Hippocampal circuit dysfunction in the Tc1 mouse model of Down syndrome

The authors report that the ultrastructure and plasticity of excitatory synapses connecting dentate gyrus and CA3 of the hippocampus are severely compromised in a transchromosomic mouse model of Down syndrome. These alterations are accompanied by unstable information coding by CA3 and CA1 place cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2015-09, Vol.18 (9), p.1291-1298
Hauptverfasser: Witton, Jonathan, Padmashri, Ragunathan, Zinyuk, Larissa E, Popov, Victor I, Kraev, Igor, Line, Samantha J, Jensen, Thomas P, Tedoldi, Angelo, Cummings, Damian M, Tybulewicz, Victor L J, Fisher, Elizabeth M C, Bannerman, David M, Randall, Andrew D, Brown, Jonathan T, Edwards, Frances A, Rusakov, Dmitri A, Stewart, Michael G, Jones, Matt W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1298
container_issue 9
container_start_page 1291
container_title Nature neuroscience
container_volume 18
creator Witton, Jonathan
Padmashri, Ragunathan
Zinyuk, Larissa E
Popov, Victor I
Kraev, Igor
Line, Samantha J
Jensen, Thomas P
Tedoldi, Angelo
Cummings, Damian M
Tybulewicz, Victor L J
Fisher, Elizabeth M C
Bannerman, David M
Randall, Andrew D
Brown, Jonathan T
Edwards, Frances A
Rusakov, Dmitri A
Stewart, Michael G
Jones, Matt W
description The authors report that the ultrastructure and plasticity of excitatory synapses connecting dentate gyrus and CA3 of the hippocampus are severely compromised in a transchromosomic mouse model of Down syndrome. These alterations are accompanied by unstable information coding by CA3 and CA1 place cells, which may contribute to aspects of impaired cognition in the disease. Hippocampal pathology is likely to contribute to cognitive disability in Down syndrome, yet the neural network basis of this pathology and its contributions to different facets of cognitive impairment remain unclear. Here we report dysfunctional connectivity between dentate gyrus and CA3 networks in the transchromosomic Tc1 mouse model of Down syndrome, demonstrating that ultrastructural abnormalities and impaired short-term plasticity at dentate gyrus–CA3 excitatory synapses culminate in impaired coding of new spatial information in CA3 and CA1 and disrupted behavior in vivo . These results highlight the vulnerability of dentate gyrus–CA3 networks to aberrant human chromosome 21 gene expression and delineate hippocampal circuit abnormalities likely to contribute to distinct cognitive phenotypes in Down syndrome.
doi_str_mv 10.1038/nn.4072
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4552261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A428178606</galeid><sourcerecordid>A428178606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634t-15feab3864059ed8fbe38d241d424c4a23e6aa4f7fb2f4c3fb2e70c09b8180c33</originalsourceid><addsrcrecordid>eNqNkl1rFTEQhoMotlbxH8iCF-rFHvO1SfZGKFXbQqGg9Tpks5PTlN1kTXbV8-_NobXtKb2QQGbIPPOSeRmEXhO8IpipjyGsOJb0CdonDRc1kVQ8LTluZS1oI_bQi5yvMMayUe1ztEcFZZIJuY-OT_w0RWvGyQyV9ckufq76TXZLsLOPofKhmi-hurCkGuOSodw9DFV01ef4O1R5E_oUR3iJnjkzZHh1Ew_Qj69fLo5O6rPz49Ojw7PaCsbnmjQOTMeU4LhpoVeuA6Z6yknPKbfcUAbCGO6k66jjlpUAElvcdooobBk7QJ-udaelG6G3EOZkBj0lP5q00dF4vVsJ_lKv4y_Nm4ZSQYrA-xuBFH8ukGc9-mxhGEyAMp8mUjLFqOLsP1CsiOAU44K-fYBexSWF4kShhKCtpK24o9ZmAO2Di-WLdiuqDzlVRCqBt9TqEaqcHkZvYwDny_tOw4edhsLM8GdemyVnffr92y777pq1KeacwN1aR7DerpIOQW9XqZBv7jt9y_3bnTt7cimFNaR7Mz_Q-guKlM6E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766297296</pqid></control><display><type>article</type><title>Hippocampal circuit dysfunction in the Tc1 mouse model of Down syndrome</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Witton, Jonathan ; Padmashri, Ragunathan ; Zinyuk, Larissa E ; Popov, Victor I ; Kraev, Igor ; Line, Samantha J ; Jensen, Thomas