Glucanocellulosic ethanol: the undiscovered biofuel potential in energy crops and marine biomass

Converting biomass to biofuels is a key strategy in substituting fossil fuels to mitigate climate change. Conventional strategies to convert lignocellulosic biomass to ethanol address the fermentation of cellulose-derived glucose. Here we used super-resolution fluorescence microscopy to uncover the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2015-09, Vol.5 (1), p.13722-13722, Article 13722
Hauptverfasser: Falter, Christian, Zwikowics, Claudia, Eggert, Dennis, Blümke, Antje, Naumann, Marcel, Wolff, Kerstin, Ellinger, Dorothea, Reimer, Rudolph, Voigt, Christian A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13722
container_issue 1
container_start_page 13722
container_title Scientific reports
container_volume 5
creator Falter, Christian
Zwikowics, Claudia
Eggert, Dennis
Blümke, Antje
Naumann, Marcel
Wolff, Kerstin
Ellinger, Dorothea
Reimer, Rudolph
Voigt, Christian A.
description Converting biomass to biofuels is a key strategy in substituting fossil fuels to mitigate climate change. Conventional strategies to convert lignocellulosic biomass to ethanol address the fermentation of cellulose-derived glucose. Here we used super-resolution fluorescence microscopy to uncover the nanoscale structure of cell walls in the energy crops maize and Miscanthus where the typical polymer cellulose forms an unconventional layered architecture with the atypical (1, 3)-β-glucan polymer callose. This raised the question about an unused potential of (1, 3)-β-glucan in the fermentation of lignocellulosic biomass. Engineering biomass conversion for optimized (1, 3)-β-glucan utilization, we increased the ethanol yield from both energy crops. The generation of transgenic Miscanthus lines with an elevated (1, 3)-β-glucan content further increased ethanol yield providing a new strategy in energy crop breeding. Applying the (1, 3)-β-glucan-optimized conversion method on marine biomass from brown macroalgae with a naturally high (1, 3)-β-glucan content, we not only substantially increased ethanol yield but also demonstrated an effective co-fermentation of plant and marine biomass. This opens new perspectives in combining different kinds of feedstock for sustainable and efficient biofuel production, especially in coastal regions.
doi_str_mv 10.1038/srep13722
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4555182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899733792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-213fd3e8a27565dcd2d8dbabed47995a534a3d3615efef098760a612d158760b3</originalsourceid><addsrcrecordid>eNplkU9rGzEQxUVoSEKaQ75AEOTSFNzoz2pX6qFQQpsWDLkkZ0W7mrUVZGkj7Rry7SNj17itLho0P57ezEPokpIvlHB5mxMMlDeMHaEzRioxY5yxDwf1KbrI-YWUI5iqqDpBp6zmrOKSnaHnez91JsQOvJ98zK7DMC7Lg_-KxyXgKViXu7iGBBa3LvYTeDzEEcLojMcuYAiQFm-4S3HI2ASLVya5ABt4ZXL-iI574zNc7O5z9PTzx-Pdr9n84f733ff5rBOkGmeM8t5ykIY1oha2s8xK25oWbNUoJYzgleGW11RADz1RsqmJqSmzVGzKlp-jb1vdYWpXYLtiMBmvh-SKnzcdjdN_d4Jb6kVc60oIQSUrAp92Aim-TpBHvSqTl7WYAHHKmjZEKkK5pAW9_gd9iVMKZTxNpVIN543aCN5sqbKaXFLq92Yo0Zvo9D66wl4dut-Tf4IqwOctkEsrLCAdfPmf2js2AKRa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899733792</pqid></control><display><type>article</type><title>Glucanocellulosic ethanol: the undiscovered biofuel potential in energy crops and marine biomass</title><source>PubMed Central (Open Access)</source><source>Springer Open Access</source><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Falter, Christian ; Zwikowics, Claudia ; Eggert, Dennis ; Blümke, Antje ; Naumann, Marcel ; Wolff, Kerstin ; Ellinger, Dorothea ; Reimer, Rudolph ; Voigt, Christian A.</creator><creatorcontrib>Falter, Christian ; Zwikowics, Claudia ; Eggert, Dennis ; Blümke, Antje ; Naumann, Marcel ; Wolff, Kerstin ; Ellinger, Dorothea ; Reimer, Rudolph ; Voigt, Christian A.