Glucanocellulosic ethanol: the undiscovered biofuel potential in energy crops and marine biomass
Converting biomass to biofuels is a key strategy in substituting fossil fuels to mitigate climate change. Conventional strategies to convert lignocellulosic biomass to ethanol address the fermentation of cellulose-derived glucose. Here we used super-resolution fluorescence microscopy to uncover the...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2015-09, Vol.5 (1), p.13722-13722, Article 13722 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13722 |
---|---|
container_issue | 1 |
container_start_page | 13722 |
container_title | Scientific reports |
container_volume | 5 |
creator | Falter, Christian Zwikowics, Claudia Eggert, Dennis Blümke, Antje Naumann, Marcel Wolff, Kerstin Ellinger, Dorothea Reimer, Rudolph Voigt, Christian A. |
description | Converting biomass to biofuels is a key strategy in substituting fossil fuels to mitigate climate change. Conventional strategies to convert lignocellulosic biomass to ethanol address the fermentation of cellulose-derived glucose. Here we used super-resolution fluorescence microscopy to uncover the nanoscale structure of cell walls in the energy crops maize and Miscanthus where the typical polymer cellulose forms an unconventional layered architecture with the atypical (1, 3)-β-glucan polymer callose. This raised the question about an unused potential of (1, 3)-β-glucan in the fermentation of lignocellulosic biomass. Engineering biomass conversion for optimized (1, 3)-β-glucan utilization, we increased the ethanol yield from both energy crops. The generation of transgenic Miscanthus lines with an elevated (1, 3)-β-glucan content further increased ethanol yield providing a new strategy in energy crop breeding. Applying the (1, 3)-β-glucan-optimized conversion method on marine biomass from brown macroalgae with a naturally high (1, 3)-β-glucan content, we not only substantially increased ethanol yield but also demonstrated an effective co-fermentation of plant and marine biomass. This opens new perspectives in combining different kinds of feedstock for sustainable and efficient biofuel production, especially in coastal regions. |
doi_str_mv | 10.1038/srep13722 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4555182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899733792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-213fd3e8a27565dcd2d8dbabed47995a534a3d3615efef098760a612d158760b3</originalsourceid><addsrcrecordid>eNplkU9rGzEQxUVoSEKaQ75AEOTSFNzoz2pX6qFQQpsWDLkkZ0W7mrUVZGkj7Rry7SNj17itLho0P57ezEPokpIvlHB5mxMMlDeMHaEzRioxY5yxDwf1KbrI-YWUI5iqqDpBp6zmrOKSnaHnez91JsQOvJ98zK7DMC7Lg_-KxyXgKViXu7iGBBa3LvYTeDzEEcLojMcuYAiQFm-4S3HI2ASLVya5ABt4ZXL-iI574zNc7O5z9PTzx-Pdr9n84f733ff5rBOkGmeM8t5ykIY1oha2s8xK25oWbNUoJYzgleGW11RADz1RsqmJqSmzVGzKlp-jb1vdYWpXYLtiMBmvh-SKnzcdjdN_d4Jb6kVc60oIQSUrAp92Aim-TpBHvSqTl7WYAHHKmjZEKkK5pAW9_gd9iVMKZTxNpVIN543aCN5sqbKaXFLq92Yo0Zvo9D66wl4dut-Tf4IqwOctkEsrLCAdfPmf2js2AKRa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899733792</pqid></control><display><type>article</type><title>Glucanocellulosic ethanol: the undiscovered biofuel potential in energy crops and marine biomass</title><source>PubMed Central (Open Access)</source><source>Springer Open Access</source><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Falter, Christian ; Zwikowics, Claudia ; Eggert, Dennis ; Blümke, Antje ; Naumann, Marcel ; Wolff, Kerstin ; Ellinger, Dorothea ; Reimer, Rudolph ; Voigt, Christian A.</creator><creatorcontrib>Falter, Christian ; Zwikowics, Claudia ; Eggert, Dennis ; Blümke, Antje ; Naumann, Marcel ; Wolff, Kerstin ; Ellinger, Dorothea ; Reimer, Rudolph ; Voigt, Christian A.