Using Data Independent Acquisition (DIA) to Model High-responding Peptides for Targeted Proteomics Experiments
Targeted mass spectrometry is an essential tool for detecting quantitative changes in low abundant proteins throughout the proteome. Although selected reaction monitoring (SRM) is the preferred method for quantifying peptides in complex samples, the process of designing SRM assays is laborious. Pept...
Gespeichert in:
Veröffentlicht in: | Molecular & cellular proteomics 2015-09, Vol.14 (9), p.2331-2340 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2340 |
---|---|
container_issue | 9 |
container_start_page | 2331 |
container_title | Molecular & cellular proteomics |
container_volume | 14 |
creator | Searle, Brian C. Egertson, Jarrett D. Bollinger, James G. Stergachis, Andrew B. MacCoss, Michael J. |
description | Targeted mass spectrometry is an essential tool for detecting quantitative changes in low abundant proteins throughout the proteome. Although selected reaction monitoring (SRM) is the preferred method for quantifying peptides in complex samples, the process of designing SRM assays is laborious. Peptides have widely varying signal responses dictated by sequence-specific physiochemical properties; one major challenge is in selecting representative peptides to target as a proxy for protein abundance. Here we present PREGO, a software tool that predicts high-responding peptides for SRM experiments. PREGO predicts peptide responses with an artificial neural network trained using 11 minimally redundant, maximally relevant properties. Crucial to its success, PREGO is trained using fragment ion intensities of equimolar synthetic peptides extracted from data independent acquisition experiments. Because of similarities in instrumentation and the nature of data collection, relative peptide responses from data independent acquisition experiments are a suitable substitute for SRM experiments because they both make quantitative measurements from integrated fragment ion chromatograms. Using an SRM experiment containing 12,973 peptides from 724 synthetic proteins, PREGO exhibits a 40–85% improvement over previously published approaches at selecting high-responding peptides. These results also represent a dramatic improvement over the rules-based peptide selection approaches commonly used in the literature. |
doi_str_mv | 10.1074/mcp.M115.051300 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4563719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1535947620326426</els_id><sourcerecordid>1808717785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-ca620941774b7494fc8a34bb2c30818e87f77dea4e247170cb7835a8f3e5e33b3</originalsourceid><addsrcrecordid>eNqFkcFPHCEUh4lpU63t2VvD0R5mhQEG5tJko7ZuoqkHPRMG3qw0M8MIrLH_fdms3bQH4wVI-N7vPfgQOqFkQYnkZ6OdFzeUigURlBFygI6oYKJqueLv9mfZHKKPKf0ipCZUig_osG4oIZQ2R2i6T35a4wuTDV5NDmYoy5Tx0j5ufPLZhwmfXqyWX3EO-CY4GPCVXz9UEdIcJretvYU5ewcJ9yHiOxPXkMHh2xgyhNHbhC-fZ4h-LLHpE3rfmyHB55f9GN1_v7w7v6quf_5YnS-vKyvqOlfWNDVpOZWSd5K3vLfKMN51tWVEUQVK9lI6MBxqLqkktpOKCaN6BgIY69gx-rbLnTfdCM6W3tEMei5jmPhbB-P1_zeTf9Dr8KS5aJikbQk4fQmI4XEDKevRJwvDYCYIm6SpIqp0lkq8jUrSslZKJgt6tkNtDClF6PcTUaK3QnURqrdC9U5oqfjy70P2_F-DBWh3AJTvfPIQdbIeJgvOR7BZu-BfDf8DCsWwUw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709397737</pqid></control><display><type>article</type><title>Using Data Independent Acquisition (DIA) to Model High-responding Peptides for Targeted Proteomics Experiments</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Searle, Brian C. ; Egertson, Jarrett D. ; Bollinger, James G. ; Stergachis, Andrew B. ; MacCoss, Michael J.</creator><creatorcontrib>Searle, Brian C. ; Egertson, Jarrett D. ; Bollinger, James G. ; Stergachis, Andrew B. ; MacCoss, Michael J.</creatorcontrib><description>Targeted mass spectrometry is an essential tool for detecting quantitative changes in low abundant proteins throughout the proteome. Although selected reaction monitoring (SRM) is the preferred method for quantifying peptides in complex samples, the process of designing SRM assays is laborious. Peptides have widely varying signal responses dictated by sequence-specific physiochemical properties; one major challenge is in selecting representative peptides to target as a proxy for protein abundance. Here we present PREGO, a software tool that predicts high-responding peptides for SRM experiments. PREGO predicts peptide responses with an artificial neural network trained using 11 minimally redundant, maximally relevant properties. Crucial to its success, PREGO is trained using fragment ion intensities of equimolar synthetic peptides extracted from data independent acquisition experiments. Because of similarities in instrumentation and the nature of data collection, relative peptide responses from data independent acquisition experiments are a suitable substitute for SRM experiments because they both make quantitative measurements from integrated fragment ion chromatograms. Using an SRM experiment containing 12,973 peptides from 724 synthetic proteins, PREGO exhibits a 40–85% improvement over previously published approaches at selecting high-responding peptides. These results also represent a dramatic improvement over the rules-based peptide selection approaches commonly used in the literature.