Geometric guidance of integrin mediated traction stress during stem cell differentiation

Abstract Cells sense and transduce the chemical and mechanical properties of their microenvironment through cell surface integrin receptors. Traction stress exerted by cells on the extracellular matrix mediates focal adhesion stabilization and regulation of the cytoskeleton for directing biological...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2015-11, Vol.69, p.174-183
Hauptverfasser: Lee, Junmin, Abdeen, Amr A, Tang, Xin, Saif, Taher A, Kilian, Kristopher A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue
container_start_page 174
container_title Biomaterials
container_volume 69
creator Lee, Junmin
Abdeen, Amr A
Tang, Xin
Saif, Taher A
Kilian, Kristopher A
description Abstract Cells sense and transduce the chemical and mechanical properties of their microenvironment through cell surface integrin receptors. Traction stress exerted by cells on the extracellular matrix mediates focal adhesion stabilization and regulation of the cytoskeleton for directing biological activity. Understanding how stem cells integrate biomaterials properties through focal adhesions during differentiation is important for the design of soft materials for regenerative medicine. In this paper we use micropatterned hydrogels containing fluorescent beads to explore force transmission through integrins from single mesenchymal stem cells (MSCs) during differentiation. When cultured on polyacrylamide gels, MSCs will express markers associated with osteogenesis and myogenesis in a stiffness dependent manner. The shape of single cells and the composition of tethered matrix protein both influence the magnitude of traction stress applied and the resultant differentiation outcome. We show how geometry guides the spatial positioning of focal adhesions to maximize interaction with the matrix, and uncover a relationship between αvβ3, α5β1 and mechanochemical regulation of osteogenesis.
doi_str_mv 10.1016/j.biomaterials.2015.08.005
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4556610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961215006572</els_id><sourcerecordid>1708896602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c674t-7781214220d884b191ff3a6f297fd95de350f476e795a8ff1cb4e7fe144727ec3</originalsourceid><addsrcrecordid>eNqNkk9v1DAQxS0EokvhK6CIE5ekY8f_wqESKtAiVeIASNwsrzNevCRxsZNK_fY42lIVTnuyRn7z5o1-Q8gbCg0FKs_2zTbE0c6Ygh1yw4CKBnQDIJ6QDdVK16ID8ZRsgHJWd5KyE_Ii5z2UGjh7Tk6YZFqA5hvy4xLjiHMKrtotobeTwyr6Kkwz7lKYqhH7UCb11Zysm0OcqjwnzLnql_K9KxWOlcNhqPrgPSac5qIvupfkmS_p8NX9e0q-f_r47eKqvv5y-fni_XXtpOJzrZSmrMRk0GvNt7Sj3rdWetYp33eix1aA50qi6oTV3lO35ag8Us4VU-jaU3J-8L1ZtiWsKwGSHcxNCqNNdybaYP79mcJPs4u3hgshJYVi8PbeIMXfC-bZjCGvG9kJ45INLRFB0JaxI6Rc6o6VJY6QgtadlLC6vjtIXYo5J_QP4SmYFbjZm8fAzQrcgDYFeGl-_Xj9h9a_hIvgw0GABcJtwGSyC1gw9yGhm00fw3Fzzv-zcUOYgrPDL7zDvI9LmtYeajIzYL6up7deHhUAUijW_gEBXdm5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1708896602</pqid></control><display><type>article</type><title>Geometric guidance of integrin mediated traction stress during stem cell differentiation</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Lee, Junmin ; Abdeen, Amr A ; Tang, Xin ; Saif, Taher A ; Kilian, Kristopher A</creator><creatorcontrib>Lee, Junmin ; Abdeen, Amr A ; Tang, Xin ; Saif, Taher A ; Kilian, Kristopher A</creatorcontrib><description>Abstract Cells sense and transduce the chemical and mechanical properties of their microenvironment through cell surface integrin receptors. Traction stress exerted by cells on the extracellular matrix mediates focal adhesion stabilization and regulation of the cytoskeleton for directing biological activity. Understanding how stem cells integrate biomaterials properties through focal adhesions during differentiation is important for the design of soft materials for regenerative medicine. In this paper we use micropatterned hydrogels containing fluorescent beads to explore force transmission through integrins from single mesenchymal stem cells (MSCs) during differentiation. When cultured on polyacrylamide gels, MSCs will express markers associated with osteogenesis and myogenesis in a stiffness dependent manner. The shape of single cells and the composition of tethered matrix protein both influence the magnitude of traction stress applied and the resultant differentiation outcome. We show how geometry guides the spatial positioning of focal adhesions to maximize interaction with the matrix, and uncover a relationship between αvβ3, α5β1 and mechanochemical regulation of osteogenesis.