P ; Tedoldi, Angelo ; Cummings, Damian M ; Tybulewicz, Victor L J ; Fisher, Elizabeth M C ; Bannerman, David M ; Randall, Andrew D ; Brown, Jonathan T ; Edwards, Frances A ; Rusakov, Dmitri A ; Stewart, Michael G ; Jones, Matt W</creator><creatorcontrib>Witton, Jonathan ; Padmashri, Ragunathan ; Zinyuk, Larissa E ; Popov, Victor I ; Kraev, Igor ; Line, Samantha J ; Jensen, Thomas P ; Tedoldi, Angelo ; Cummings, Damian M ; Tybulewicz, Victor L J ; Fisher, Elizabeth M C ; Bannerman, David M ; Randall, Andrew D ; Brown, Jonathan T ; Edwards, Frances A ; Rusakov, Dmitri A ; Stewart, Michael G ; Jones, Matt W</creatorcontrib><description>The authors report that the ultrastructure and plasticity of excitatory synapses connecting dentate gyrus and CA3 of the hippocampus are severely compromised in a transchromosomic mouse model of Down syndrome. These alterations are accompanied by unstable information coding by CA3 and CA1 place cells, which may contribute to aspects of impaired cognition in the disease. Hippocampal pathology is likely to contribute to cognitive disability in Down syndrome, yet the neural network basis of this pathology and its contributions to different facets of cognitive impairment remain unclear. Here we report dysfunctional connectivity between dentate gyrus and CA3 networks in the transchromosomic Tc1 mouse model of Down syndrome, demonstrating that ultrastructural abnormalities and impaired short-term plasticity at dentate gyrus–CA3 excitatory synapses culminate in impaired coding of new spatial information in CA3 and CA1 and disrupted behavior in vivo . These results highlight the vulnerability of dentate gyrus–CA3 networks to aberrant human chromosome 21 gene expression and delineate hippocampal circuit abnormalities likely to contribute to distinct cognitive phenotypes in Down syndrome.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn.4072</identifier><identifier>PMID: 26237367</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>14/69 ; 631/208/366 ; 631/378/1595/1554 ; 631/378/1689 ; 631/378/2629/2630 ; 64/60 ; 9/30 ; 9/74 ; Animal Genetics and Genomics ; Animal models in research ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedicine ; CA3 Region, Hippocampal - pathology ; CA3 Region, Hippocampal - physiopathology ; Chromosomes ; Chromosomes, Human, Pair 21 - genetics ; Cognitive ability ; Dentate Gyrus - pathology ; Dentate Gyrus - physiopathology ; Disease Models, Animal ; Down syndrome ; Down Syndrome - genetics ; Down Syndrome - pathology ; Down Syndrome - physiopathology ; Humans ; Male ; Maze Learning - physiology ; Mice ; Mice, 129 Strain ; Mice, Inbred C57BL ; Nerve Net - pathology ; Nerve Net - physiopathology ; Neural networks ; Neurobiology ; Neurosciences ; Organ Culture Techniques ; Physiology ; Trisomy - genetics ; University colleges</subject><ispartof>Nature neuroscience, 2015-09, Vol.18 (9), p.1291-1298</ispartof><rights>Springer Nature America, Inc. 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c634t-15feab3864059ed8fbe38d241d424c4a23e6aa4f7fb2f4c3fb2e70c09b8180c33</citedby><cites>FETCH-LOGICAL-c634t-15feab3864059ed8fbe38d241d424c4a23e6aa4f7fb2f4c3fb2e70c09b8180c33</cites><orcidid>0000-0003-2439-0798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn.4072$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn.4072$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26237367$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Witton, Jonathan</creatorcontrib><creatorcontrib>Padmashri, Ragunathan</creatorcontrib><creatorcontrib>Zinyuk, Larissa E</creatorcontrib><creatorcontrib>Popov, Victor I</creatorcontrib><creatorcontrib>Kraev, Igor</creatorcontrib><creatorcontrib>Line, Samantha J</creatorcontrib><creatorcontrib>Jensen, Thomas