</creatorcontrib><description>Converting biomass to biofuels is a key strategy in substituting fossil fuels to mitigate climate change. Conventional strategies to convert lignocellulosic biomass to ethanol address the fermentation of cellulose-derived glucose. Here we used super-resolution fluorescence microscopy to uncover the nanoscale structure of cell walls in the energy crops maize and Miscanthus where the typical polymer cellulose forms an unconventional layered architecture with the atypical (1, 3)-β-glucan polymer callose. This raised the question about an unused potential of (1, 3)-β-glucan in the fermentation of lignocellulosic biomass. Engineering biomass conversion for optimized (1, 3)-β-glucan utilization, we increased the ethanol yield from both energy crops. The generation of transgenic Miscanthus lines with an elevated (1, 3)-β-glucan content further increased ethanol yield providing a new strategy in energy crop breeding. Applying the (1, 3)-β-glucan-optimized conversion method on marine biomass from brown macroalgae with a naturally high (1, 3)-β-glucan content, we not only substantially increased ethanol yield but also demonstrated an effective co-fermentation of plant and marine biomass. This opens new perspectives in combining different kinds of feedstock for sustainable and efficient biofuel production, especially in coastal regions.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep13722</identifier><identifier>PMID: 26324382</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/61/168 ; 631/61/447/2311 ; Agricultural production ; Algae ; beta-Glucans - chemistry ; beta-Glucans - metabolism ; Biofuels ; Biomass ; Brachypodium - metabolism ; Cell walls ; Cellulose ; Cereal crops ; Climate change ; Climate change mitigation ; Coastal zone ; Crops ; Energy ; Energy crops ; Ethanol ; Ethanol - metabolism ; Fermentation ; Fluorescence microscopy ; Fossil fuels ; Hordeum - metabolism ; Humanities and Social Sciences ; Lignin - metabolism ; Lignocellulose ; Microscopy, Fluorescence ; multidisciplinary ; Plant breeding ; Plant Leaves - metabolism ; Poaceae - metabolism ; Polymers ; Science ; Seaweeds ; Triticum - metabolism ; Zea mays - metabolism ; β-Glucan</subject><ispartof>Scientific reports, 2015-09, Vol.5 (1), p.13722-13722, Article 13722</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Sep 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-213fd3e8a27565dcd2d8dbabed47995a534a3d3615efef098760a612d158760b3</citedby><cites>FETCH-LOGICAL-c504t-213fd3e8a27565dcd2d8dbabed47995a534a3d3615efef098760a612d158760b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4555182/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4555182/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27926,27927,41122,42191,51578,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26324382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Falter, Christian</creatorcontrib><creatorcontrib>Zwikowics, Claudia</creatorcontrib><creatorcontrib>Eggert, Dennis</creatorcontrib><creatorcontrib>Blümke, Antje</creatorcontrib><creatorcontrib>Naumann, Marcel</creatorcontrib><creatorcontrib>Wolff, Kerstin</creatorcontrib><creatorcontrib>Ellinger, Dorothea</creatorcontrib><creatorcontrib>Reimer, Rudolph</creatorcontrib><creatorcontrib>Voigt, Christian A.</creatorcontrib><title>Glucanocellulosic ethanol: the undiscovered biofuel potential in energy crops and marine biomass</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Converting biomass to biofuels is a key strategy in substituting fossil fuels to mitigate climate change. Conventional strategies to convert lignocellulosic biomass to ethanol address the fermentation of cellulose-derived glucose. Here we used super-resolution fluorescence microscopy to uncover the nanoscale structure of cell walls in the energy crops maize and Miscanthus where the typical polymer cellulose forms an unconventional layered architecture with the atypical (1, 3)-β-glucan polymer callose. This raised the question about an unused potential of (1, 3)-β-glucan in the fermentation of lignocellulosic biomass. Engineering biomass conversion for optimized (1, 3)-β-glucan utilization, we increased the ethanol yield from both energy crops. The generation of transgenic Miscanthus lines with an elevated (1, 3)-β-glucan content further increased ethanol yield providing a new strategy in energy crop breeding. Applying the (1, 3)-β-glucan-optimized conversion method on marine biomass from brown macroalgae with a naturally high (1, 3)-β-glucan content, we not only substantially increased ethanol yield but also demonstrated an effective co-fermentation of plant and marine biomass. This opens new perspectives in combining different kinds of feedstock for sustainable and efficient biofuel production, especially in coastal regions.