</creatorcontrib><description>Converting biomass to biofuels is a key strategy in substituting fossil fuels to mitigate climate change. Conventional strategies to convert lignocellulosic biomass to ethanol address the fermentation of cellulose-derived glucose. Here we used super-resolution fluorescence microscopy to uncover the nanoscale structure of cell walls in the energy crops maize and Miscanthus where the typical polymer cellulose forms an unconventional layered architecture with the atypical (1, 3)-β-glucan polymer callose. This raised the question about an unused potential of (1, 3)-β-glucan in the fermentation of lignocellulosic biomass. Engineering biomass conversion for optimized (1, 3)-β-glucan utilization, we increased the ethanol yield from both energy crops. The generation of transgenic Miscanthus lines with an elevated (1, 3)-β-glucan content further increased ethanol yield providing a new strategy in energy crop breeding. Applying the (1, 3)-β-glucan-optimized conversion method on marine biomass from brown macroalgae with a naturally high (1, 3)-β-glucan content, we not only substantially increased ethanol yield but also demonstrated an effective co-fermentation of plant and marine biomass. This opens new perspectives in combining different kinds of feedstock for sustainable and efficient biofuel production, especially in coastal regions.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep13722</identifier><identifier>PMID: 26324382</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/61/168 ; 631/61/447/2311 ; Agricultural production ; Algae ; beta-Glucans - chemistry ; beta-Glucans - metabolism ; Biofuels ; Biomass ; Brachypodium - metabolism ; Cell walls ; Cellulose ; Cereal crops ; Climate change ; Climate change mitigation ; Coastal zone ; Crops ; Energy ; Energy crops ; Ethanol ; Ethanol - metabolism ; Fermentation ; Fluorescence microscopy ; Fossil fuels ; Hordeum - metabolism ; Humanities and Social Sciences ; Lignin - metabolism ; Lignocellulose ; Microscopy, Fluorescence ; multidisciplinary ; Plant breeding ; Plant Leaves - metabolism ; Poaceae - metabolism ; Polymers ; Science ; Seaweeds ; Triticum - metabolism ; Zea mays - metabolism ; β-Glucan</subject><ispartof>Scientific reports, 2015-09, Vol.5 (1), p.13722-13722, Article 13722</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Sep 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-213fd3e8a27565dcd2d8dbabed47995a534a3d3615efef098760a612d158760b3</citedby><cites>FETCH-LOGICAL-c504t-213fd3e8a27565dcd2d8dbabed47995a534a3d3615efef098760a612d158760b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4555182/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4555182/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27926,27927,41122,42191,51578,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26324382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Falter, Christian</creatorcontrib><creatorcontrib>Zwikowics, Claudia</creatorcontrib><creatorcontrib>Eggert, Dennis</creatorcontrib><creatorcontrib>Blümke, Antje</creatorcontrib><creatorcontrib>Naumann, Marcel</creatorcontrib><creatorcontrib>Wolff, Kerstin</creatorcontrib><creatorcontrib>Ellinger, Dorothea</creatorcontrib><creatorcontrib>Reimer, Rudolph</creatorcontrib><creatorcontrib>Voigt, Christian A.</creatorcontrib><title>Glucanocellulosic ethanol: the undiscovered biofuel potential in energy crops and marine biomass</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Converting biomass to biofuels is a key strategy in substituting fossil fuels to mitigate climate change. Conventional strategies to convert lignocellulosic biomass to ethanol address the fermentation of cellulose-derived glucose. Here we used super-resolution fluorescence microscopy to uncover the nanoscale structure of cell walls in the energy crops maize and Miscanthus where the typical polymer cellulose forms an unconventional layered architecture with the atypical (1, 3)-β-glucan polymer callose. This raised the question about an unused potential of (1, 3)-β-glucan in the fermentation of lignocellulosic biomass. Engineering biomass conversion for optimized (1, 3)-β-glucan utilization, we increased the ethanol yield from both energy crops. The generation of transgenic Miscanthus lines with an elevated (1, 3)-β-glucan content further increased ethanol yield providing a new strategy in energy crop breeding. Applying the (1, 3)-β-glucan-optimized conversion method on marine biomass from brown macroalgae with a naturally high (1, 3)-β-glucan content, we not only substantially increased ethanol yield but also demonstrated an effective co-fermentation of plant and marine biomass. This opens new perspectives in combining different kinds of feedstock for sustainable and efficient biofuel production, especially in coastal regions.