Hippocampal circuit dysfunction in the Tc1 mouse model of Down syndrome
The authors report that the ultrastructure and plasticity of excitatory synapses connecting dentate gyrus and CA3 of the hippocampus are severely compromised in a transchromosomic mouse model of Down syndrome. These alterations are accompanied by unstable information coding by CA3 and CA1 place cell...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2015-09, Vol.18 (9), p.1291-1298 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1298 |
---|---|
container_issue | 9 |
container_start_page | 1291 |
container_title | Nature neuroscience |
container_volume | 18 |
creator | Witton, Jonathan Padmashri, Ragunathan Zinyuk, Larissa E Popov, Victor I Kraev, Igor Line, Samantha J Jensen, Thomas P Tedoldi, Angelo Cummings, Damian M Tybulewicz, Victor L J Fisher, Elizabeth M C Bannerman, David M Randall, Andrew D Brown, Jonathan T Edwards, Frances A Rusakov, Dmitri A Stewart, Michael G Jones, Matt W |
description | The authors report that the ultrastructure and plasticity of excitatory synapses connecting dentate gyrus and CA3 of the hippocampus are severely compromised in a transchromosomic mouse model of Down syndrome. These alterations are accompanied by unstable information coding by CA3 and CA1 place cells, which may contribute to aspects of impaired cognition in the disease.
Hippocampal pathology is likely to contribute to cognitive disability in Down syndrome, yet the neural network basis of this pathology and its contributions to different facets of cognitive impairment remain unclear. Here we report dysfunctional connectivity between dentate gyrus and CA3 networks in the transchromosomic Tc1 mouse model of Down syndrome, demonstrating that ultrastructural abnormalities and impaired short-term plasticity at dentate gyrus–CA3 excitatory synapses culminate in impaired coding of new spatial information in CA3 and CA1 and disrupted behavior
in vivo
. These results highlight the vulnerability of dentate gyrus–CA3 networks to aberrant human chromosome 21 gene expression and delineate hippocampal circuit abnormalities likely to contribute to distinct cognitive phenotypes in Down syndrome. |
doi_str_mv | 10.1038/nn.4072 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4552261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A428178606</galeid><sourcerecordid>A428178606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634t-15feab3864059ed8fbe38d241d424c4a23e6aa4f7fb2f4c3fb2e70c09b8180c33</originalsourceid><addsrcrecordid>eNqNkl1rFTEQhoMotlbxH8iCF-rFHvO1SfZGKFXbQqGg9Tpks5PTlN1kTXbV8-_NobXtKb2QQGbIPPOSeRmEXhO8IpipjyGsOJb0CdonDRc1kVQ8LTluZS1oI_bQi5yvMMayUe1ztEcFZZIJuY-OT_w0RWvGyQyV9ckufq76TXZLsLOPofKhmi-hurCkGuOSodw9DFV01ef4O1R5E_oUR3iJnjkzZHh1Ew_Qj69fLo5O6rPz49Ojw7PaCsbnmjQOTMeU4LhpoVeuA6Z6yknPKbfcUAbCGO6k66jjlpUAElvcdooobBk7QJ-udaelG6G3EOZkBj0lP5q00dF4vVsJ_lKv4y_Nm4ZSQYrA-xuBFH8ukGc9-mxhGEyAMp8mUjLFqOLsP1CsiOAU44K-fYBexSWF4kShhKCtpK24o9ZmAO2Di-WLdiuqDzlVRCqBt9TqEaqcHkZvYwDny_tOw4edhsLM8GdemyVnffr92y777pq1KeacwN1aR7DerpIOQW9XqZBv7jt9y_3bnTt7cimFNaR7Mz_Q-guKlM6E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766297296</pqid></control><display><type>article</type><title>Hippocampal circuit dysfunction in the Tc1 mouse model of Down syndrome</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Witton, Jonathan ; Padmashri, Ragunathan ; Zinyuk, Larissa E ; Popov, Victor I ; Kraev, Igor ; Line, Samantha J ; Jensen, Thomas P ; Tedoldi, Angelo ; Cummings, Damian M ; Tybulewicz, Victor L J ; Fisher, Elizabeth M C ; Bannerman, David M ; Randall, Andrew D ; Brown, Jonathan T ; Edwards, Frances A ; Rusakov, Dmitri A ; Stewart, Michael G ; Jones, Matt W</creator><creatorcontrib>Witton, Jonathan ; Padmashri, Ragunathan ; Zinyuk, Larissa E ; Popov, Victor I ; Kraev, Igor ; Line, Samantha J ; Jensen, Thomas P ; Tedoldi, Angelo ; Cummings, Damian M ; Tybulewicz, Victor L J ; Fisher, Elizabeth M C ; Bannerman, David M ; Randall, Andrew D ; Brown, Jonathan T ; Edwards, Frances A ; Rusakov, Dmitri A ; Stewart, Michael G ; Jones, Matt W</creatorcontrib><description>The authors report that the ultrastructure and plasticity of excitatory synapses connecting dentate gyrus and CA3 of the hippocampus are severely compromised in a transchromosomic mouse model of Down syndrome. These alterations are accompanied by unstable information coding by CA3 and CA1 place cells, which may contribute to aspects of impaired cognition in the disease.
