Optimization of bioprocess conditions improves production of a CHO cell-derived, bioengineered heparin
Heparin is the most widely used anticoagulant drug in the world today. Heparin is currently produced from animal tissues, primarily porcine intestines. A recent contamination crisis motivated development of a non‐animal‐derived source of this critical drug. We hypothesized that Chinese hamster ovary...
Gespeichert in:
Veröffentlicht in: | Biotechnology journal 2015-07, Vol.10 (7), p.1067-1081 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1081 |
---|---|
container_issue | 7 |
container_start_page | 1067 |
container_title | Biotechnology journal |
container_volume | 10 |
creator | Baik, Jong Youn Dahodwala, Hussain Oduah, Eziafa Talman, Lee Gemmill, Trent R. Gasimli, Leyla Datta, Payel Yang, Bo Li, Guoyun Zhang, Fuming Li, Lingyun Linhardt, Robert J. Campbell, Andrew M. Gorfien, Stephen F. Sharfstein, Susan T. |
description | Heparin is the most widely used anticoagulant drug in the world today. Heparin is currently produced from animal tissues, primarily porcine intestines. A recent contamination crisis motivated development of a non‐animal‐derived source of this critical drug. We hypothesized that Chinese hamster ovary (CHO) cells could be metabolically engineered to produce a bioengineered heparin, equivalent to current pharmaceutical heparin. We previously engineered CHO‐S® cells to overexpress two exogenous enzymes from the heparin/heparan sulfate biosynthetic pathway, increasing the anticoagulant activity ∼100‐fold and the heparin/heparan sulfate yield ∼10‐fold. Here, we explored the effects of bioprocess parameters on the yield and anticoagulant activity of the bioengineered GAGs. Fed‐batch shaker‐flask studies using a proprietary, chemically‐defined feed, resulted in ∼two‐fold increase in integrated viable cell density and a 70% increase in specific productivity, resulting in nearly three‐fold increase in product titer. Transferring the process to a stirred‐tank bioreactor increased the productivity further, yielding a final product concentration of ∼90 μg/mL. Unfortunately, the product composition still differs from pharmaceutical heparin, suggesting that additional metabolic engineering will be required. However, these studies clearly demonstrate bioprocess optimization, in parallel with metabolic engineering refinements, will play a substantial role in developing a bioengineered heparin to replace the current animal‐derived drug.
Bioprocess engineering can be used to enhance the culture performance of mammalian cells that produce pharmaceutical biomolecules. Nutrient feeding to Chinese hamster ovary cell cultures results in 3∼4‐fold increase in heparin/heparan sulfate titers. This bioprocessing approach may contribute to replacing the current animal‐derived drug with a safer bioengineered heparin, manufactured under cGMP conditions. Bioreactor image by Miropiro, www.bioreactors.eu, www.bioreactor.ch (Own work) [CC BY‐SA 3.0 (http://creativecommons.org/licenses/by‐sa/3.0)], via Wikimedia Commons. |