</description><subject>631/61/168</subject><subject>631/61/447/2311</subject><subject>Agricultural production</subject><subject>Algae</subject><subject>beta-Glucans - chemistry</subject><subject>beta-Glucans - metabolism</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Brachypodium - metabolism</subject><subject>Cell walls</subject><subject>Cellulose</subject><subject>Cereal crops</subject><subject>Climate change</subject><subject>Climate change mitigation</subject><subject>Coastal zone</subject><subject>Crops</subject><subject>Energy</subject><subject>Energy crops</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Fermentation</subject><subject>Fluorescence microscopy</subject><subject>Fossil fuels</subject><subject>Hordeum - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Lignin - metabolism</subject><subject>Lignocellulose</subject><subject>Microscopy, Fluorescence</subject><subject>multidisciplinary</subject><subject>Plant breeding</subject><subject>Plant Leaves - metabolism</subject><subject>Poaceae - metabolism</subject><subject>Polymers</subject><subject>Science</subject><subject>Seaweeds</subject><subject>Triticum - metabolism</subject><subject>Zea mays - metabolism</subject><subject>β-Glucan</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkU9rGzEQxUVoSEKaQ75AEOTSFNzoz2pX6qFQQpsWDLkkZ0W7mrUVZGkj7Rry7SNj17itLho0P57ezEPokpIvlHB5mxMMlDeMHaEzRioxY5yxDwf1KbrI-YWUI5iqqDpBp6zmrOKSnaHnez91JsQOvJ98zK7DMC7Lg_-KxyXgKViXu7iGBBa3LvYTeDzEEcLojMcuYAiQFm-4S3HI2ASLVya5ABt4ZXL-iI574zNc7O5z9PTzx-Pdr9n84f733ff5rBOkGmeM8t5ykIY1oha2s8xK25oWbNUoJYzgleGW11RADz1RsqmJqSmzVGzKlp-jb1vdYWpXYLtiMBmvh-SKnzcdjdN_d4Jb6kVc60oIQSUrAp92Aim-TpBHvSqTl7WYAHHKmjZEKkK5pAW9_gd9iVMKZTxNpVIN543aCN5sqbKaXFLq92Yo0Zvo9D66wl4dut-Tf4IqwOctkEsrLCAdfPmf2js2AKRa</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Falter, Christian</creator><creator>Zwikowics, Claudia</creator><creator>Eggert, Dennis</creator><creator>Blümke, Antje</creator><creator>Naumann, Marcel</creator><creator>Wolff, Kerstin</creator><creator>Ellinger, Dorothea</creator><creator>Reimer, Rudolph</creator><creator>Voigt, Christian A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150901</creationdate><title>Glucanocellulosic ethanol: the undiscovered biofuel potential in energy crops and marine biomass</title><author>Falter, Christian ; Zwikowics, Claudia ; Eggert, Dennis ; Blümke, Antje ; Naumann, Marcel ; Wolff, Kerstin ; Ellinger, Dorothea ; Reimer, Rudolph ; Voigt, Christian A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-213fd3e8a27565dcd2d8dbabed47995a534a3d3615efef098760a612d158760b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>631/61/168</topic><topic>631/61/447/2311</topic><topic>Agricultural production</topic><topic>Algae</topic><topic>beta-Glucans - chemistry</topic><topic>beta-Glucans - metabolism</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Brachypodium - metabolism</topic><topic>Cell walls</topic><topic>Cellulose</topic><topic>Cereal crops</topic><topic>Climate change</topic><topic>Climate change mitigation</topic><topic>Coastal zone</topic><topic>Crops</topic><topic>Energy</topic><topic>Energy crops</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Fermentation</topic><topic>Fluorescence microscopy</topic><topic>Fossil fuels</topic><topic>Hordeum - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Lignin - metabolism</topic><topic>Lignocellulose</topic><topic>Microscopy, Fluorescence</topic><topic>multidisciplinary</topic><topic>Plant breeding</topic><topic>Plant Leaves - metabolism</topic><topic>Poaceae - metabolism</topic><topic>Polymers</topic><topic>Science</topic><topic>Seaweeds</topic><topic>Triticum - metabolism</topic><topic>Zea mays - metabolism</topic><topic>β-Glucan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falter, Christian</creatorcontrib><creatorcontrib>Zwikowics, Claudia</creatorcontrib><creatorcontrib>Eggert, Dennis</creatorcontrib><creatorcontrib>Blümke, Antje</creatorcontrib><creatorcontrib>Naumann, Marcel</creatorcontrib><creatorcontrib>Wolff, Kerstin</creatorcontrib><creatorcontrib>Ellinger, Dorothea</creatorcontrib><creatorcontrib>Reimer, Rudolph</creatorcontrib><creatorcontrib>Voigt, Christian A.