Hippocampal pathology is likely to contribute to cognitive disability in Down syndrome, yet the neural network basis of this pathology and its contributions to different facets of cognitive impairment remain unclear. Here we report dysfunctional connectivity between dentate gyrus and CA3 networks in the transchromosomic Tc1 mouse model of Down syndrome, demonstrating that ultrastructural abnormalities and impaired short-term plasticity at dentate gyrus–CA3 excitatory synapses culminate in impaired coding of new spatial information in CA3 and CA1 and disrupted behavior
in vivo
. These results highlight the vulnerability of dentate gyrus–CA3 networks to aberrant human chromosome 21 gene expression and delineate hippocampal circuit abnormalities likely to contribute to distinct cognitive phenotypes in Down syndrome.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn.4072</identifier><identifier>PMID: 26237367</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>14/69 ; 631/208/366 ; 631/378/1595/1554 ; 631/378/1689 ; 631/378/2629/2630 ; 64/60 ; 9/30 ; 9/74 ; Animal Genetics and Genomics ; Animal models in research ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedicine ; CA3 Region, Hippocampal - pathology ; CA3 Region, Hippocampal - physiopathology ; Chromosomes ; Chromosomes, Human, Pair 21 - genetics ; Cognitive ability ; Dentate Gyrus - pathology ; Dentate Gyrus - physiopathology ; Disease Models, Animal ; Down syndrome ; Down Syndrome - genetics ; Down Syndrome - pathology ; Down Syndrome - physiopathology ; Humans ; Male ; Maze Learning - physiology ; Mice ; Mice, 129 Strain ; Mice, Inbred C57BL ; Nerve Net - pathology ; Nerve Net - physiopathology ; Neural networks ; Neurobiology ; Neurosciences ; Organ Culture Techniques ; Physiology ; Trisomy - genetics ; University colleges</subject><ispartof>Nature neuroscience, 2015-09, Vol.18 (9), p.1291-1298</ispartof><rights>Springer Nature America, Inc. 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c634t-15feab3864059ed8fbe38d241d424c4a23e6aa4f7fb2f4c3fb2e70c09b8180c33</citedby><cites>FETCH-LOGICAL-c634t-15feab3864059ed8fbe38d241d424c4a23e6aa4f7fb2f4c3fb2e70c09b8180c33</cites><orcidid>0000-0003-2439-0798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn.4072$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn.4072$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26237367$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Witton, Jonathan</creatorcontrib><creatorcontrib>Padmashri, Ragunathan</creatorcontrib><creatorcontrib>Zinyuk, Larissa E</creatorcontrib><creatorcontrib>Popov, Victor I</creatorcontrib><creatorcontrib>Kraev, Igor</creatorcontrib><creatorcontrib>Line, Samantha J</creatorcontrib><creatorcontrib>Jensen, Thomas P</creatorcontrib><creatorcontrib>Tedoldi, Angelo</creatorcontrib><creatorcontrib>Cummings, Damian M</creatorcontrib><creatorcontrib>Tybulewicz, Victor L J</creatorcontrib><creatorcontrib>Fisher, Elizabeth M C</creatorcontrib><creatorcontrib>Bannerman, David M</creatorcontrib><creatorcontrib>Randall, Andrew D</creatorcontrib><creatorcontrib>Brown, Jonathan T</creatorcontrib><creatorcontrib>Edwards, Frances A</creatorcontrib><creatorcontrib>Rusakov, Dmitri A</creatorcontrib><creatorcontrib>Stewart, Michael G</creatorcontrib><creatorcontrib>Jones, Matt W</creatorcontrib><title>Hippocampal circuit dysfunction in the Tc1 mouse model of Down syndrome</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>The authors report that the ultrastructure and plasticity of excitatory synapses connecting dentate gyrus and CA3 of the hippocampus are severely compromised in a transchromosomic mouse model of Down syndrome. These alterations are accompanied by unstable information coding by CA3 and CA1 place cells, which may contribute to aspects of impaired cognition in the disease.
