Geometric guidance of integrin mediated traction stress during stem cell differentiation
Abstract Cells sense and transduce the chemical and mechanical properties of their microenvironment through cell surface integrin receptors. Traction stress exerted by cells on the extracellular matrix mediates focal adhesion stabilization and regulation of the cytoskeleton for directing biological...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2015-11, Vol.69, p.174-183 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 183 |
---|---|
container_issue | |
container_start_page | 174 |
container_title | Biomaterials |
container_volume | 69 |
creator | Lee, Junmin Abdeen, Amr A Tang, Xin Saif, Taher A Kilian, Kristopher A |
description | Abstract Cells sense and transduce the chemical and mechanical properties of their microenvironment through cell surface integrin receptors. Traction stress exerted by cells on the extracellular matrix mediates focal adhesion stabilization and regulation of the cytoskeleton for directing biological activity. Understanding how stem cells integrate biomaterials properties through focal adhesions during differentiation is important for the design of soft materials for regenerative medicine. In this paper we use micropatterned hydrogels containing fluorescent beads to explore force transmission through integrins from single mesenchymal stem cells (MSCs) during differentiation. When cultured on polyacrylamide gels, MSCs will express markers associated with osteogenesis and myogenesis in a stiffness dependent manner. The shape of single cells and the composition of tethered matrix protein both influence the magnitude of traction stress applied and the resultant differentiation outcome. We show how geometry guides the spatial positioning of focal adhesions to maximize interaction with the matrix, and uncover a relationship between αvβ3, α5β1 and mechanochemical regulation of osteogenesis. |
doi_str_mv | 10.1016/j.biomaterials.2015.08.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4556610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961215006572</els_id><sourcerecordid>1708896602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c674t-7781214220d884b191ff3a6f297fd95de350f476e795a8ff1cb4e7fe144727ec3</originalsourceid><addsrcrecordid>eNqNkk9v1DAQxS0EokvhK6CIE5ekY8f_wqESKtAiVeIASNwsrzNevCRxsZNK_fY42lIVTnuyRn7z5o1-Q8gbCg0FKs_2zTbE0c6Ygh1yw4CKBnQDIJ6QDdVK16ID8ZRsgHJWd5KyE_Ii5z2UGjh7Tk6YZFqA5hvy4xLjiHMKrtotobeTwyr6Kkwz7lKYqhH7UCb11Zysm0OcqjwnzLnql_K9KxWOlcNhqPrgPSac5qIvupfkmS_p8NX9e0q-f_r47eKqvv5y-fni_XXtpOJzrZSmrMRk0GvNt7Sj3rdWetYp33eix1aA50qi6oTV3lO35ag8Us4VU-jaU3J-8L1ZtiWsKwGSHcxNCqNNdybaYP79mcJPs4u3hgshJYVi8PbeIMXfC-bZjCGvG9kJ45INLRFB0JaxI6Rc6o6VJY6QgtadlLC6vjtIXYo5J_QP4SmYFbjZm8fAzQrcgDYFeGl-_Xj9h9a_hIvgw0GABcJtwGSyC1gw9yGhm00fw3Fzzv-zcUOYgrPDL7zDvI9LmtYeajIzYL6up7deHhUAUijW_gEBXdm5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1708896602</pqid></control><display><type>article</type><title>Geometric guidance of integrin mediated traction stress during stem cell differentiation</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Lee, Junmin ; Abdeen, Amr A ; Tang, Xin ; Saif, Taher A ; Kilian, Kristopher A</creator><creatorcontrib>Lee, Junmin ; Abdeen, Amr A ; Tang, Xin ; Saif, Taher A ; Kilian, Kristopher A</creatorcontrib><description>Abstract Cells sense and transduce the chemical and mechanical properties of their microenvironment through cell surface integrin receptors. Traction stress exerted by cells on the extracellular matrix mediates focal adhesion stabilization and regulation of the cytoskeleton for directing biological activity. Understanding how stem cells integrate biomaterials properties through focal adhesions during differentiation is important for the design of soft materials for regenerative medicine. In this paper we use micropatterned hydrogels containing fluorescent beads to explore force transmission through integrins from single mesenchymal stem cells (MSCs) during differentiation. When cultured on polyacrylamide gels, MSCs will express markers associated with osteogenesis and myogenesis in a stiffness dependent manner. The shape of single cells and the composition of tethered matrix protein both influence the magnitude of traction stress applied and the resultant differentiation outcome. We show how geometry guides the spatial positioning of focal adhesions to maximize interaction with the matrix, and uncover a relationship between αvβ3, α5β1 and mechanochemical regulation of osteogenesis.