P</creatorcontrib><creatorcontrib>Tedoldi, Angelo</creatorcontrib><creatorcontrib>Cummings, Damian M</creatorcontrib><creatorcontrib>Tybulewicz, Victor L J</creatorcontrib><creatorcontrib>Fisher, Elizabeth M C</creatorcontrib><creatorcontrib>Bannerman, David M</creatorcontrib><creatorcontrib>Randall, Andrew D</creatorcontrib><creatorcontrib>Brown, Jonathan T</creatorcontrib><creatorcontrib>Edwards, Frances A</creatorcontrib><creatorcontrib>Rusakov, Dmitri A</creatorcontrib><creatorcontrib>Stewart, Michael G</creatorcontrib><creatorcontrib>Jones, Matt W</creatorcontrib><title>Hippocampal circuit dysfunction in the Tc1 mouse model of Down syndrome</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>The authors report that the ultrastructure and plasticity of excitatory synapses connecting dentate gyrus and CA3 of the hippocampus are severely compromised in a transchromosomic mouse model of Down syndrome. These alterations are accompanied by unstable information coding by CA3 and CA1 place cells, which may contribute to aspects of impaired cognition in the disease. Hippocampal pathology is likely to contribute to cognitive disability in Down syndrome, yet the neural network basis of this pathology and its contributions to different facets of cognitive impairment remain unclear. Here we report dysfunctional connectivity between dentate gyrus and CA3 networks in the transchromosomic Tc1 mouse model of Down syndrome, demonstrating that ultrastructural abnormalities and impaired short-term plasticity at dentate gyrus–CA3 excitatory synapses culminate in impaired coding of new spatial information in CA3 and CA1 and disrupted behavior in vivo . These results highlight the vulnerability of dentate gyrus–CA3 networks to aberrant human chromosome 21 gene expression and delineate hippocampal circuit abnormalities likely to contribute to distinct cognitive phenotypes in Down syndrome.</description><subject>14/69</subject><subject>631/208/366</subject><subject>631/378/1595/1554</subject><subject>631/378/1689</subject><subject>631/378/2629/2630</subject><subject>64/60</subject><subject>9/30</subject><subject>9/74</subject><subject>Animal Genetics and Genomics</subject><subject>Animal models in research</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedicine</subject><subject>CA3 Region, Hippocampal - pathology</subject><subject>CA3 Region, Hippocampal - physiopathology</subject><subject>Chromosomes</subject><subject>Chromosomes, Human, Pair 21 - genetics</subject><subject>Cognitive ability</subject><subject>Dentate Gyrus - pathology</subject><subject>Dentate Gyrus - physiopathology</subject><subject>Disease Models, Animal</subject><subject>Down syndrome</subject><subject>Down Syndrome - genetics</subject><subject>Down Syndrome - pathology</subject><subject>Down Syndrome - physiopathology</subject><subject>Humans</subject><subject>Male</subject><subject>Maze Learning - physiology</subject><subject>Mice</subject><subject>Mice, 129 Strain</subject><subject>Mice, Inbred C57BL</subject><subject>Nerve Net - pathology</subject><subject>Nerve Net - physiopathology</subject><subject>Neural networks</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Organ Culture Techniques</subject><subject>Physiology</subject><subject>Trisomy - genetics</subject><subject>University colleges</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkl1rFTEQhoMotlbxH8iCF-rFHvO1SfZGKFXbQqGg9Tpks5PTlN1kTXbV8-_NobXtKb2QQGbIPPOSeRmEXhO8IpipjyGsOJb0CdonDRc1kVQ8LTluZS1oI_bQi5yvMMayUe1ztEcFZZIJuY-OT_w0RWvGyQyV9ckufq76TXZLsLOPofKhmi-hurCkGuOSodw9DFV01ef4O1R5E_oUR3iJnjkzZHh1Ew_Qj69fLo5O6rPz49Ojw7PaCsbnmjQOTMeU4LhpoVeuA6Z6yknPKbfcUAbCGO6k66jjlpUAElvcdooobBk7QJ-udaelG6G3EOZkBj0lP5q00dF4vVsJ_lKv4y_Nm4ZSQYrA-xuBFH8ukGc9-mxhGEyAMp8mUjLFqOLsP1CsiOAU44K-fYBexSWF4kShhKCtpK24o9ZmAO2Di-WLdiuqDzlVRCqBt9TqEaqcHkZvYwDny_tOw4edhsLM8GdemyVnffr92y777pq1KeacwN1aR7DerpIOQW9XqZBv7jt9y_3bnTt7cimFNaR7Mz_Q-guKlM6E</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Witton, Jonathan</creator><creator>Padmashri, Ragunathan</creator><creator>Zinyuk, Larissa