</description><identifier>ISSN: 1535-9476</identifier><identifier>EISSN: 1535-9484</identifier><identifier>DOI: 10.1074/mcp.M115.051300</identifier><identifier>PMID: 26100116</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Humans ; Mass Spectrometry - methods ; Neural Networks, Computer ; Peptides - chemistry ; Peptides - metabolism ; Proteomics - methods ; Software ; Special Issue</subject><ispartof>Molecular & cellular proteomics, 2015-09, Vol.14 (9), p.2331-2340</ispartof><rights>2015 © 2015 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2015 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2015 by The American Society for Biochemistry and Molecular Biology, Inc. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-ca620941774b7494fc8a34bb2c30818e87f77dea4e247170cb7835a8f3e5e33b3</citedby><cites>FETCH-LOGICAL-c522t-ca620941774b7494fc8a34bb2c30818e87f77dea4e247170cb7835a8f3e5e33b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4563719/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4563719/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26100116$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Searle, Brian C.</creatorcontrib><creatorcontrib>Egertson, Jarrett D.</creatorcontrib><creatorcontrib>Bollinger, James G.</creatorcontrib><creatorcontrib>Stergachis, Andrew B.</creatorcontrib><creatorcontrib>MacCoss, Michael J.</creatorcontrib><title>Using Data Independent Acquisition (DIA) to Model High-responding Peptides for Targeted Proteomics Experiments</title><title>Molecular & cellular proteomics</title><addtitle>Mol Cell Proteomics</addtitle><description>Targeted mass spectrometry is an essential tool for detecting quantitative changes in low abundant proteins throughout the proteome. Although selected reaction monitoring (SRM) is the preferred method for quantifying peptides in complex samples, the process of designing SRM assays is laborious. Peptides have widely varying signal responses dictated by sequence-specific physiochemical properties; one major challenge is in selecting representative peptides to target as a proxy for protein abundance. Here we present PREGO, a software tool that predicts high-responding peptides for SRM experiments. PREGO predicts peptide responses with an artificial neural network trained using 11 minimally redundant, maximally relevant properties. Crucial to its success, PREGO is trained using fragment ion intensities of equimolar synthetic peptides extracted from data independent acquisition experiments. Because of similarities in instrumentation and the nature of data collection, relative peptide responses from data independent acquisition experiments are a suitable substitute for SRM experiments because they both make quantitative measurements from integrated fragment ion chromatograms. Using an SRM experiment containing 12,973 peptides from 724 synthetic proteins, PREGO exhibits a 40–85% improvement over previously published approaches at selecting high-responding peptides. These results also represent a dramatic improvement over the rules-based peptide selection approaches commonly used in the literature.</description><subject>Algorithms</subject><subject>Humans</subject><subject>Mass Spectrometry - methods</subject><subject>Neural Networks, Computer</subject><subject>Peptides - chemistry</subject><subject>Peptides - metabolism</subject><subject>Proteomics - methods</subject><subject>Software</subject><subject>Special Issue</subject><issn>1535-9476</issn><issn>1535-9484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFPHCEUh4lpU63t2VvD0R5mhQEG5tJko7ZuoqkHPRMG3qw0M8MIrLH_fdms3bQH4wVI-N7vPfgQOqFkQYnkZ6OdFzeUigURlBFygI6oYKJqueLv9mfZHKKPKf0ipCZUig_osG4oIZQ2R2i6T35a4wuTDV5NDmYoy5Tx0j5ufPLZhwmfXqyWX3EO-CY4GPCVXz9UEdIcJretvYU5ewcJ9yHiOxPXkMHh2xgyhNHbhC-fZ4h-LLHpE3rfmyHB55f9GN1_v7w7v6quf_5YnS-vKyvqOlfWNDVpOZWSd5K3vLfKMN51tWVEUQVK9lI6MBxqLqkktpOKCaN6BgIY69gx-rbLnTfdCM6W3tEMei5jmPhbB-P1_zeTf9Dr8KS5aJikbQk4fQmI4XEDKevRJwvDYCYIm6SpIqp0lkq8jUrSslZKJgt6tkNtDClF6PcTUaK3QnURqrdC9U5oqfjy70P2_F-DBWh3AJTvfPIQdbIeJgvOR7BZu-BfDf8DCsWwUw</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Searle, Brian C.</creator><creator>Egertson, Jarrett D.