Hippocampal pathology is likely to contribute to cognitive disability in Down syndrome, yet the neural network basis of this pathology and its contributions to different facets of cognitive impairment remain unclear. Here we report dysfunctional connectivity between dentate gyrus and CA3 networks in the transchromosomic Tc1 mouse model of Down syndrome, demonstrating that ultrastructural abnormalities and impaired short-term plasticity at dentate gyrus–CA3 excitatory synapses culminate in impaired coding of new spatial information in CA3 and CA1 and disrupted behavior
in vivo
. These results highlight the vulnerability of dentate gyrus–CA3 networks to aberrant human chromosome 21 gene expression and delineate hippocampal circuit abnormalities likely to contribute to distinct cognitive phenotypes in Down syndrome.</description><subject>14/69</subject><subject>631/208/366</subject><subject>631/378/1595/1554</subject><subject>631/378/1689</subject><subject>631/378/2629/2630</subject><subject>64/60</subject><subject>9/30</subject><subject>9/74</subject><subject>Animal Genetics and Genomics</subject><subject>Animal models in research</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedicine</subject><subject>CA3 Region, Hippocampal - pathology</subject><subject>CA3 Region, Hippocampal - physiopathology</subject><subject>Chromosomes</subject><subject>Chromosomes, Human, Pair 21 - genetics</subject><subject>Cognitive ability</subject><subject>Dentate Gyrus - pathology</subject><subject>Dentate Gyrus - physiopathology</subject><subject>Disease Models, Animal</subject><subject>Down syndrome</subject><subject>Down Syndrome - genetics</subject><subject>Down Syndrome - pathology</subject><subject>Down Syndrome - physiopathology</subject><subject>Humans</subject><subject>Male</subject><subject>Maze Learning - physiology</subject><subject>Mice</subject><subject>Mice, 129 Strain</subject><subject>Mice, Inbred C57BL</subject><subject>Nerve Net - pathology</subject><subject>Nerve Net - physiopathology</subject><subject>Neural networks</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Organ Culture Techniques</subject><subject>Physiology</subject><subject>Trisomy - genetics</subject><subject>University colleges</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkl1rFTEQhoMotlbxH8iCF-rFHvO1SfZGKFXbQqGg9Tpks5PTlN1kTXbV8-_NobXtKb2QQGbIPPOSeRmEXhO8IpipjyGsOJb0CdonDRc1kVQ8LTluZS1oI_bQi5yvMMayUe1ztEcFZZIJuY-OT_w0RWvGyQyV9ckufq76TXZLsLOPofKhmi-hurCkGuOSodw9DFV01ef4O1R5E_oUR3iJnjkzZHh1Ew_Qj69fLo5O6rPz49Ojw7PaCsbnmjQOTMeU4LhpoVeuA6Z6yknPKbfcUAbCGO6k66jjlpUAElvcdooobBk7QJ-udaelG6G3EOZkBj0lP5q00dF4vVsJ_lKv4y_Nm4ZSQYrA-xuBFH8ukGc9-mxhGEyAMp8mUjLFqOLsP1CsiOAU44K-fYBexSWF4kShhKCtpK24o9ZmAO2Di-WLdiuqDzlVRCqBt9TqEaqcHkZvYwDny_tOw4edhsLM8GdemyVnffr92y777pq1KeacwN1aR7DerpIOQW9XqZBv7jt9y_3bnTt7cimFNaR7Mz_Q-guKlM6E</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Witton, Jonathan</creator><creator>Padmashri, Ragunathan</creator><creator>Zinyuk, Larissa E</creator><creator>Popov, Victor I</creator><creator>Kraev, Igor</creator><creator>Line, Samantha J</creator><creator>Jensen, Thomas P</creator><creator>Tedoldi, Angelo</creator><creator>Cummings, Damian M</creator><creator>Tybulewicz, Victor L J</creator><creator>Fisher, Elizabeth M C</creator><creator>Bannerman, David M</creator><creator>Randall, Andrew D</creator><creator>Brown, Jonathan T</creator><creator>Edwards, Frances