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2015.08.005</identifier><identifier>PMID: 26285084</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Acrylic Resins - chemistry ; Adhesion ; Advanced Basic Science ; Biocompatible Materials - chemistry ; Biomaterials ; Biomedical materials ; Cell Adhesion ; Cell Differentiation ; Cell Line ; Cell Shape ; Dentistry ; Differentiation ; Extracellular Matrix Proteins - chemistry ; Hardness ; Humans ; Hydrogels - chemistry ; Immobilized Proteins - chemistry ; Integrin ; Integrins - metabolism ; Mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - metabolism ; Microenvironment ; Stem cells ; Stress, Mechanical ; Stresses ; Surgical implants ; Tissue Array Analysis ; Traction ; Traction stress</subject><ispartof>Biomaterials, 2015-11, Vol.69, p.174-183</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c674t-7781214220d884b191ff3a6f297fd95de350f476e795a8ff1cb4e7fe144727ec3</citedby><cites>FETCH-LOGICAL-c674t-7781214220d884b191ff3a6f297fd95de350f476e795a8ff1cb4e7fe144727ec3</cites><orcidid>0000-0002-8963-9796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2015.08.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26285084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Junmin</creatorcontrib><creatorcontrib>Abdeen, Amr A</creatorcontrib><creatorcontrib>Tang, Xin</creatorcontrib><creatorcontrib>Saif, Taher A</creatorcontrib><creatorcontrib>Kilian, Kristopher A</creatorcontrib><title>Geometric guidance of integrin mediated traction stress during stem cell differentiation</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Cells sense and transduce the chemical and mechanical properties of their microenvironment through cell surface integrin receptors. Traction stress exerted by cells on the extracellular matrix mediates focal adhesion stabilization and regulation of the cytoskeleton for directing biological activity. Understanding how stem cells integrate biomaterials properties through focal adhesions during differentiation is important for the design of soft materials for regenerative medicine. In this paper we use micropatterned hydrogels containing fluorescent beads to explore force transmission through integrins from single mesenchymal stem cells (MSCs) during differentiation. When cultured on polyacrylamide gels, MSCs will express markers associated with osteogenesis and myogenesis in a stiffness dependent manner. The shape of single cells and the composition of tethered matrix protein both influence the magnitude of traction stress applied and the resultant differentiation outcome. We show how geometry guides the spatial positioning of focal adhesions to maximize interaction with the matrix, and uncover a relationship between αvβ3, α5β1 and mechanochemical regulation of osteogenesis.</description><subject>Acrylic Resins - chemistry</subject><subject>Adhesion</subject><subject>Advanced Basic Science</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Cell Adhesion</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Cell Shape</subject><subject>Dentistry</subject><subject>Differentiation</subject><subject>Extracellular Matrix Proteins - chemistry</subject><subject>Hardness</subject><subject>Humans</subject><subject>Hydrogels - chemistry</subject><subject>Immobilized Proteins - chemistry</subject><subject>Integrin</subject><subject>Integrins - metabolism</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Microenvironment</subject><subject>Stem cells</subject><subject>Stress, Mechanical</subject><subject>Stresses</subject><subject>Surgical implants</subject><subject>Tissue Array Analysis</subject><subject>Traction</subject><subject>Traction stress</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk9v1DAQxS0EokvhK6CIE5ekY8f_wqESKtAiVeIASNwsrzNevCRxsZNK_fY42lIVTnuyRn7z5o1-Q8gbCg0FKs_2zTbE0c6Ygh1yw4CKBnQDIJ6QDdVK16ID8ZRsgHJWd5KyE_Ii5z2UGjh7Tk6YZFqA5hvy4xLjiHMKrtotobeTwyr6Kkwz7lKYqhH7UCb11Zysm0OcqjwnzLnql_K9KxWOlcNhqPrgPSac5qIvupfkmS_p8NX9e0q-f_r47eKqvv5y-fni_XXtpOJzrZSmrMRk0GvNt7Sj3rdWetYp33eix1aA50qi6oTV3lO35ag8Us4VU-jaU3J-8L1ZtiWsKwGSHcxNCqNNdybaYP79mcJPs4u3hgshJYVi8PbeIMXfC-bZjCGvG9kJ45INLRFB0JaxI6Rc6o6VJY6QgtadlLC6vjtIXYo5J_QP4SmYFbjZm8fAzQrcgDYFeGl-_Xj9h9a_hIvgw0GABcJtwGSyC1gw9yGhm00fw3Fzzv-zcUOYgrPDL7zDvI9LmtYeajIzYL6up7deHhUAUijW_gEBXdm5</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Lee, Junmin</creator><creator>Abdeen, Amr A</creator><creator>Tang, Xin</creator><creator>Saif, Taher A</creator><creator>Kilian, Kristopher A</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8963-9796</orcidid></search><sort><creationdate>20151101</creationdate><title>Geometric