</creator><creator>Bollinger, James G.</creator><creator>Stergachis, Andrew B.</creator><creator>MacCoss, Michael J.</creator><general>Elsevier Inc</general><general>The American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20150901</creationdate><title>Using Data Independent Acquisition (DIA) to Model High-responding Peptides for Targeted Proteomics Experiments</title><author>Searle, Brian C. ; Egertson, Jarrett D. ; Bollinger, James G. ; Stergachis, Andrew B. ; MacCoss, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-ca620941774b7494fc8a34bb2c30818e87f77dea4e247170cb7835a8f3e5e33b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Humans</topic><topic>Mass Spectrometry - methods</topic><topic>Neural Networks, Computer</topic><topic>Peptides - chemistry</topic><topic>Peptides - metabolism</topic><topic>Proteomics - methods</topic><topic>Software</topic><topic>Special Issue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Searle, Brian C.</creatorcontrib><creatorcontrib>Egertson, Jarrett D.</creatorcontrib><creatorcontrib>Bollinger, James G.</creatorcontrib><creatorcontrib>Stergachis, Andrew B.</creatorcontrib><creatorcontrib>MacCoss, Michael J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular & cellular proteomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Searle, Brian C.</au><au>Egertson, Jarrett D.</au><au>Bollinger, James G.</au><au>Stergachis, Andrew B.</au><au>MacCoss, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Data Independent Acquisition (DIA) to Model High-responding Peptides for Targeted Proteomics Experiments</atitle><jtitle>Molecular & cellular proteomics</jtitle><addtitle>Mol Cell Proteomics</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>14</volume><issue>9</issue><spage>2331</spage><epage>2340</epage><pages>2331-2340</pages><issn>1535-9476</issn><eissn>1535-9484</eissn><abstract>Targeted mass spectrometry is an essential tool for detecting quantitative changes in low abundant proteins throughout the proteome. Although selected reaction monitoring (SRM) is the preferred method for quantifying peptides in complex samples, the process of designing SRM assays is laborious. Peptides have widely varying signal responses dictated by sequence-specific physiochemical properties; one major challenge is in selecting representative peptides to target as a proxy for protein abundance. Here we present PREGO, a software tool that predicts high-responding peptides for SRM experiments. PREGO predicts peptide responses with an artificial neural network trained using 11 minimally redundant, maximally relevant properties. Crucial to its success, PREGO is trained using fragment ion intensities of equimolar synthetic peptides extracted from data independent acquisition experiments. Because of similarities in instrumentation and the nature of data collection, relative peptide responses from data independent acquisition experiments are a suitable substitute for SRM experiments because they both make quantitative measurements from integrated fragment ion chromatograms. Using an SRM experiment containing 12,973 peptides from 724 synthetic proteins, PREGO exhibits a 40–85% improvement over previously published approaches at selecting high-responding peptides. These results also represent a dramatic improvement over the rules-based peptide selection approaches commonly used in the literature.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26100116</pmid><doi>10.1074/mcp.M115.051300</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-9476 |
ispartof | Molecular & cellular proteomics, 2015-09, Vol.14 (9), p.2331-2340 |
issn | 1535-9476 1535-9484 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4563719 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algorithms Humans Mass Spectrometry - methods Neural Networks, Computer Peptides - chemistry Peptides - metabolism Proteomics - methods Software Special Issue |
title | Using Data Independent Acquisition (DIA) to Model High-responding Peptides for Targeted Proteomics Experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T09%3A22%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Data%20Independent%20Acquisition%20(DIA)%20to%20Model%20High-responding%20Peptides%20for%20Targeted%20Proteomics%20Experiments&rft.jtitle=Molecular%20&%20cellular%20proteomics&rft.au=Searle,%20Brian%20C.&rft.date=2015-09-01&rft.volume=14&rft.issue=9&rft.spage=2331&rft.epage=2340&rft.pages=2331-2340&rft.issn=1535-9476&rft.eissn=1535-9484&rft_id=info:doi/10.1074/mcp.M115.051300&rft_dat=%3Cproquest_pubme%3E1808717785%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709397737&rft_id=info:pmid/26100116&rft_els_id=S1535947620326426&rfr_iscdi=true |