Phage protein-targeted cancer nanomedicines
Nanoencapsulation of anticancer drugs improves their therapeutic indices by virtue of the enhanced permeation and retention effect which achieves passive targeting of nanoparticles in tumors. This effect can be significantly enhanced by active targeting of nanovehicles to tumors. Numerous ligands ha...
Gespeichert in:
Veröffentlicht in: | FEBS letters 2014-01, Vol.588 (2), p.341-349 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 349 |
---|---|
container_issue | 2 |
container_start_page | 341 |
container_title | FEBS letters |
container_volume | 588 |
creator | Petrenko, V.A. Jayanna, P.K. |
description | Nanoencapsulation of anticancer drugs improves their therapeutic indices by virtue of the enhanced permeation and retention effect which achieves passive targeting of nanoparticles in tumors. This effect can be significantly enhanced by active targeting of nanovehicles to tumors. Numerous ligands have been proposed and used in various studies with peptides being considered attractive alternatives to antibodies. This is further reinforced by the availability of peptide phage display libraries which offer an unlimited reservoir of target-specific probes. In particular landscape phages with multivalent display of target-specific peptides which enable the phage particle itself to become a nanoplatform creates a paradigm for high throughput selection of nanoprobes setting the stage for personalized cancer management. Despite its promise, this conjugate of combinatorial chemistry and nanotechnology has not made a significant clinical impact in cancer management due to a lack of using robust processes that facilitate scale-up and manufacturing. To this end we proposed the use of phage fusion protein as the navigating modules of novel targeted nanomedicine platforms which are described in this review. |
doi_str_mv | 10.1016/j.febslet.2013.11.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4557960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014579313008454</els_id><sourcerecordid>1490698302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6314-e91eb7072c9553638ea7a1c408f2c91a9d1e9d471e8dab486938178033d1f0513</originalsourceid><addsrcrecordid>eNqNkcFO3DAQhq0KBAvlEVrtEQklzMSOY1-KWgQFCQmkwtnyOpPFq2yy2FkQb4-j3aL2BCfL9u9vZvwx9g0hR0B5usgbmsWWhrwA5DliDohf2ARVxTMupNphEwAUWVlpvs8OYlxA2ivUe2y_EIXUUuGEndw92jlNV6EfyHfZYMOcBqqnznaOwrSzXb-k2jvfUfzKdhvbRjrarofs4fLi_vwqu7n9fX3-8yZzkqeCpJFmFVSF02XJJVdkK4tOgGrSEVpdI-laVEiqtjOhpOYKKwWc19hAifyQ_dhwV-tZKu6oG4JtzSr4pQ2vprfe_H_T-Ucz75-NKNOwEhLgeAsI_dOa4mCWPjpqW9tRv46mGH9CCyH4h1EUGqRWHIoULTdRF_oYAzXvHSGY0YlZmK0TMzoxiCY5Se--_zvO-6u_ElLgahN48S29fo5qLi9-FX9GwaNf5ABKlCKhzjYoSn6ePQUTnaeksvaB3GDq3n_Q7RtQTbQu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490698302</pqid></control><display><type>article</type><title>Phage protein-targeted cancer nanomedicines</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Petrenko, V.A. ; Jayanna, P.K.</creator><creatorcontrib>Petrenko, V.A. ; Jayanna, P.K.</creatorcontrib><description>Nanoencapsulation of anticancer drugs improves their therapeutic indices by virtue of the enhanced permeation and retention effect which achieves passive targeting of nanoparticles in tumors. This effect can be significantly enhanced by active targeting of nanovehicles to tumors. Numerous ligands have been proposed and used in various studies with peptides being considered attractive alternatives to antibodies. This is further reinforced by the availability of peptide phage display libraries which offer an unlimited reservoir of target-specific probes. In particular landscape phages with multivalent display of target-specific peptides which enable the phage particle itself to become a nanoplatform creates a paradigm for high throughput selection of nanoprobes setting the stage for personalized cancer management. Despite its promise, this conjugate of combinatorial chemistry and nanotechnology has not made a significant clinical impact in cancer management due to a lack of using robust processes that facilitate scale-up and manufacturing. To this end we proposed the use of phage fusion protein as the navigating modules of novel targeted nanomedicine platforms which are described in this review.</description><identifier>ISSN: 0014-5793</identifier><identifier>EISSN: 1873-3468</identifier><identifier>DOI: 10.1016/j.febslet.2013.11.011</identifier><identifier>PMID: 24269681</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>1,2-dioleoyl-3-trimethylammonium-propane ; 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] ; 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)2000] ; Animals ; antibodies ; antineoplastic agents ; Bacteriophages ; cell-penetrating peptides ; CHOL ; cholesterol ; CPP ; diphenylhexatriene ; DOTAP ; DPH ; DPPG ; Drug Delivery Systems ; ePC ; FET ; fluorescence energy transfer ; Humans ; Landscape phage ; landscapes ; ligand-mediated targeting ; ligands ; LMT ; Major coat protein ; manufacturing ; Molecular Targeted Therapy - methods ; nanocapsules ; Nanomedicine ; Nanomedicine - methods ; nanoparticles ; neoplasms ; Neoplasms - drug therapy ; PEG ; PEG2K-PE ; peptide libraries ; Phage display ; phosphatidylcholine (egg) ; polyethylene glycol ; siRNA ; small interfering RNA ; Targeted drug delivery ; trans-membrane ; Viral Proteins - chemistry ; Viral Proteins - metabolism</subject><ispartof>FEBS letters, 2014-01, Vol.588 (2), p.341-349</ispartof><rights>2013 Federation of European Biochemical Societies</rights><rights>FEBS Letters 588 (2014) 1873-3468 © 2015 Federation of European Biochemical Societies</rights><rights>Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6314-e91eb7072c9553638ea7a1c408f2c91a9d1e9d471e8dab486938178033d1f0513</citedby><cites>FETCH-LOGICAL-c6314-e91eb7072c9553638ea7a1c408f2c91a9d1e9d471e8dab486938178033d1f0513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1016%2Fj.febslet.2013.11.011$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0014579313008454$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,3537,27901,27902,45550,45551,46384,46808,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24269681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petrenko, V.A.</creatorcontrib><creatorcontrib>Jayanna, P.K.</creatorcontrib><title>Phage protein-targeted cancer nanomedicines</title><title>FEBS letters</title><addtitle>FEBS Lett</addtitle><description>Nanoencapsulation of anticancer drugs improves their therapeutic indices by virtue of the enhanced permeation and retention effect which achieves passive targeting of nanoparticles in tumors. This effect can be significantly enhanced by active targeting of nanovehicles to tumors. Numerous ligands have been proposed and used in various studies with peptides being considered attractive alternatives to antibodies. This is further reinforced by the availability of peptide phage display libraries which offer an unlimited reservoir of target-specific probes. In particular landscape phages with multivalent display of target-specific peptides which enable the phage particle itself to become a nanoplatform creates a paradigm for high throughput selection of nanoprobes setting the stage for personalized cancer management. Despite its promise, this conjugate of combinatorial chemistry and nanotechnology has not made a significant clinical impact in cancer management due to a lack of using robust processes that facilitate scale-up and manufacturing. To this end we proposed the use of phage fusion protein as the navigating modules of novel targeted nanomedicine platforms which are described in this review.</description><subject>1,2-dioleoyl-3-trimethylammonium-propane</subject><subject>1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]</subject><subject>1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)2000]</subject><subject>Animals</subject><subject>antibodies</subject><subject>antineoplastic agents</subject><subject>Bacteriophages</subject><subject>cell-penetrating peptides</subject><subject>CHOL</subject><subject>cholesterol</subject><subject>CPP</subject><subject>diphenylhexatriene</subject><subject>DOTAP</subject><subject>DPH</subject><subject>DPPG</subject><subject>Drug Delivery Systems</subject><subject>ePC</subject><subject>FET</subject><subject>fluorescence energy transfer</subject><subject>Humans</subject><subject>Landscape phage</subject><subject>landscapes</subject><subject>ligand-mediated targeting</subject><subject>ligands</subject><subject>LMT</subject><subject>Major coat protein</subject><subject>manufacturing</subject><subject>Molecular Targeted Therapy - methods</subject><subject>nanocapsules</subject><subject>Nanomedicine</subject><subject>Nanomedicine - methods</subject><subject>nanoparticles</subject><subject>neoplasms</subject><subject>Neoplasms - drug therapy</subject><subject>PEG</subject><subject>PEG2K-PE</subject><subject>peptide libraries</subject><subject>Phage display</subject><subject>phosphatidylcholine (egg)</subject><subject>polyethylene glycol</subject><subject>siRNA</subject><subject>small interfering RNA</subject><subject>Targeted drug delivery</subject><subject>trans-membrane</subject><subject>Viral Proteins - chemistry</subject><subject>Viral Proteins - metabolism</subject><issn>0014-5793</issn><issn>1873-3468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFO3DAQhq0KBAvlEVrtEQklzMSOY1-KWgQFCQmkwtnyOpPFq2yy2FkQb4-j3aL2BCfL9u9vZvwx9g0hR0B5usgbmsWWhrwA5DliDohf2ARVxTMupNphEwAUWVlpvs8OYlxA2ivUe2y_EIXUUuGEndw92jlNV6EfyHfZYMOcBqqnznaOwrSzXb-k2jvfUfzKdhvbRjrarofs4fLi_vwqu7n9fX3-8yZzkqeCpJFmFVSF02XJJVdkK4tOgGrSEVpdI-laVEiqtjOhpOYKKwWc19hAifyQ_dhwV-tZKu6oG4JtzSr4pQ2vprfe_H_T-Ucz75-NKNOwEhLgeAsI_dOa4mCWPjpqW9tRv46mGH9CCyH4h1EUGqRWHIoULTdRF_oYAzXvHSGY0YlZmK0TMzoxiCY5Se--_zvO-6u_ElLgahN48S29fo5qLi9-FX9GwaNf5ABKlCKhzjYoSn6ePQUTnaeksvaB3GDq3n_Q7RtQTbQu</recordid><startdate>20140121</startdate><enddate>20140121</enddate><creator>Petrenko, V.A.</creator><creator>Jayanna, P.K.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140121</creationdate><title>Phage protein-targeted cancer nanomedicines</title><author>Petrenko, V.A. ; Jayanna, P.