A</creator><creator>Rusakov, Dmitri A</creator><creator>Stewart, Michael G</creator><creator>Jones, Matt W</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2439-0798</orcidid></search><sort><creationdate>20150901</creationdate><title>Hippocampal circuit dysfunction in the Tc1 mouse model of Down syndrome</title><author>Witton, Jonathan ; Padmashri, Ragunathan ; Zinyuk, Larissa E ; Popov, Victor I ; Kraev, Igor ; Line, Samantha J ; Jensen, Thomas P ; Tedoldi, Angelo ; Cummings, Damian M ; Tybulewicz, Victor L J ; Fisher, Elizabeth M C ; Bannerman, David M ; Randall, Andrew D ; Brown, Jonathan T ; Edwards, Frances A ; Rusakov, Dmitri A ; Stewart, Michael G ; Jones, Matt W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634t-15feab3864059ed8fbe38d241d424c4a23e6aa4f7fb2f4c3fb2e70c09b8180c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>14/69</topic><topic>631/208/366</topic><topic>631/378/1595/1554</topic><topic>631/378/1689</topic><topic>631/378/2629/2630</topic><topic>64/60</topic><topic>9/30</topic><topic>9/74</topic><topic>Animal Genetics and Genomics</topic><topic>Animal models in research</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedicine</topic><topic>CA3 Region, Hippocampal - pathology</topic><topic>CA3 Region, Hippocampal - physiopathology</topic><topic>Chromosomes</topic><topic>Chromosomes, Human, Pair 21 - genetics</topic><topic>Cognitive ability</topic><topic>Dentate Gyrus - pathology</topic><topic>Dentate Gyrus - physiopathology</topic><topic>Disease Models, Animal</topic><topic>Down syndrome</topic><topic>Down Syndrome - genetics</topic><topic>Down Syndrome - pathology</topic><topic>Down Syndrome - physiopathology</topic><topic>Humans</topic><topic>Male</topic><topic>Maze Learning - physiology</topic><topic>Mice</topic><topic>Mice, 129 Strain</topic><topic>Mice, Inbred C57BL</topic><topic>Nerve Net - pathology</topic><topic>Nerve Net - physiopathology</topic><topic>Neural networks</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Organ Culture Techniques</topic><topic>Physiology</topic><topic>Trisomy - genetics</topic><topic>University colleges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Witton, Jonathan</creatorcontrib><creatorcontrib>Padmashri, Ragunathan</creatorcontrib><creatorcontrib>Zinyuk, Larissa E</creatorcontrib><creatorcontrib>Popov, Victor I</creatorcontrib><creatorcontrib>Kraev, Igor</creatorcontrib><creatorcontrib>Line, Samantha J</creatorcontrib><creatorcontrib>Jensen, Thomas P</creatorcontrib><creatorcontrib>Tedoldi, Angelo</creatorcontrib><creatorcontrib>Cummings, Damian M</creatorcontrib><creatorcontrib>Tybulewicz, Victor L J</creatorcontrib><creatorcontrib>Fisher, Elizabeth M C</creatorcontrib><creatorcontrib>Bannerman, David M</creatorcontrib><creatorcontrib>Randall, Andrew D</creatorcontrib><creatorcontrib>Brown, Jonathan T</creatorcontrib><creatorcontrib>Edwards, Frances A</creatorcontrib><creatorcontrib>Rusakov, Dmitri A</creatorcontrib><creatorcontrib>Stewart, Michael G</creatorcontrib><creatorcontrib>Jones, Matt W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Witton, Jonathan</au><au>Padmashri, Ragunathan</au><au>Zinyuk, Larissa E</au><au>Popov, Victor I</au><au>Kraev, Igor</au><au>Line, Samantha J</au><au>Jensen, Thomas P</au><au>Tedoldi, Angelo</au><au>Cummings, Damian M</au><au>Tybulewicz, Victor L J</au><au>Fisher, Elizabeth M C</au><au>Bannerman, David M</au><au>Randall, Andrew D</au><au>Brown, Jonathan