</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falter, Christian</au><au>Zwikowics, Claudia</au><au>Eggert, Dennis</au><au>Blümke, Antje</au><au>Naumann, Marcel</au><au>Wolff, Kerstin</au><au>Ellinger, Dorothea</au><au>Reimer, Rudolph</au><au>Voigt, Christian A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucanocellulosic ethanol: the undiscovered biofuel potential in energy crops and marine biomass</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>13722</spage><epage>13722</epage><pages>13722-13722</pages><artnum>13722</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Converting biomass to biofuels is a key strategy in substituting fossil fuels to mitigate climate change. Conventional strategies to convert lignocellulosic biomass to ethanol address the fermentation of cellulose-derived glucose. Here we used super-resolution fluorescence microscopy to uncover the nanoscale structure of cell walls in the energy crops maize and Miscanthus where the typical polymer cellulose forms an unconventional layered architecture with the atypical (1, 3)-β-glucan polymer callose. This raised the question about an unused potential of (1, 3)-β-glucan in the fermentation of lignocellulosic biomass. Engineering biomass conversion for optimized (1, 3)-β-glucan utilization, we increased the ethanol yield from both energy crops. The generation of transgenic Miscanthus lines with an elevated (1, 3)-β-glucan content further increased ethanol yield providing a new strategy in energy crop breeding. Applying the (1, 3)-β-glucan-optimized conversion method on marine biomass from brown macroalgae with a naturally high (1, 3)-β-glucan content, we not only substantially increased ethanol yield but also demonstrated an effective co-fermentation of plant and marine biomass. This opens new perspectives in combining different kinds of feedstock for sustainable and efficient biofuel production, especially in coastal regions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26324382</pmid><doi>10.1038/srep13722</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2015-09, Vol.5 (1), p.13722-13722, Article 13722 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4555182 |
source | PubMed Central (Open Access); Springer Open Access; MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | 631/61/168 631/61/447/2311 Agricultural production Algae beta-Glucans - chemistry beta-Glucans - metabolism Biofuels Biomass Brachypodium - metabolism Cell walls Cellulose Cereal crops Climate change Climate change mitigation Coastal zone Crops Energy Energy crops Ethanol Ethanol - metabolism Fermentation Fluorescence microscopy Fossil fuels Hordeum - metabolism Humanities and Social Sciences Lignin - metabolism Lignocellulose Microscopy, Fluorescence multidisciplinary Plant breeding Plant Leaves - metabolism Poaceae - metabolism Polymers Science Seaweeds Triticum - metabolism Zea mays - metabolism β-Glucan |
title | Glucanocellulosic ethanol: the undiscovered biofuel potential in energy crops and marine biomass |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A56%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucanocellulosic%20ethanol:%20the%20undiscovered%20biofuel%20potential%20in%20energy%20crops%20and%20marine%20biomass&rft.jtitle=Scientific%20reports&rft.au=Falter,%20Christian&rft.date=2015-09-01&rft.volume=5&rft.issue=1&rft.spage=13722&rft.epage=13722&rft.pages=13722-13722&rft.artnum=13722&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep13722&rft_dat=%3Cproquest_pubme%3E1899733792%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899733792&rft_id=info:pmid/26324382&rfr_iscdi=true |