</subject><subject>CIRCADIAN</subject><subject>Circadian Rhythm</subject><subject>DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE</subject><subject>Female</subject><subject>Fetal Growth Retardation - etiology</subject><subject>Fetal Growth Retardation - genetics</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Developmental</subject><subject>INTRAUTERINE GROWTH RESTRICTION (IUGR)</subject><subject>LIVER</subject><subject>Liver - growth &amp; development</subject><subject>Male</subject><subject>MICROARRAY</subject><subject>OBESITY</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Pregnancy</subject><subject>Prenatal Exposure Delayed Effects - genetics</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>TRANSCRIPTOME</subject><issn>0730-2312</issn><issn>1097-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9vEzEQxS0EoqFw4AsgS1zgsO3YXnt3L0htBGmrAFIIQlywHP9JnG7Wwd6l9NvjkDYCJE4z0vzm6T09hJ4TOCEA9HStFyeUA9QP0IhAUxWlKMuHaAQVg4IyQo_Qk5TWANA0jD5GR5SzihAOI_RtvrL4wm5V7zWeR9UlHf22DxuLg8Nfw9At8adBX7c-L6oz-Gy52y67Pqqht9F3Fk9iuOlXeGZTH73urcHvVWvxTPXpKXrkVJvss7t5jD6_ezsfXxTTj5PL8dm00JyTuuAaTGMUtYJwUwtQ1DS1cVXNHIEcxmnmFgqEdkroBSjnGues0sIoYXNidoze7HW3w2JjjbY7f63cRr9R8VYG5eXfl86v5DL8kCUX2UCVBV7dCcTwfchJ5MYnbdtWdTYMSRLBaclqUomMvvwHXYchdjlepsq64XVNd4Kv95SOIaVo3cEMAblrTebW5O_WMvviT_cH8r6mDJzugRvf2tv_K8mr8fm9ZLH_8Km3Pw8fKl5LUbGKyy8fJvJqOmPVeTmXwH4BBrOxvQ</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Freije, William A.</creator><creator>Thamotharan, Shanthie</creator><creator>Lee, Regina</creator><creator>Shin, Bo-Chul</creator><creator>Devaskar, Sherin U.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201504</creationdate><title>The Hepatic Transcriptome of Young Suckling and Aging Intrauterine Growth Restricted Male Rats</title><author>Freije, William A. ; Thamotharan, Shanthie ; Lee, Regina ; Shin, Bo-Chul ; Devaskar, Sherin U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5518-5c0d9da2e615d860a2d98df783f10464fc3fba06cfa6cb0aff9ffeac6da6e1093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Animals, Newborn - growth &amp; development</topic><topic>Body Weight</topic><topic>Caloric Restriction - adverse effects</topic><topic>CIRCADIAN</topic><topic>Circadian Rhythm</topic><topic>DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE</topic><topic>Female</topic><topic>Fetal Growth Retardation - etiology</topic><topic>Fetal Growth Retardation - genetics</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Developmental</topic><topic>INTRAUTERINE GROWTH RESTRICTION (IUGR)</topic><topic>LIVER</topic><topic>Liver - growth &amp; development</topic><topic>Male</topic><topic>MICROARRAY</topic><topic>OBESITY</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Pregnancy</topic><topic>Prenatal Exposure Delayed Effects - genetics</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>TRANSCRIPTOME</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freije, William A.</creatorcontrib><creatorcontrib>Thamotharan, Shanthie</creatorcontrib><creatorcontrib>Lee, Regina</creatorcontrib><creatorcontrib>Shin, Bo-Chul</creatorcontrib><creatorcontrib>Devaskar, Sherin U.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freije, William A.</au><au>Thamotharan, Shanthie</au><au>Lee, Regina</au><au>Shin, Bo-Chul</au><au>Devaskar, Sherin U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Hepatic Transcriptome of Young Suckling and Aging Intrauterine Growth Restricted Male Rats</atitle><jtitle>Journal of cellular biochemistry</jtitle><addtitle>J. Cell. Biochem</addtitle><date>2015-04</date><risdate>2015</risdate><volume>116</volume><issue>4</issue><spage>566</spage><epage>579</epage><pages>566-579</pages><issn>0730-2312</issn><eissn>1097-4644</eissn><abstract>ABSTRACT Intrauterine growth restriction leads to the development of adult onset obesity/metabolic syndrome, diabetes mellitus, cardiovascular disease, hypertension, stroke, dyslipidemia, and non‐alcoholic fatty liver disease/steatohepatitis. Continued postnatal growth restriction has been shown to ameliorate many of these sequelae. To further our understanding of the mechanism of how intrauterine and early postnatal growth affects adult health we have employed Affymetrix microarray‐based expression profiling to characterize hepatic gene expression of male offspring in a rat model of maternal nutrient restriction in early and late life. At day 21 of life (p21) combined intrauterine and postnatal calorie restriction treatment led to expression changes in circadian, metabolic, and insulin‐like growth factor genes as part of a larger transcriptional response that encompasses 144 genes. Independent and controlled experiments at p21 confirm the early life circadian, metabolic, and growth factor perturbations. In contrast to the p21 transcriptional response, at day 450 of life (d450) only seven genes, largely uncharacterized, were differentially expressed. This lack of a transcriptional response identifies non‐transcriptional mechanisms mediating the adult sequelae of intrauterine growth restriction. Independent experiments at d450 identify a circadian defect as well as validate expression changes to four of the genes identified by the microarray screen which have a novel association with growth restriction. Emerging from this rich dataset is a portrait of how the liver responds to growth restriction through circadian dysregulation, energy/substrate management, and growth factor modulation. J. Cell. Biochem. 9999: 1–15, 2015. © 2014 Wiley Periodicals, Inc. J. Cell. Biochem. 116: 566–579, 2015. © 2014 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>25371150</pmid><doi>10.1002/jcb.25008</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0730-2312
ispartof Journal of cellular biochemistry, 2015-04, Vol.116 (4), p.566-579
issn 0730-2312
1097-4644
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4565187
source MEDLINE; Wiley Journals
subjects Animals
Animals, Newborn - growth & development
Body Weight
Caloric Restriction - adverse effects
CIRCADIAN
Circadian Rhythm
DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE
Female
Fetal Growth Retardation - etiology
Fetal Growth Retardation - genetics
Gene Expression Profiling - methods
Gene Expression Regulation, Developmental
INTRAUTERINE GROWTH RESTRICTION (IUGR)
LIVER
Liver - growth & development
Male
MICROARRAY
OBESITY
Oligonucleotide Array Sequence Analysis - methods
Pregnancy
Prenatal Exposure Delayed Effects - genetics
Rats
Rats, Sprague-Dawley
TRANSCRIPTOME
title The Hepatic Transcriptome of Young Suckling and Aging Intrauterine Growth Restricted Male Rats
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A29%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Hepatic%20Transcriptome%20of%20Young%20Suckling%20and%20Aging%20Intrauterine%20Growth%20Restricted%20Male%20Rats&rft.jtitle=Journal%20of%20cellular%20biochemistry&rft.au=Freije,%20William%20A.&rft.date=2015-04&rft.volume=116&rft.issue=4&rft.spage=566&rft.epage=579&rft.pages=566-579&rft.issn=0730-2312&rft.eissn=1097-4644&rft_id=info:doi/10.1002/jcb.25008&rft_dat=%3Cproquest_pubme%3E3572781321%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1648958827&rft_id=info:pmid/25371150&rfr_iscdi=true