Giant moving vortex mass in thick magnetic nanodots

Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2015-09, Vol.5 (1), p.13881-13881, Article 13881
Hauptverfasser: Guslienko, K. Y., Kakazei, G. N., Ding, J., Liu, X. M., Adeyeye, A. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13881
container_issue 1
container_start_page 13881
container_title Scientific reports
container_volume 5
creator Guslienko, K. Y.
Kakazei, G. N.
Ding, J.
Liu, X. M.
Adeyeye, A. O.
description Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5–50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50–100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing.
doi_str_mv 10.1038/srep13881
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4565097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1711536402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-95434d645adf6ce3c22bd971f151e4493572103ab94232812ae07b6a33f81aea3</originalsourceid><addsrcrecordid>eNplkV9LwzAUxYMobsw9-AWk4IsK1fxtmxdBhk5h4Is-h7RNu8w1mUk69Nsb2RxT85KE--Pcc-4F4BTBawRJceOdWiFSFOgADDGkLMUE48O99wCMvV_AeBjmFPFjMMAZYYwSOARkqqUJSWfX2rTJ2rqgPpJOep9ok4S5rt7irzUq6Cox0tjaBn8Cjhq59Gq8vUfg9eH-ZfKYzp6nT5O7WVoxSEPKYwdaZ5TJuskqRSqMy5rnqEEMKUo5YTmOCWTJabRZICwVzMtMEtIUSCpJRuB2o7vqy07VlTLByaVYOd1J9yms1OJ3xei5aO1aUJYxyPMocLEVcPa9Vz6ITvtKLZfSKNt7gXKEGMkoxBE9_4MubO9MjCdQwaNWjAQjdbmhKmd9HHyzM4Og-N6G2G0jsmf77nfkz-wjcLUBfCyZVrm9lv_UvgCEsJI4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899735040</pqid></control><display><type>article</type><title>Giant moving vortex mass in thick magnetic nanodots</title><source>Open Access: PubMed Central</source><source>Open Access: Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerOpen (Open Access)</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Guslienko, K. Y. ; Kakazei, G. N. ; Ding, J. ; Liu, X. M. ; Adeyeye, A. O.</creator><creatorcontrib>Guslienko, K. Y. ; Kakazei, G. N. ; Ding, J. ; Liu, X. M. ; Adeyeye, A. O.</creatorcontrib><description>Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5–50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50–100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep13881</identifier><identifier>PMID: 26355430</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/2793 ; 639/766/119/997 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Vortices</subject><ispartof>Scientific reports, 2015-09, Vol.5 (1), p.13881-13881, Article 13881</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Sep 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-95434d645adf6ce3c22bd971f151e4493572103ab94232812ae07b6a33f81aea3</citedby><cites>FETCH-LOGICAL-c504t-95434d645adf6ce3c22bd971f151e4493572103ab94232812ae07b6a33f81aea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4565097/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4565097/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26355430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guslienko, K. Y.</creatorcontrib><creatorcontrib>Kakazei, G. N.</creatorcontrib><creatorcontrib>Ding, J.</creatorcontrib><creatorcontrib>Liu, X. M.</creatorcontrib><creatorcontrib>Adeyeye, A. O.</creatorcontrib><title>Giant moving vortex mass in thick magnetic nanodots</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5–50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50–100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing.</description><subject>639/766/119/2793</subject><subject>639/766/119/997</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Vortices</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkV9LwzAUxYMobsw9-AWk4IsK1fxtmxdBhk5h4Is-h7RNu8w1mUk69Nsb2RxT85KE--Pcc-4F4BTBawRJceOdWiFSFOgADDGkLMUE48O99wCMvV_AeBjmFPFjMMAZYYwSOARkqqUJSWfX2rTJ2rqgPpJOep9ok4S5rt7irzUq6Cox0tjaBn8Cjhq59Gq8vUfg9eH-ZfKYzp6nT5O7WVoxSEPKYwdaZ5TJuskqRSqMy5rnqEEMKUo5YTmOCWTJabRZICwVzMtMEtIUSCpJRuB2o7vqy07VlTLByaVYOd1J9yms1OJ3xei5aO1aUJYxyPMocLEVcPa9Vz6ITvtKLZfSKNt7gXKEGMkoxBE9_4MubO9MjCdQwaNWjAQjdbmhKmd9HHyzM4Og-N6G2G0jsmf77nfkz-wjcLUBfCyZVrm9lv_UvgCEsJI4</recordid><startdate>20150910</startdate><enddate>20150910</enddate><creator>Guslienko, K. Y.</creator><creator>Kakazei, G. N.</creator><creator>Ding, J.</creator><creator>Liu, X. M.</creator><creator>Adeyeye, A. O.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150910</creationdate><title>Giant moving vortex mass in thick magnetic nanodots</title><author>Guslienko, K. Y. ; Kakazei, G. N. ; Ding, J. ; Liu, X. M. ; Adeyeye, A. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-95434d645adf6ce3c22bd971f151e4493572103ab94232812ae07b6a33f81aea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/766/119/2793</topic><topic>639/766/119/997</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guslienko, K. Y.</creatorcontrib><creatorcontrib>Kakazei, G. N.</creatorcontrib><creatorcontrib>Ding, J.</creatorcontrib><creatorcontrib>Liu, X. M.</creatorcontrib><creatorcontrib>Adeyeye, A. O.</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guslienko, K. Y.</au><au>Kakazei, G. N.</au><au>Ding, J.</au><au>Liu, X. M.</au><au>Adeyeye, A. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant moving vortex mass in thick magnetic nanodots</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-09-10</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>13881</spage><epage>13881</epage><pages>13881-13881</pages><artnum>13881</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5–50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50–100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26355430</pmid><doi>10.1038/srep13881</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2015-09, Vol.5 (1), p.13881-13881, Article 13881
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4565097
source Open Access: PubMed Central; Open Access: Nature Open Access; DOAJ Directory of Open Access Journals; SpringerOpen (Open Access); Free E-Journal (出版社公開部分のみ); Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 639/766/119/2793
639/766/119/997
Humanities and Social Sciences
multidisciplinary
Science
Vortices
title Giant moving vortex mass in thick magnetic nanodots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A12%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20moving%20vortex%20mass%20in%20thick%20magnetic%20nanodots&rft.jtitle=Scientific%20reports&rft.au=Guslienko,%20K.%20Y.&rft.date=2015-09-10&rft.volume=5&rft.issue=1&rft.spage=13881&rft.epage=13881&rft.pages=13881-13881&rft.artnum=13881&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep13881&rft_dat=%3Cproquest_pubme%3E1711536402%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899735040&rft_id=info:pmid/26355430&rfr_iscdi=true