doi_str_mv | 10.1002/biot.201400665 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4556170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701502154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5815-de79a19469b452150eb51c2c66eccf301f18bb236fc31cbf96f5bc27f10d890c3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEoqVw5Yhy5ECWcfyVXJBggW6lihWiUImL5Tjj1pDEwc4ulF-Po92uyqmnscbPPJrRm2XPCSwIQPm6cX5alEAYgBD8QXZMKgGFpIQ93L-FFNVR9iTGHwCMU2CPs6NSAJU1q44zux4n17u_enJ-yL3Nk3AM3mCMufFD6-Z-zF2fmluMeSrtxtzCOl-u1rnBritaDG6L7atZgMOVGxADtvk1jjq44Wn2yOou4rN9Pcm-fvxwsVwV5-vTs-Xb88LwivAkkbUmNRN1w3hJOGDDiSmNEGiMpUAsqZqmpMIaSkxja2F5Y0ppCbRVDYaeZG923nHT9NgaHKagOzUG1-two7x26v-fwV2rK79VjHNBJCTBy70g-F8bjJPqXZwP1AP6TVSJSWul1dj9qKg5kYzQMqGLHWqCjzGgPWxEQM05qjlHdcgxDby4e8cBvw0uAfUO-O06vLlHp96drS_uyovdrIsT_jnM6vBTCUklV5efTtX3z6tL8R6-qG_0H6Fdu-o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1695174132</pqid></control><display><type>article</type><title>Optimization of bioprocess conditions improves production of a CHO cell-derived, bioengineered heparin</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Baik, Jong Youn ; Dahodwala, Hussain ; Oduah, Eziafa ; Talman, Lee ; Gemmill, Trent R. ; Gasimli, Leyla ; Datta, Payel ; Yang, Bo ; Li, Guoyun ; Zhang, Fuming ; Li, Lingyun ; Linhardt, Robert J. ; Campbell, Andrew M. ; Gorfien, Stephen F. ; Sharfstein, Susan T.</creator><creatorcontrib>Baik, Jong Youn ; Dahodwala, Hussain ; Oduah, Eziafa ; Talman, Lee ; Gemmill, Trent R. ; Gasimli, Leyla ; Datta, Payel ; Yang, Bo ; Li, Guoyun ; Zhang, Fuming ; Li, Lingyun ; Linhardt, Robert J. ; Campbell, Andrew M. ; Gorfien, Stephen F. ; Sharfstein, Susan T.</creatorcontrib><description>Heparin is the most widely used anticoagulant drug in the world today. Heparin is currently produced from animal tissues, primarily porcine intestines. A recent contamination crisis motivated development of a non‐animal‐derived source of this critical drug. We hypothesized that Chinese hamster ovary (CHO) cells could be metabolically engineered to produce a bioengineered heparin, equivalent to current pharmaceutical heparin. We previously engineered CHO‐S® cells to overexpress two exogenous enzymes from the heparin/heparan sulfate biosynthetic pathway, increasing the anticoagulant activity ∼100‐fold and the heparin/heparan sulfate yield ∼10‐fold. Here, we explored the effects of bioprocess parameters on the yield and anticoagulant activity of the bioengineered GAGs. Fed‐batch shaker‐flask studies using a proprietary, chemically‐defined feed, resulted in ∼two‐fold increase in integrated viable cell density and a 70% increase in specific productivity, resulting in nearly three‐fold increase in product titer. Transferring the process to a stirred‐tank bioreactor increased the productivity further, yielding a final product concentration of ∼90 μg/mL. Unfortunately, the product composition still differs from pharmaceutical heparin, suggesting that additional metabolic engineering will be required. However, these studies clearly demonstrate bioprocess optimization, in parallel with metabolic engineering refinements, will play a substantial role in developing a bioengineered heparin to replace the current animal‐derived drug.