</description><subject>631/61/168</subject><subject>631/61/447/2311</subject><subject>Agricultural production</subject><subject>Algae</subject><subject>beta-Glucans - chemistry</subject><subject>beta-Glucans - metabolism</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Brachypodium - metabolism</subject><subject>Cell walls</subject><subject>Cellulose</subject><subject>Cereal crops</subject><subject>Climate change</subject><subject>Climate change mitigation</subject><subject>Coastal zone</subject><subject>Crops</subject><subject>Energy</subject><subject>Energy crops</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Fermentation</subject><subject>Fluorescence microscopy</subject><subject>Fossil fuels</subject><subject>Hordeum - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Lignin - metabolism</subject><subject>Lignocellulose</subject><subject>Microscopy, Fluorescence</subject><subject>multidisciplinary</subject><subject>Plant breeding</subject><subject>Plant Leaves - metabolism</subject><subject>Poaceae - metabolism</subject><subject>Polymers</subject><subject>Science</subject><subject>Seaweeds</subject><subject>Triticum - metabolism</subject><subject>Zea mays - metabolism</subject><subject>β-Glucan</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkU9rGzEQxUVoSEKaQ75AEOTSFNzoz2pX6qFQQpsWDLkkZ0W7mrUVZGkj7Rry7SNj17itLho0P57ezEPokpIvlHB5mxMMlDeMHaEzRioxY5yxDwf1KbrI-YWUI5iqqDpBp6zmrOKSnaHnez91JsQOvJ98zK7DMC7Lg_-KxyXgKViXu7iGBBa3LvYTeDzEEcLojMcuYAiQFm-4S3HI2ASLVya5ABt4ZXL-iI574zNc7O5z9PTzx-Pdr9n84f733ff5rBOkGmeM8t5ykIY1oha2s8xK25oWbNUoJYzgleGW11RADz1RsqmJqSmzVGzKlp-jb1vdYWpXYLtiMBmvh-SKnzcdjdN_d4Jb6kVc60oIQSUrAp92Aim-TpBHvSqTl7WYAHHKmjZEKkK5pAW9_gd9iVMKZTxNpVIN543aCN5sqbKaXFLq92Yo0Zvo9D66wl4dut-Tf4IqwOctkEsrLCAdfPmf2js2AKRa</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Falter, Christian</creator><creator>Zwikowics, Claudia</creator><creator>Eggert, Dennis</creator><creator>Blümke, Antje</creator><creator>Naumann, Marcel</creator><creator>Wolff, Kerstin</creator><creator>Ellinger, Dorothea</creator><creator>Reimer, Rudolph</creator><creator>Voigt, Christian A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150901</creationdate><title>Glucanocellulosic ethanol: the undiscovered biofuel potential in energy crops and marine biomass</title><author>Falter, Christian ; Zwikowics, Claudia ; Eggert, Dennis ; Blümke, Antje ; Naumann, Marcel ; Wolff, Kerstin ; Ellinger, Dorothea ; Reimer, Rudolph ; Voigt, Christian A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-213fd3e8a27565dcd2d8dbabed47995a534a3d3615efef098760a612d158760b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>631/61/168</topic><topic>631/61/447/2311</topic><topic>Agricultural production</topic><topic>Algae</topic><topic>beta-Glucans - chemistry</topic><topic>beta-Glucans - metabolism</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Brachypodium - metabolism</topic><topic>Cell walls</topic><topic>Cellulose</topic><topic>Cereal crops</topic><topic>Climate change</topic><topic>Climate change mitigation</topic><topic>Coastal zone</topic><topic>Crops</topic><topic>Energy</topic><topic>Energy crops</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Fermentation</topic><topic>Fluorescence microscopy</topic><topic>Fossil fuels</topic><topic>Hordeum - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Lignin - metabolism</topic><topic>Lignocellulose</topic><topic>Microscopy, Fluorescence</topic><topic>multidisciplinary</topic><topic>Plant breeding</topic><topic>Plant Leaves - metabolism</topic><topic>Poaceae - metabolism</topic><topic>Polymers</topic><topic>Science</topic><topic>Seaweeds</topic><topic>Triticum - metabolism</topic><topic>Zea mays - metabolism</topic><topic>β-Glucan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falter, Christian</creatorcontrib><creatorcontrib>Zwikowics, Claudia</creatorcontrib><creatorcontrib>Eggert, Dennis</creatorcontrib><creatorcontrib>Blümke, Antje</creatorcontrib><creatorcontrib>Naumann, Marcel</creatorcontrib><creatorcontrib>Wolff, Kerstin</creatorcontrib><creatorcontrib>Ellinger, Dorothea</creatorcontrib><creatorcontrib>Reimer, Rudolph</creatorcontrib><creatorcontrib>Voigt, Christian A.