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2015.08.005</identifier><identifier>PMID: 26285084</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Acrylic Resins - chemistry ; Adhesion ; Advanced Basic Science ; Biocompatible Materials - chemistry ; Biomaterials ; Biomedical materials ; Cell Adhesion ; Cell Differentiation ; Cell Line ; Cell Shape ; Dentistry ; Differentiation ; Extracellular Matrix Proteins - chemistry ; Hardness ; Humans ; Hydrogels - chemistry ; Immobilized Proteins - chemistry ; Integrin ; Integrins - metabolism ; Mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - metabolism ; Microenvironment ; Stem cells ; Stress, Mechanical ; Stresses ; Surgical implants ; Tissue Array Analysis ; Traction ; Traction stress</subject><ispartof>Biomaterials, 2015-11, Vol.69, p.174-183</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c674t-7781214220d884b191ff3a6f297fd95de350f476e795a8ff1cb4e7fe144727ec3</citedby><cites>FETCH-LOGICAL-c674t-7781214220d884b191ff3a6f297fd95de350f476e795a8ff1cb4e7fe144727ec3</cites><orcidid>0000-0002-8963-9796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2015.08.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26285084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Junmin</creatorcontrib><creatorcontrib>Abdeen, Amr A</creatorcontrib><creatorcontrib>Tang, Xin</creatorcontrib><creatorcontrib>Saif, Taher A</creatorcontrib><creatorcontrib>Kilian, Kristopher A</creatorcontrib><title>Geometric guidance of integrin mediated traction stress during stem cell differentiation</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Cells sense and transduce the chemical and mechanical properties of their microenvironment through cell surface integrin receptors. Traction stress exerted by cells on the extracellular matrix mediates focal adhesion stabilization and regulation of the cytoskeleton for directing biological activity. Understanding how stem cells integrate biomaterials properties through focal adhesions during differentiation is important for the design of soft materials for regenerative medicine. In this paper we use micropatterned hydrogels containing fluorescent beads to explore force transmission through integrins from single mesenchymal stem cells (MSCs) during differentiation. When cultured on polyacrylamide gels, MSCs will express markers associated with osteogenesis and myogenesis in a stiffness dependent manner. The shape of single cells and the composition of tethered matrix protein both influence the magnitude of traction stress applied and the resultant differentiation outcome. We show how geometry guides the spatial positioning of focal adhesions to maximize interaction with the matrix, and uncover a relationship between αvβ3, α5β1 and mechanochemical regulation of osteogenesis.</description><subject>Acrylic Resins - chemistry</subject><subject>Adhesion</subject><subject>Advanced Basic Science</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Cell Adhesion</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Cell Shape</subject><subject>Dentistry</subject><subject>Differentiation</subject><subject>Extracellular Matrix Proteins - chemistry</subject><subject>Hardness</subject><subject>Humans</subject><subject>Hydrogels - chemistry</subject><subject>Immobilized Proteins - chemistry</subject><subject>Integrin</subject><subject>Integrins - metabolism</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Microenvironment</subject><subject>Stem cells</subject><subject>Stress, Mechanical</subject><subject>Stresses</subject><subject>Surgical implants</subject><subject>Tissue Array Analysis</subject><subject>Traction</subject><subject>Traction stress</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk9v1DAQxS0EokvhK6CIE5ekY8f_wqESKtAiVeIASNwsrzNevCRxsZNK_fY42lIVTnuyRn7z5o1-Q8gbCg0FKs_2zTbE0c6Ygh1yw4CKBnQDIJ6QDdVK16ID8ZRsgHJWd5KyE_Ii5z2UGjh7Tk6YZFqA5hvy4xLjiHMKrtotobeTwyr6Kkwz7lKYqhH7UCb11Zysm0OcqjwnzLnql_K9KxWOlcNhqPrgPSac5qIvupfkmS_p8NX9e0q-f_r47eKqvv5y-fni_XXtpOJzrZSmrMRk0GvNt7Sj3rdWetYp33eix1aA50qi6oTV3lO35ag8Us4VU-jaU3J-8L1ZtiWsKwGSHcxNCqNNdybaYP79mcJPs4u3hgshJYVi8PbeIMXfC-bZjCGvG9kJ45INLRFB0JaxI6Rc6o6VJY6QgtadlLC6vjtIXYo5J_QP4SmYFbjZm8fAzQrcgDYFeGl-_Xj9h9a_hIvgw0GABcJtwGSyC1gw9yGhm00fw3Fzzv-zcUOYgrPDL7zDvI9LmtYeajIzYL6up7deHhUAUijW_gEBXdm5</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Lee, Junmin</creator><creator>Abdeen, Amr A</creator><creator>Tang, Xin</creator><creator>Saif, Taher A</creator><creator>Kilian, Kristopher A</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8963-9796</orcidid></search><sort><creationdate>20151101</creationdate><title>Geometric