Bioprocess engineering can be used to enhance the culture performance of mammalian cells that produce pharmaceutical biomolecules. Nutrient feeding to Chinese hamster ovary cell cultures results in 3∼4‐fold increase in heparin/heparan sulfate titers. This bioprocessing approach may contribute to replacing the current animal‐derived drug with a safer bioengineered heparin, manufactured under cGMP conditions. Bioreactor image by Miropiro, www.bioreactors.eu, www.bioreactor.ch (Own work) [CC BY‐SA 3.0 (http://creativecommons.org/licenses/by‐sa/3.0)], via Wikimedia Commons.</description><identifier>ISSN: 1860-6768</identifier><identifier>EISSN: 1860-7314</identifier><identifier>DOI: 10.1002/biot.201400665</identifier><identifier>PMID: 26037948</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Animals ; Anticoagulants ; Bioreactors ; Biosynthetic Pathways ; CHO Cells ; Cricetinae ; Cricetulus ; Disaccharide analysis ; Fed-batch cultures ; Glycosaminoglycans ; Heparin - biosynthesis ; Heparin - metabolism ; Metabolic Engineering</subject><ispartof>Biotechnology journal, 2015-07, Vol.10 (7), p.1067-1081</ispartof><rights>Copyright © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5815-de79a19469b452150eb51c2c66eccf301f18bb236fc31cbf96f5bc27f10d890c3</citedby><cites>FETCH-LOGICAL-c5815-de79a19469b452150eb51c2c66eccf301f18bb236fc31cbf96f5bc27f10d890c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbiot.201400665$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbiot.201400665$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26037948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baik, Jong Youn</creatorcontrib><creatorcontrib>Dahodwala, Hussain</creatorcontrib><creatorcontrib>Oduah, Eziafa</creatorcontrib><creatorcontrib>Talman, Lee</creatorcontrib><creatorcontrib>Gemmill, Trent R.</creatorcontrib><creatorcontrib>Gasimli, Leyla</creatorcontrib><creatorcontrib>Datta, Payel</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>Li, Guoyun</creatorcontrib><creatorcontrib>Zhang, Fuming</creatorcontrib><creatorcontrib>Li, Lingyun</creatorcontrib><creatorcontrib>Linhardt, Robert J.</creatorcontrib><creatorcontrib>Campbell, Andrew M.</creatorcontrib><creatorcontrib>Gorfien, Stephen F.</creatorcontrib><creatorcontrib>Sharfstein, Susan T.</creatorcontrib><title>Optimization of bioprocess conditions improves production of a CHO cell-derived, bioengineered heparin</title><title>Biotechnology journal</title><addtitle>Biotechnology Journal</addtitle><description>Heparin is the most widely used anticoagulant drug in the world today. Heparin is currently produced from animal tissues, primarily porcine intestines. A recent contamination crisis motivated development of a non‐animal‐derived source of this critical drug. We hypothesized that Chinese hamster ovary (CHO) cells could be metabolically engineered to produce a bioengineered heparin, equivalent to current pharmaceutical heparin. We previously engineered CHO‐S® cells to overexpress two exogenous enzymes from the heparin/heparan sulfate biosynthetic pathway, increasing the anticoagulant activity ∼100‐fold and the heparin/heparan sulfate yield ∼10‐fold. Here, we explored the effects of bioprocess parameters on the yield and anticoagulant activity of the bioengineered GAGs. Fed‐batch shaker‐flask studies using a proprietary, chemically‐defined feed, resulted in ∼two‐fold increase in integrated viable cell density and a 70% increase in specific productivity, resulting in nearly three‐fold increase in product titer. Transferring the process to a stirred‐tank bioreactor increased the productivity further, yielding a final product concentration of ∼90 μg/mL. Unfortunately, the product composition still differs from pharmaceutical heparin, suggesting that additional metabolic engineering will be required. However, these studies clearly demonstrate bioprocess optimization, in parallel with metabolic engineering refinements, will play a substantial role in developing a bioengineered heparin to replace the current animal‐derived drug.