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6314-e91eb7072c9553638ea7a1c408f2c91a9d1e9d471e8dab486938178033d1f0513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>1,2-dioleoyl-3-trimethylammonium-propane</topic><topic>1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]</topic><topic>1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)2000]</topic><topic>Animals</topic><topic>antibodies</topic><topic>antineoplastic agents</topic><topic>Bacteriophages</topic><topic>cell-penetrating peptides</topic><topic>CHOL</topic><topic>cholesterol</topic><topic>CPP</topic><topic>diphenylhexatriene</topic><topic>DOTAP</topic><topic>DPH</topic><topic>DPPG</topic><topic>Drug Delivery Systems</topic><topic>ePC</topic><topic>FET</topic><topic>fluorescence energy transfer</topic><topic>Humans</topic><topic>Landscape phage</topic><topic>landscapes</topic><topic>ligand-mediated targeting</topic><topic>ligands</topic><topic>LMT</topic><topic>Major coat protein</topic><topic>manufacturing</topic><topic>Molecular Targeted Therapy - methods</topic><topic>nanocapsules</topic><topic>Nanomedicine</topic><topic>Nanomedicine - methods</topic><topic>nanoparticles</topic><topic>neoplasms</topic><topic>Neoplasms - drug therapy</topic><topic>PEG</topic><topic>PEG2K-PE</topic><topic>peptide libraries</topic><topic>Phage display</topic><topic>phosphatidylcholine (egg)</topic><topic>polyethylene glycol</topic><topic>siRNA</topic><topic>small interfering RNA</topic><topic>Targeted drug delivery</topic><topic>trans-membrane</topic><topic>Viral Proteins - chemistry</topic><topic>Viral Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrenko, V.A.</creatorcontrib><creatorcontrib>Jayanna, P.K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>FEBS letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrenko, V.A.</au><au>Jayanna, P.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phage protein-targeted cancer nanomedicines</atitle><jtitle>FEBS letters</jtitle><addtitle>FEBS Lett</addtitle><date>2014-01-21</date><risdate>2014</risdate><volume>588</volume><issue>2</issue><spage>341</spage><epage>349</epage><pages>341-349</pages><issn>0014-5793</issn><eissn>1873-3468</eissn><abstract>Nanoencapsulation of anticancer drugs improves their therapeutic indices by virtue of the enhanced permeation and retention effect which achieves passive targeting of nanoparticles in tumors. This effect can be significantly enhanced by active targeting of nanovehicles to tumors. Numerous ligands have been proposed and used in various studies with peptides being considered attractive alternatives to antibodies. This is further reinforced by the availability of peptide phage display libraries which offer an unlimited reservoir of target-specific probes. In particular landscape phages with multivalent display of target-specific peptides which enable the phage particle itself to become a nanoplatform creates a paradigm for high throughput selection of nanoprobes setting the stage for personalized cancer management. Despite its promise, this conjugate of combinatorial chemistry and nanotechnology has not made a significant clinical impact in cancer management due to a lack of using robust processes that facilitate scale-up and manufacturing. To this end we proposed the use of phage fusion protein as the navigating modules of novel targeted nanomedicine platforms which are described in this review.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>24269681</pmid><doi>10.1016/j.febslet.2013.11.011</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-5793 |
ispartof | FEBS letters, 2014-01, Vol.588 (2), p.341-349 |
issn | 0014-5793 1873-3468 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4557960 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | 1,2-dioleoyl-3-trimethylammonium-propane 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)2000] Animals antibodies antineoplastic agents Bacteriophages cell-penetrating peptides CHOL cholesterol CPP diphenylhexatriene DOTAP DPH DPPG Drug Delivery Systems ePC FET fluorescence energy transfer Humans Landscape phage landscapes ligand-mediated targeting ligands LMT Major coat protein manufacturing Molecular Targeted Therapy - methods nanocapsules Nanomedicine Nanomedicine - methods nanoparticles neoplasms Neoplasms - drug therapy PEG PEG2K-PE peptide libraries Phage display phosphatidylcholine (egg) polyethylene glycol siRNA small interfering RNA Targeted drug delivery trans-membrane Viral Proteins - chemistry Viral Proteins - metabolism |
title | Phage protein-targeted cancer nanomedicines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A42%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phage%20protein-targeted%20cancer%20nanomedicines&rft.jtitle=FEBS%20letters&rft.au=Petrenko,%20V.A.&rft.date=2014-01-21&rft.volume=588&rft.issue=2&rft.spage=341&rft.epage=349&rft.pages=341-349&rft.issn=0014-5793&rft.eissn=1873-3468&rft_id=info:doi/10.1016/j.febslet.2013.11.011&rft_dat=%3Cproquest_pubme%3E1490698302%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490698302&rft_id=info:pmid/24269681&rft_els_id=S0014579313008454&rfr_iscdi=true |