E</creator><creator>Popov, Victor I</creator><creator>Kraev, Igor</creator><creator>Line, Samantha J</creator><creator>Jensen, Thomas P</creator><creator>Tedoldi, Angelo</creator><creator>Cummings, Damian M</creator><creator>Tybulewicz, Victor L J</creator><creator>Fisher, Elizabeth M C</creator><creator>Bannerman, David M</creator><creator>Randall, Andrew D</creator><creator>Brown, Jonathan T</creator><creator>Edwards, Frances A</creator><creator>Rusakov, Dmitri A</creator><creator>Stewart, Michael G</creator><creator>Jones, Matt W</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2439-0798</orcidid></search><sort><creationdate>20150901</creationdate><title>Hippocampal circuit dysfunction in the Tc1 mouse model of Down syndrome</title><author>Witton, Jonathan ; Padmashri, Ragunathan ; Zinyuk, Larissa E ; Popov, Victor I ; Kraev, Igor ; Line, Samantha J ; Jensen, Thomas P ; Tedoldi, Angelo ; Cummings, Damian M ; Tybulewicz, Victor L J ; Fisher, Elizabeth M C ; Bannerman, David M ; Randall, Andrew D ; Brown, Jonathan T ; Edwards, Frances A ; Rusakov, Dmitri A ; Stewart, Michael G ; Jones, Matt W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634t-15feab3864059ed8fbe38d241d424c4a23e6aa4f7fb2f4c3fb2e70c09b8180c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>14/69</topic><topic>631/208/366</topic><topic>631/378/1595/1554</topic><topic>631/378/1689</topic><topic>631/378/2629/2630</topic><topic>64/60</topic><topic>9/30</topic><topic>9/74</topic><topic>Animal Genetics and Genomics</topic><topic>Animal models in research</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedicine</topic><topic>CA3 Region, Hippocampal - pathology</topic><topic>CA3 Region, Hippocampal - physiopathology</topic><topic>Chromosomes</topic><topic>Chromosomes, Human, Pair 21 - genetics</topic><topic>Cognitive ability</topic><topic>Dentate Gyrus - pathology</topic><topic>Dentate Gyrus - physiopathology</topic><topic>Disease Models, Animal</topic><topic>Down syndrome</topic><topic>Down Syndrome - genetics</topic><topic>Down Syndrome - pathology</topic><topic>Down Syndrome - physiopathology</topic><topic>Humans</topic><topic>Male</topic><topic>Maze Learning - physiology</topic><topic>Mice</topic><topic>Mice, 129 Strain</topic><topic>Mice, Inbred C57BL</topic><topic>Nerve Net - pathology</topic><topic>Nerve Net - physiopathology</topic><topic>Neural networks</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Organ Culture Techniques</topic><topic>Physiology</topic><topic>Trisomy - genetics</topic><topic>University colleges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Witton, Jonathan</creatorcontrib><creatorcontrib>Padmashri, Ragunathan</creatorcontrib><creatorcontrib>Zinyuk, Larissa E</creatorcontrib><creatorcontrib>Popov, Victor I</creatorcontrib><creatorcontrib>Kraev, Igor</creatorcontrib><creatorcontrib>Line, Samantha J</creatorcontrib><creatorcontrib>Jensen, Thomas P</creatorcontrib><creatorcontrib>Tedoldi, Angelo</creatorcontrib><creatorcontrib>Cummings, Damian M</creatorcontrib><creatorcontrib>Tybulewicz, Victor L J</creatorcontrib><creatorcontrib>Fisher, Elizabeth M C</creatorcontrib><creatorcontrib>Bannerman, David M</creatorcontrib><creatorcontrib>Randall, Andrew D</creatorcontrib><creatorcontrib>Brown, Jonathan T</creatorcontrib><creatorcontrib>Edwards, Frances A</creatorcontrib><creatorcontrib>Rusakov, Dmitri A</creatorcontrib><creatorcontrib>Stewart, Michael G</creatorcontrib><creatorcontrib>Jones, Matt