Bioprocess engineering can be used to enhance the culture performance of mammalian cells that produce pharmaceutical biomolecules. Nutrient feeding to Chinese hamster ovary cell cultures results in 3∼4‐fold increase in heparin/heparan sulfate titers. This bioprocessing approach may contribute to replacing the current animal‐derived drug with a safer bioengineered heparin, manufactured under cGMP conditions. Bioreactor image by Miropiro, www.bioreactors.eu, www.bioreactor.ch (Own work) [CC BY‐SA 3.0 (http://creativecommons.org/licenses/by‐sa/3.0)], via Wikimedia Commons.</description><subject>Animals</subject><subject>Anticoagulants</subject><subject>Bioreactors</subject><subject>Biosynthetic Pathways</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Disaccharide analysis</subject><subject>Fed-batch cultures</subject><subject>Glycosaminoglycans</subject><subject>Heparin - biosynthesis</subject><subject>Heparin - metabolism</subject><subject>Metabolic Engineering</subject><issn>1860-6768</issn><issn>1860-7314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhiMEoqVw5Yhy5ECWcfyVXJBggW6lihWiUImL5Tjj1pDEwc4ulF-Po92uyqmnscbPPJrRm2XPCSwIQPm6cX5alEAYgBD8QXZMKgGFpIQ93L-FFNVR9iTGHwCMU2CPs6NSAJU1q44zux4n17u_enJ-yL3Nk3AM3mCMufFD6-Z-zF2fmluMeSrtxtzCOl-u1rnBritaDG6L7atZgMOVGxADtvk1jjq44Wn2yOou4rN9Pcm-fvxwsVwV5-vTs-Xb88LwivAkkbUmNRN1w3hJOGDDiSmNEGiMpUAsqZqmpMIaSkxja2F5Y0ppCbRVDYaeZG923nHT9NgaHKagOzUG1-two7x26v-fwV2rK79VjHNBJCTBy70g-F8bjJPqXZwP1AP6TVSJSWul1dj9qKg5kYzQMqGLHWqCjzGgPWxEQM05qjlHdcgxDby4e8cBvw0uAfUO-O06vLlHp96drS_uyovdrIsT_jnM6vBTCUklV5efTtX3z6tL8R6-qG_0H6Fdu-o</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Baik, Jong Youn</creator><creator>Dahodwala, Hussain</creator><creator>Oduah, Eziafa</creator><creator>Talman, Lee</creator><creator>Gemmill, Trent R.</creator><creator>Gasimli, Leyla</creator><creator>Datta, Payel</creator><creator>Yang, Bo</creator><creator>Li, Guoyun</creator><creator>Zhang, Fuming</creator><creator>Li, Lingyun</creator><creator>Linhardt, Robert J.</creator><creator>Campbell, Andrew M.</creator><creator>Gorfien, Stephen F.</creator><creator>Sharfstein, Susan T.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>201507</creationdate><title>Optimization of bioprocess conditions improves production of a CHO cell-derived, bioengineered heparin</title><author>Baik, Jong Youn ; Dahodwala, Hussain ; Oduah, Eziafa ; Talman, Lee ; Gemmill, Trent R. ; Gasimli, Leyla ; Datta, Payel ; Yang, Bo ; Li, Guoyun ; Zhang, Fuming ; Li, Lingyun ; Linhardt, Robert J. ; Campbell, Andrew M. ; Gorfien, Stephen F. ; Sharfstein, Susan T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5815-de79a19469b452150eb51c2c66eccf301f18bb236fc31cbf96f5bc27f10d890c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Anticoagulants</topic><topic>Bioreactors</topic><topic>Biosynthetic Pathways</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Disaccharide analysis</topic><topic>Fed-batch cultures</topic><topic>Glycosaminoglycans</topic><topic>Heparin - biosynthesis</topic><topic>Heparin - metabolism</topic><topic>Metabolic Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baik, Jong Youn</creatorcontrib><creatorcontrib>Dahodwala, Hussain</creatorcontrib><creatorcontrib>Oduah, Eziafa</creatorcontrib><creatorcontrib>Talman, Lee</creatorcontrib><creatorcontrib>Gemmill, Trent R.</creatorcontrib><creatorcontrib>Gasimli, Leyla</creatorcontrib><creatorcontrib>Datta, Payel</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>Li, Guoyun</creatorcontrib><creatorcontrib>Zhang, Fuming</creatorcontrib><creatorcontrib>Li, Lingyun</creatorcontrib><creatorcontrib>Linhardt, Robert J.</creatorcontrib><creatorcontrib>Campbell, Andrew M.</creatorcontrib><creatorcontrib>Gorfien, Stephen F.</creatorcontrib><creatorcontrib>Sharfstein, Susan T.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baik, Jong Youn</au><au>Dahodwala, Hussain</au><au>Oduah, Eziafa</au><au>Talman, Lee</au><au>Gemmill, Trent R.