guidance of integrin mediated traction stress during stem cell differentiation</title><author>Lee, Junmin ; Abdeen, Amr A ; Tang, Xin ; Saif, Taher A ; Kilian, Kristopher A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c674t-7781214220d884b191ff3a6f297fd95de350f476e795a8ff1cb4e7fe144727ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acrylic Resins - chemistry</topic><topic>Adhesion</topic><topic>Advanced Basic Science</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Cell Adhesion</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Cell Shape</topic><topic>Dentistry</topic><topic>Differentiation</topic><topic>Extracellular Matrix Proteins - chemistry</topic><topic>Hardness</topic><topic>Humans</topic><topic>Hydrogels - chemistry</topic><topic>Immobilized Proteins - chemistry</topic><topic>Integrin</topic><topic>Integrins - metabolism</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Microenvironment</topic><topic>Stem cells</topic><topic>Stress, Mechanical</topic><topic>Stresses</topic><topic>Surgical implants</topic><topic>Tissue Array Analysis</topic><topic>Traction</topic><topic>Traction stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Junmin</creatorcontrib><creatorcontrib>Abdeen, Amr A</creatorcontrib><creatorcontrib>Tang, Xin</creatorcontrib><creatorcontrib>Saif, Taher A</creatorcontrib><creatorcontrib>Kilian, Kristopher A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Junmin</au><au>Abdeen, Amr A</au><au>Tang, Xin</au><au>Saif, Taher A</au><au>Kilian, Kristopher A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric guidance of integrin mediated traction stress during stem cell differentiation</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>69</volume><spage>174</spage><epage>183</epage><pages>174-183</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Cells sense and transduce the chemical and mechanical properties of their microenvironment through cell surface integrin receptors. Traction stress exerted by cells on the extracellular matrix mediates focal adhesion stabilization and regulation of the cytoskeleton for directing biological activity. Understanding how stem cells integrate biomaterials properties through focal adhesions during differentiation is important for the design of soft materials for regenerative medicine. In this paper we use micropatterned hydrogels containing fluorescent beads to explore force transmission through integrins from single mesenchymal stem cells (MSCs) during differentiation. When cultured on polyacrylamide gels, MSCs will express markers associated with osteogenesis and myogenesis in a stiffness dependent manner. The shape of single cells and the composition of tethered matrix protein both influence the magnitude of traction stress applied and the resultant differentiation outcome. We show how geometry guides the spatial positioning of focal adhesions to maximize interaction with the matrix, and uncover a relationship between αvβ3, α5β1 and mechanochemical regulation of osteogenesis.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>26285084</pmid><doi>10.1016/j.biomaterials.2015.08.005</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8963-9796</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2015-11, Vol.69, p.174-183
issn 0142-9612
1878-5905
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4556610
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Acrylic Resins - chemistry
Adhesion
Advanced Basic Science
Biocompatible Materials - chemistry
Biomaterials
Biomedical materials
Cell Adhesion
Cell Differentiation
Cell Line
Cell Shape
Dentistry
Differentiation
Extracellular Matrix Proteins - chemistry
Hardness
Humans
Hydrogels - chemistry
Immobilized Proteins - chemistry
Integrin
Integrins - metabolism
Mesenchymal stem cells
Mesenchymal Stem Cells - cytology
Mesenchymal Stem Cells - metabolism
Microenvironment
Stem cells
Stress, Mechanical
Stresses
Surgical implants
Tissue Array Analysis
Traction
Traction stress
title Geometric guidance of integrin mediated traction stress during stem cell differentiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20guidance%20of%20integrin%20mediated%20traction%20stress%20during%20stem%20cell%20differentiation&rft.jtitle=Biomaterials&rft.au=Lee,%20Junmin&rft.date=2015-11-01&rft.volume=69&rft.spage=174&rft.epage=183&rft.pages=174-183&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2015.08.005&rft_dat=%3Cproquest_pubme%3E1708896602%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1708896602&rft_id=info:pmid/26285084&rft_els_id=1_s2_0_S0142961215006572&rfr_iscdi=true