guidance of integrin mediated traction stress during stem cell differentiation</title><author>Lee, Junmin ; Abdeen, Amr A ; Tang, Xin ; Saif, Taher A ; Kilian, Kristopher A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c674t-7781214220d884b191ff3a6f297fd95de350f476e795a8ff1cb4e7fe144727ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acrylic Resins - chemistry</topic><topic>Adhesion</topic><topic>Advanced Basic Science</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Cell Adhesion</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Cell Shape</topic><topic>Dentistry</topic><topic>Differentiation</topic><topic>Extracellular Matrix Proteins - chemistry</topic><topic>Hardness</topic><topic>Humans</topic><topic>Hydrogels - chemistry</topic><topic>Immobilized Proteins - chemistry</topic><topic>Integrin</topic><topic>Integrins - metabolism</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Microenvironment</topic><topic>Stem cells</topic><topic>Stress, Mechanical</topic><topic>Stresses</topic><topic>Surgical implants</topic><topic>Tissue Array Analysis</topic><topic>Traction</topic><topic>Traction stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Junmin</creatorcontrib><creatorcontrib>Abdeen, Amr A</creatorcontrib><creatorcontrib>Tang, Xin</creatorcontrib><creatorcontrib>Saif, Taher A</creatorcontrib><creatorcontrib>Kilian, Kristopher A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Junmin</au><au>Abdeen, Amr A</au><au>Tang, Xin</au><au>Saif, Taher A</au><au>Kilian, Kristopher A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric guidance of integrin mediated traction stress during stem cell differentiation</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>69</volume><spage>174</spage><epage>183</epage><pages>174-183</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Cells sense and transduce the chemical and mechanical properties of their microenvironment through cell surface integrin receptors. Traction stress exerted by cells on the extracellular matrix mediates focal adhesion stabilization and regulation of the cytoskeleton for directing biological activity. Understanding how stem cells integrate biomaterials properties through focal adhesions during differentiation is important for the design of soft materials for regenerative medicine. In this paper we use micropatterned hydrogels containing fluorescent beads to explore force transmission through integrins from single mesenchymal stem cells (MSCs) during differentiation. When cultured on polyacrylamide gels, MSCs will express markers associated with osteogenesis and myogenesis in a stiffness dependent manner. The shape of single cells and the composition of tethered matrix protein both influence the magnitude of traction stress applied and the resultant differentiation outcome. We show how geometry guides the spatial positioning of focal adhesions to maximize interaction with the matrix, and uncover a relationship between αvβ3, α5β1 and mechanochemical regulation of osteogenesis.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>26285084</pmid><doi>10.1016/j.biomaterials.2015.08.005</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8963-9796</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2015-11, Vol.69, p.174-183 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4556610 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Acrylic Resins - chemistry Adhesion Advanced Basic Science Biocompatible Materials - chemistry Biomaterials Biomedical materials Cell Adhesion Cell Differentiation Cell Line Cell Shape Dentistry Differentiation Extracellular Matrix Proteins - chemistry Hardness Humans Hydrogels - chemistry Immobilized Proteins - chemistry Integrin Integrins - metabolism Mesenchymal stem cells Mesenchymal Stem Cells - cytology Mesenchymal Stem Cells - metabolism Microenvironment Stem cells Stress, Mechanical Stresses Surgical implants Tissue Array Analysis Traction Traction stress |
title | Geometric guidance of integrin mediated traction stress during stem cell differentiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20guidance%20of%20integrin%20mediated%20traction%20stress%20during%20stem%20cell%20differentiation&rft.jtitle=Biomaterials&rft.au=Lee,%20Junmin&rft.date=2015-11-01&rft.volume=69&rft.spage=174&rft.epage=183&rft.pages=174-183&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2015.08.005&rft_dat=%3Cproquest_pubme%3E1708896602%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1708896602&rft_id=info:pmid/26285084&rft_els_id=1_s2_0_S0142961215006572&rfr_iscdi=true |