</au><au>Gasimli, Leyla</au><au>Datta, Payel</au><au>Yang, Bo</au><au>Li, Guoyun</au><au>Zhang, Fuming</au><au>Li, Lingyun</au><au>Linhardt, Robert J.</au><au>Campbell, Andrew M.</au><au>Gorfien, Stephen F.</au><au>Sharfstein, Susan T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of bioprocess conditions improves production of a CHO cell-derived, bioengineered heparin</atitle><jtitle>Biotechnology journal</jtitle><addtitle>Biotechnology Journal</addtitle><date>2015-07</date><risdate>2015</risdate><volume>10</volume><issue>7</issue><spage>1067</spage><epage>1081</epage><pages>1067-1081</pages><issn>1860-6768</issn><eissn>1860-7314</eissn><abstract>Heparin is the most widely used anticoagulant drug in the world today. Heparin is currently produced from animal tissues, primarily porcine intestines. A recent contamination crisis motivated development of a non‐animal‐derived source of this critical drug. We hypothesized that Chinese hamster ovary (CHO) cells could be metabolically engineered to produce a bioengineered heparin, equivalent to current pharmaceutical heparin. We previously engineered CHO‐S® cells to overexpress two exogenous enzymes from the heparin/heparan sulfate biosynthetic pathway, increasing the anticoagulant activity ∼100‐fold and the heparin/heparan sulfate yield ∼10‐fold. Here, we explored the effects of bioprocess parameters on the yield and anticoagulant activity of the bioengineered GAGs. Fed‐batch shaker‐flask studies using a proprietary, chemically‐defined feed, resulted in ∼two‐fold increase in integrated viable cell density and a 70% increase in specific productivity, resulting in nearly three‐fold increase in product titer. Transferring the process to a stirred‐tank bioreactor increased the productivity further, yielding a final product concentration of ∼90 μg/mL. Unfortunately, the product composition still differs from pharmaceutical heparin, suggesting that additional metabolic engineering will be required. However, these studies clearly demonstrate bioprocess optimization, in parallel with metabolic engineering refinements, will play a substantial role in developing a bioengineered heparin to replace the current animal‐derived drug.
Bioprocess engineering can be used to enhance the culture performance of mammalian cells that produce pharmaceutical biomolecules. Nutrient feeding to Chinese hamster ovary cell cultures results in 3∼4‐fold increase in heparin/heparan sulfate titers. This bioprocessing approach may contribute to replacing the current animal‐derived drug with a safer bioengineered heparin, manufactured under cGMP conditions. Bioreactor image by Miropiro, www.bioreactors.eu, www.bioreactor.ch (Own work) [CC BY‐SA 3.0 (http://creativecommons.org/licenses/by‐sa/3.0)], via Wikimedia Commons.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>26037948</pmid><doi>10.1002/biot.201400665</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1860-6768 |
ispartof | Biotechnology journal, 2015-07, Vol.10 (7), p.1067-1081 |
issn | 1860-6768 1860-7314 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4556170 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Animals Anticoagulants Bioreactors Biosynthetic Pathways CHO Cells Cricetinae Cricetulus Disaccharide analysis Fed-batch cultures Glycosaminoglycans Heparin - biosynthesis Heparin - metabolism Metabolic Engineering |
title | Optimization of bioprocess conditions improves production of a CHO cell-derived, bioengineered heparin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A44%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20bioprocess%20conditions%20improves%20production%20of%20a%20CHO%20cell-derived,%20bioengineered%20heparin&rft.jtitle=Biotechnology%20journal&rft.au=Baik,%20Jong%20Youn&rft.date=2015-07&rft.volume=10&rft.issue=7&rft.spage=1067&rft.epage=1081&rft.pages=1067-1081&rft.issn=1860-6768&rft.eissn=1860-7314&rft_id=info:doi/10.1002/biot.201400665&rft_dat=%3Cproquest_pubme%3E1701502154%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1695174132&rft_id=info:pmid/26037948&rfr_iscdi=true |