</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falter, Christian</au><au>Zwikowics, Claudia</au><au>Eggert, Dennis</au><au>Blümke, Antje</au><au>Naumann, Marcel</au><au>Wolff, Kerstin</au><au>Ellinger, Dorothea</au><au>Reimer, Rudolph</au><au>Voigt, Christian A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucanocellulosic ethanol: the undiscovered biofuel potential in energy crops and marine biomass</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>13722</spage><epage>13722</epage><pages>13722-13722</pages><artnum>13722</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Converting biomass to biofuels is a key strategy in substituting fossil fuels to mitigate climate change. Conventional strategies to convert lignocellulosic biomass to ethanol address the fermentation of cellulose-derived glucose. Here we used super-resolution fluorescence microscopy to uncover the nanoscale structure of cell walls in the energy crops maize and Miscanthus where the typical polymer cellulose forms an unconventional layered architecture with the atypical (1, 3)-β-glucan polymer callose. This raised the question about an unused potential of (1, 3)-β-glucan in the fermentation of lignocellulosic biomass. Engineering biomass conversion for optimized (1, 3)-β-glucan utilization, we increased the ethanol yield from both energy crops. The generation of transgenic Miscanthus lines with an elevated (1, 3)-β-glucan content further increased ethanol yield providing a new strategy in energy crop breeding. Applying the (1, 3)-β-glucan-optimized conversion method on marine biomass from brown macroalgae with a naturally high (1, 3)-β-glucan content, we not only substantially increased ethanol yield but also demonstrated an effective co-fermentation of plant and marine biomass. This opens new perspectives in combining different kinds of feedstock for sustainable and efficient biofuel production, especially in coastal regions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26324382</pmid><doi>10.1038/srep13722</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2015-09, Vol.5 (1), p.13722-13722, Article 13722
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4555182
source PubMed Central (Open Access); Springer Open Access; MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects 631/61/168
631/61/447/2311
Agricultural production
Algae
beta-Glucans - chemistry
beta-Glucans - metabolism
Biofuels
Biomass
Brachypodium - metabolism
Cell walls
Cellulose
Cereal crops
Climate change
Climate change mitigation
Coastal zone
Crops
Energy
Energy crops
Ethanol
Ethanol - metabolism
Fermentation
Fluorescence microscopy
Fossil fuels
Hordeum - metabolism
Humanities and Social Sciences
Lignin - metabolism
Lignocellulose
Microscopy, Fluorescence
multidisciplinary
Plant breeding
Plant Leaves - metabolism
Poaceae - metabolism
Polymers
Science
Seaweeds
Triticum - metabolism
Zea mays - metabolism
β-Glucan
title Glucanocellulosic ethanol: the undiscovered biofuel potential in energy crops and marine biomass
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A56%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucanocellulosic%20ethanol:%20the%20undiscovered%20biofuel%20potential%20in%20energy%20crops%20and%20marine%20biomass&rft.jtitle=Scientific%20reports&rft.au=Falter,%20Christian&rft.date=2015-09-01&rft.volume=5&rft.issue=1&rft.spage=13722&rft.epage=13722&rft.pages=13722-13722&rft.artnum=13722&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep13722&rft_dat=%3Cproquest_pubme%3E1899733792%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899733792&rft_id=info:pmid/26324382&rfr_iscdi=true