Phage protein-targeted cancer nanomedicines

Nanoencapsulation of anticancer drugs improves their therapeutic indices by virtue of the enhanced permeation and retention effect which achieves passive targeting of nanoparticles in tumors. This effect can be significantly enhanced by active targeting of nanovehicles to tumors. Numerous ligands ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEBS letters 2014-01, Vol.588 (2), p.341-349
Hauptverfasser: Petrenko, V.A., Jayanna, P.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 349
container_issue 2
container_start_page 341
container_title FEBS letters
container_volume 588
creator Petrenko, V.A.
Jayanna, P.K.
description Nanoencapsulation of anticancer drugs improves their therapeutic indices by virtue of the enhanced permeation and retention effect which achieves passive targeting of nanoparticles in tumors. This effect can be significantly enhanced by active targeting of nanovehicles to tumors. Numerous ligands have been proposed and used in various studies with peptides being considered attractive alternatives to antibodies. This is further reinforced by the availability of peptide phage display libraries which offer an unlimited reservoir of target-specific probes. In particular landscape phages with multivalent display of target-specific peptides which enable the phage particle itself to become a nanoplatform creates a paradigm for high throughput selection of nanoprobes setting the stage for personalized cancer management. Despite its promise, this conjugate of combinatorial chemistry and nanotechnology has not made a significant clinical impact in cancer management due to a lack of using robust processes that facilitate scale-up and manufacturing. To this end we proposed the use of phage fusion protein as the navigating modules of novel targeted nanomedicine platforms which are described in this review.
doi_str_mv 10.1016/j.febslet.2013.11.011
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4557960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014579313008454</els_id><sourcerecordid>1490698302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6314-e91eb7072c9553638ea7a1c408f2c91a9d1e9d471e8dab486938178033d1f0513</originalsourceid><addsrcrecordid>eNqNkcFO3DAQhq0KBAvlEVrtEQklzMSOY1-KWgQFCQmkwtnyOpPFq2yy2FkQb4-j3aL2BCfL9u9vZvwx9g0hR0B5usgbmsWWhrwA5DliDohf2ARVxTMupNphEwAUWVlpvs8OYlxA2ivUe2y_EIXUUuGEndw92jlNV6EfyHfZYMOcBqqnznaOwrSzXb-k2jvfUfzKdhvbRjrarofs4fLi_vwqu7n9fX3-8yZzkqeCpJFmFVSF02XJJVdkK4tOgGrSEVpdI-laVEiqtjOhpOYKKwWc19hAifyQ_dhwV-tZKu6oG4JtzSr4pQ2vprfe_H_T-Ucz75-NKNOwEhLgeAsI_dOa4mCWPjpqW9tRv46mGH9CCyH4h1EUGqRWHIoULTdRF_oYAzXvHSGY0YlZmK0TMzoxiCY5Se--_zvO-6u_ElLgahN48S29fo5qLi9-FX9GwaNf5ABKlCKhzjYoSn6ePQUTnaeksvaB3GDq3n_Q7RtQTbQu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490698302</pqid></control><display><type>article</type><title>Phage protein-targeted cancer nanomedicines</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Petrenko, V.A. ; Jayanna, P.K.</creator><creatorcontrib>Petrenko, V.A. ; Jayanna, P.K.</creatorcontrib><description>Nanoencapsulation of anticancer drugs improves their therapeutic indices by virtue of the enhanced permeation and retention effect which achieves passive targeting of nanoparticles in tumors. This effect can be significantly enhanced by active targeting of nanovehicles to tumors. Numerous ligands have been proposed and used in various studies with peptides being considered attractive alternatives to antibodies. This is further reinforced by the availability of peptide phage display libraries which offer an unlimited reservoir of target-specific probes. In particular landscape phages with multivalent display of target-specific peptides which enable the phage particle itself to become a nanoplatform creates a paradigm for high throughput selection of nanoprobes setting the stage for personalized cancer management. Despite its promise, this conjugate of combinatorial chemistry and nanotechnology has not made a significant clinical impact in cancer management due to a lack of using robust processes that facilitate scale-up and manufacturing. To this end we proposed the use of phage fusion protein as the navigating modules of novel targeted nanomedicine platforms which are described in this review.</description><identifier>ISSN: 0014-5793</identifier><identifier>EISSN: 1873-3468</identifier><identifier>DOI: 10.1016/j.febslet.2013.11.011</identifier><identifier>PMID: 24269681</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>1,2-dioleoyl-3-trimethylammonium-propane ; 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] ; 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)2000] ; Animals ; antibodies ; antineoplastic agents ; Bacteriophages ; cell-penetrating peptides ; CHOL ; cholesterol ; CPP ; diphenylhexatriene ; DOTAP ; DPH ; DPPG ; Drug Delivery Systems ; ePC ; FET ; fluorescence energy transfer ; Humans ; Landscape phage ; landscapes ; ligand-mediated targeting ; ligands ; LMT ; Major coat protein ; manufacturing ; Molecular Targeted Therapy - methods ; nanocapsules ; Nanomedicine ; Nanomedicine - methods ; nanoparticles ; neoplasms ; Neoplasms - drug therapy ; PEG ; PEG2K-PE ; peptide libraries ; Phage display ; phosphatidylcholine (egg) ; polyethylene glycol ; siRNA ; small interfering RNA ; Targeted drug delivery ; trans-membrane ; Viral Proteins - chemistry ; Viral Proteins - metabolism</subject><ispartof>FEBS letters, 2014-01, Vol.588 (2), p.341-349</ispartof><rights>2013 Federation of European Biochemical Societies</rights><rights>FEBS Letters 588 (2014) 1873-3468 © 2015 Federation of European Biochemical Societies</rights><rights>Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6314-e91eb7072c9553638ea7a1c408f2c91a9d1e9d471e8dab486938178033d1f0513</citedby><cites>FETCH-LOGICAL-c6314-e91eb7072c9553638ea7a1c408f2c91a9d1e9d471e8dab486938178033d1f0513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1016%2Fj.febslet.2013.11.011$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0014579313008454$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,3537,27901,27902,45550,45551,46384,46808,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24269681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petrenko, V.A.</creatorcontrib><creatorcontrib>Jayanna, P.K.</creatorcontrib><title>Phage protein-targeted cancer nanomedicines</title><title>FEBS letters</title><addtitle>FEBS Lett</addtitle><description>Nanoencapsulation of anticancer drugs improves their therapeutic indices by virtue of the enhanced permeation and retention effect which achieves passive targeting of nanoparticles in tumors. This effect can be significantly enhanced by active targeting of nanovehicles to tumors. Numerous ligands have been proposed and used in various studies with peptides being considered attractive alternatives to antibodies. This is further reinforced by the availability of peptide phage display libraries which offer an unlimited reservoir of target-specific probes. In particular landscape phages with multivalent display of target-specific peptides which enable the phage particle itself to become a nanoplatform creates a paradigm for high throughput selection of nanoprobes setting the stage for personalized cancer management. Despite its promise, this conjugate of combinatorial chemistry and nanotechnology has not made a significant clinical impact in cancer management due to a lack of using robust processes that facilitate scale-up and manufacturing. To this end we proposed the use of phage fusion protein as the navigating modules of novel targeted nanomedicine platforms which are described in this review.</description><subject>1,2-dioleoyl-3-trimethylammonium-propane</subject><subject>1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]</subject><subject>1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)2000]</subject><subject>Animals</subject><subject>antibodies</subject><subject>antineoplastic agents</subject><subject>Bacteriophages</subject><subject>cell-penetrating peptides</subject><subject>CHOL</subject><subject>cholesterol</subject><subject>CPP</subject><subject>diphenylhexatriene</subject><subject>DOTAP</subject><subject>DPH</subject><subject>DPPG</subject><subject>Drug Delivery Systems</subject><subject>ePC</subject><subject>FET</subject><subject>fluorescence energy transfer</subject><subject>Humans</subject><subject>Landscape phage</subject><subject>landscapes</subject><subject>ligand-mediated targeting</subject><subject>ligands</subject><subject>LMT</subject><subject>Major coat protein</subject><subject>manufacturing</subject><subject>Molecular Targeted Therapy - methods</subject><subject>nanocapsules</subject><subject>Nanomedicine</subject><subject>Nanomedicine - methods</subject><subject>nanoparticles</subject><subject>neoplasms</subject><subject>Neoplasms - drug therapy</subject><subject>PEG</subject><subject>PEG2K-PE</subject><subject>peptide libraries</subject><subject>Phage display</subject><subject>phosphatidylcholine (egg)</subject><subject>polyethylene glycol</subject><subject>siRNA</subject><subject>small interfering RNA</subject><subject>Targeted drug delivery</subject><subject>trans-membrane</subject><subject>Viral Proteins - chemistry</subject><subject>Viral Proteins - metabolism</subject><issn>0014-5793</issn><issn>1873-3468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFO3DAQhq0KBAvlEVrtEQklzMSOY1-KWgQFCQmkwtnyOpPFq2yy2FkQb4-j3aL2BCfL9u9vZvwx9g0hR0B5usgbmsWWhrwA5DliDohf2ARVxTMupNphEwAUWVlpvs8OYlxA2ivUe2y_EIXUUuGEndw92jlNV6EfyHfZYMOcBqqnznaOwrSzXb-k2jvfUfzKdhvbRjrarofs4fLi_vwqu7n9fX3-8yZzkqeCpJFmFVSF02XJJVdkK4tOgGrSEVpdI-laVEiqtjOhpOYKKwWc19hAifyQ_dhwV-tZKu6oG4JtzSr4pQ2vprfe_H_T-Ucz75-NKNOwEhLgeAsI_dOa4mCWPjpqW9tRv46mGH9CCyH4h1EUGqRWHIoULTdRF_oYAzXvHSGY0YlZmK0TMzoxiCY5Se--_zvO-6u_ElLgahN48S29fo5qLi9-FX9GwaNf5ABKlCKhzjYoSn6ePQUTnaeksvaB3GDq3n_Q7RtQTbQu</recordid><startdate>20140121</startdate><enddate>20140121</enddate><creator>Petrenko, V.A.</creator><creator>Jayanna, P.K.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140121</creationdate><title>Phage protein-targeted cancer nanomedicines</title><author>Petrenko, V.A. ; Jayanna, P.