W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Witton, Jonathan</au><au>Padmashri, Ragunathan</au><au>Zinyuk, Larissa E</au><au>Popov, Victor I</au><au>Kraev, Igor</au><au>Line, Samantha J</au><au>Jensen, Thomas P</au><au>Tedoldi, Angelo</au><au>Cummings, Damian M</au><au>Tybulewicz, Victor L J</au><au>Fisher, Elizabeth M C</au><au>Bannerman, David M</au><au>Randall, Andrew D</au><au>Brown, Jonathan T</au><au>Edwards, Frances A</au><au>Rusakov, Dmitri A</au><au>Stewart, Michael G</au><au>Jones, Matt W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hippocampal circuit dysfunction in the Tc1 mouse model of Down syndrome</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>18</volume><issue>9</issue><spage>1291</spage><epage>1298</epage><pages>1291-1298</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>The authors report that the ultrastructure and plasticity of excitatory synapses connecting dentate gyrus and CA3 of the hippocampus are severely compromised in a transchromosomic mouse model of Down syndrome. These alterations are accompanied by unstable information coding by CA3 and CA1 place cells, which may contribute to aspects of impaired cognition in the disease. Hippocampal pathology is likely to contribute to cognitive disability in Down syndrome, yet the neural network basis of this pathology and its contributions to different facets of cognitive impairment remain unclear. Here we report dysfunctional connectivity between dentate gyrus and CA3 networks in the transchromosomic Tc1 mouse model of Down syndrome, demonstrating that ultrastructural abnormalities and impaired short-term plasticity at dentate gyrus–CA3 excitatory synapses culminate in impaired coding of new spatial information in CA3 and CA1 and disrupted behavior in vivo . These results highlight the vulnerability of dentate gyrus–CA3 networks to aberrant human chromosome 21 gene expression and delineate hippocampal circuit abnormalities likely to contribute to distinct cognitive phenotypes in Down syndrome.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>26237367</pmid><doi>10.1038/nn.4072</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2439-0798</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2015-09, Vol.18 (9), p.1291-1298
issn 1097-6256
1546-1726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4552261
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 14/69
631/208/366
631/378/1595/1554
631/378/1689
631/378/2629/2630
64/60
9/30
9/74
Animal Genetics and Genomics
Animal models in research
Animals
Behavioral Sciences
Biological Techniques
Biomedicine
CA3 Region, Hippocampal - pathology
CA3 Region, Hippocampal - physiopathology
Chromosomes
Chromosomes, Human, Pair 21 - genetics
Cognitive ability
Dentate Gyrus - pathology
Dentate Gyrus - physiopathology
Disease Models, Animal
Down syndrome
Down Syndrome - genetics
Down Syndrome - pathology
Down Syndrome - physiopathology
Humans
Male
Maze Learning - physiology
Mice
Mice, 129 Strain
Mice, Inbred C57BL
Nerve Net - pathology
Nerve Net - physiopathology
Neural networks
Neurobiology
Neurosciences
Organ Culture Techniques
Physiology
Trisomy - genetics
University colleges
title Hippocampal circuit dysfunction in the Tc1 mouse model of Down syndrome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hippocampal%20circuit%20dysfunction%20in%20the%20Tc1%20mouse%20model%20of%20Down%20syndrome&rft.jtitle=Nature%20neuroscience&rft.au=Witton,%20Jonathan&rft.date=2015-09-01&rft.volume=18&rft.issue=9&rft.spage=1291&rft.epage=1298&rft.pages=1291-1298&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn.4072&rft_dat=%3Cgale_pubme%3EA428178606%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766297296&rft_id=info:pmid/26237367&rft_galeid=A428178606&rfr_iscdi=true