T</au><au>Edwards, Frances A</au><au>Rusakov, Dmitri A</au><au>Stewart, Michael G</au><au>Jones, Matt W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hippocampal circuit dysfunction in the Tc1 mouse model of Down syndrome</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>18</volume><issue>9</issue><spage>1291</spage><epage>1298</epage><pages>1291-1298</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>The authors report that the ultrastructure and plasticity of excitatory synapses connecting dentate gyrus and CA3 of the hippocampus are severely compromised in a transchromosomic mouse model of Down syndrome. These alterations are accompanied by unstable information coding by CA3 and CA1 place cells, which may contribute to aspects of impaired cognition in the disease.
Hippocampal pathology is likely to contribute to cognitive disability in Down syndrome, yet the neural network basis of this pathology and its contributions to different facets of cognitive impairment remain unclear. Here we report dysfunctional connectivity between dentate gyrus and CA3 networks in the transchromosomic Tc1 mouse model of Down syndrome, demonstrating that ultrastructural abnormalities and impaired short-term plasticity at dentate gyrus–CA3 excitatory synapses culminate in impaired coding of new spatial information in CA3 and CA1 and disrupted behavior
in vivo
. These results highlight the vulnerability of dentate gyrus–CA3 networks to aberrant human chromosome 21 gene expression and delineate hippocampal circuit abnormalities likely to contribute to distinct cognitive phenotypes in Down syndrome.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>26237367</pmid><doi>10.1038/nn.4072</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2439-0798</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6256 |
ispartof | Nature neuroscience, 2015-09, Vol.18 (9), p.1291-1298 |
issn | 1097-6256 1546-1726 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4552261 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 14/69 631/208/366 631/378/1595/1554 631/378/1689 631/378/2629/2630 64/60 9/30 9/74 Animal Genetics and Genomics Animal models in research Animals Behavioral Sciences Biological Techniques Biomedicine CA3 Region, Hippocampal - pathology CA3 Region, Hippocampal - physiopathology Chromosomes Chromosomes, Human, Pair 21 - genetics Cognitive ability Dentate Gyrus - pathology Dentate Gyrus - physiopathology Disease Models, Animal Down syndrome Down Syndrome - genetics Down Syndrome - pathology Down Syndrome - physiopathology Humans Male Maze Learning - physiology Mice Mice, 129 Strain Mice, Inbred C57BL Nerve Net - pathology Nerve Net - physiopathology Neural networks Neurobiology Neurosciences Organ Culture Techniques Physiology Trisomy - genetics University colleges |
title | Hippocampal circuit dysfunction in the Tc1 mouse model of Down syndrome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hippocampal%20circuit%20dysfunction%20in%20the%20Tc1%20mouse%20model%20of%20Down%20syndrome&rft.jtitle=Nature%20neuroscience&rft.au=Witton,%20Jonathan&rft.date=2015-09-01&rft.volume=18&rft.issue=9&rft.spage=1291&rft.epage=1298&rft.pages=1291-1298&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn.4072&rft_dat=%3Cgale_pubme%3EA428178606%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766297296&rft_id=info:pmid/26237367&rft_galeid=A428178606&rfr_iscdi=true |