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6314-e91eb7072c9553638ea7a1c408f2c91a9d1e9d471e8dab486938178033d1f0513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>1,2-dioleoyl-3-trimethylammonium-propane</topic><topic>1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]</topic><topic>1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)2000]</topic><topic>Animals</topic><topic>antibodies</topic><topic>antineoplastic agents</topic><topic>Bacteriophages</topic><topic>cell-penetrating peptides</topic><topic>CHOL</topic><topic>cholesterol</topic><topic>CPP</topic><topic>diphenylhexatriene</topic><topic>DOTAP</topic><topic>DPH</topic><topic>DPPG</topic><topic>Drug Delivery Systems</topic><topic>ePC</topic><topic>FET</topic><topic>fluorescence energy transfer</topic><topic>Humans</topic><topic>Landscape phage</topic><topic>landscapes</topic><topic>ligand-mediated targeting</topic><topic>ligands</topic><topic>LMT</topic><topic>Major coat protein</topic><topic>manufacturing</topic><topic>Molecular Targeted Therapy - methods</topic><topic>nanocapsules</topic><topic>Nanomedicine</topic><topic>Nanomedicine - methods</topic><topic>nanoparticles</topic><topic>neoplasms</topic><topic>Neoplasms - drug therapy</topic><topic>PEG</topic><topic>PEG2K-PE</topic><topic>peptide libraries</topic><topic>Phage display</topic><topic>phosphatidylcholine (egg)</topic><topic>polyethylene glycol</topic><topic>siRNA</topic><topic>small interfering RNA</topic><topic>Targeted drug delivery</topic><topic>trans-membrane</topic><topic>Viral Proteins - chemistry</topic><topic>Viral Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrenko, V.A.</creatorcontrib><creatorcontrib>Jayanna, P.K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>FEBS letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrenko, V.A.</au><au>Jayanna, P.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phage protein-targeted cancer nanomedicines</atitle><jtitle>FEBS letters</jtitle><addtitle>FEBS Lett</addtitle><date>2014-01-21</date><risdate>2014</risdate><volume>588</volume><issue>2</issue><spage>341</spage><epage>349</epage><pages>341-349</pages><issn>0014-5793</issn><eissn>1873-3468</eissn><abstract>Nanoencapsulation of anticancer drugs improves their therapeutic indices by virtue of the enhanced permeation and retention effect which achieves passive targeting of nanoparticles in tumors. This effect can be significantly enhanced by active targeting of nanovehicles to tumors. Numerous ligands have been proposed and used in various studies with peptides being considered attractive alternatives to antibodies. This is further reinforced by the availability of peptide phage display libraries which offer an unlimited reservoir of target-specific probes. In particular landscape phages with multivalent display of target-specific peptides which enable the phage particle itself to become a nanoplatform creates a paradigm for high throughput selection of nanoprobes setting the stage for personalized cancer management. Despite its promise, this conjugate of combinatorial chemistry and nanotechnology has not made a significant clinical impact in cancer management due to a lack of using robust processes that facilitate scale-up and manufacturing. To this end we proposed the use of phage fusion protein as the navigating modules of novel targeted nanomedicine platforms which are described in this review.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>24269681</pmid><doi>10.1016/j.febslet.2013.11.011</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-5793
ispartof FEBS letters, 2014-01, Vol.588 (2), p.341-349
issn 0014-5793
1873-3468
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4557960
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects 1,2-dioleoyl-3-trimethylammonium-propane
1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)2000]
Animals
antibodies
antineoplastic agents
Bacteriophages
cell-penetrating peptides
CHOL
cholesterol
CPP
diphenylhexatriene
DOTAP
DPH
DPPG
Drug Delivery Systems
ePC
FET
fluorescence energy transfer
Humans
Landscape phage
landscapes
ligand-mediated targeting
ligands
LMT
Major coat protein
manufacturing
Molecular Targeted Therapy - methods
nanocapsules
Nanomedicine
Nanomedicine - methods
nanoparticles
neoplasms
Neoplasms - drug therapy
PEG
PEG2K-PE
peptide libraries
Phage display
phosphatidylcholine (egg)
polyethylene glycol
siRNA
small interfering RNA
Targeted drug delivery
trans-membrane
Viral Proteins - chemistry
Viral Proteins - metabolism
title Phage protein-targeted cancer nanomedicines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A42%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phage%20protein-targeted%20cancer%20nanomedicines&rft.jtitle=FEBS%20letters&rft.au=Petrenko,%20V.A.&rft.date=2014-01-21&rft.volume=588&rft.issue=2&rft.spage=341&rft.epage=349&rft.pages=341-349&rft.issn=0014-5793&rft.eissn=1873-3468&rft_id=info:doi/10.1016/j.febslet.2013.11.011&rft_dat=%3Cproquest_pubme%3E1490698302%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490698302&rft_id=info:pmid/24269681&rft_els_id=S0014579313008454&rfr_iscdi=true