Injury-Induced Decline of Intrinsic Regenerative Ability Revealed by Quantitative Proteomics
Neurons differ in their responses to injury, but the underlying mechanisms remain poorly understood. Using quantitative proteomics, we characterized the injury-triggered response from purified intact and axotomized retinal ganglion cells (RGCs). Subsequent informatics analyses revealed a network of...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2015-05, Vol.86 (4), p.1000-1014 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1014 |
---|---|
container_issue | 4 |
container_start_page | 1000 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 86 |
creator | Belin, Stephane Nawabi, Homaira Wang, Chen Tang, Shaojun Latremoliere, Alban Warren, Peter Schorle, Hubert Uncu, Ceren Woolf, Clifford J. He, Zhigang Steen, Judith A. |
description | Neurons differ in their responses to injury, but the underlying mechanisms remain poorly understood. Using quantitative proteomics, we characterized the injury-triggered response from purified intact and axotomized retinal ganglion cells (RGCs). Subsequent informatics analyses revealed a network of injury-response signaling hubs. In addition to confirming known players, such as mTOR, this also identified new candidates, such as c-myc, NFκB, and Huntingtin. Similar to mTOR, c-myc has been implicated as a key regulator of anabolic metabolism and is downregulated by axotomy. Forced expression of c-myc in RGCs, either before or after injury, promotes dramatic RGC survival and axon regeneration after optic nerve injury. Finally, in contrast to RGCs, neither c-myc nor mTOR was downregulated in injured peripheral sensory neurons. Our studies suggest that c-myc and other injury-responsive pathways are critical to the intrinsic regenerative mechanisms and might represent a novel target for developing neural repair strategies in adults.
•Proteomics analysis of intact and injured retinal ganglion cells•Identification of a molecular network of neuronal injury responses•c-myc as a critical regulator of injury responses and axon regeneration•Functional interactions between c-myc and other known regeneration regulators
Belin et al. used comparative proteomics approaches and revealed a signaling network of injury responses in axotomized retinal ganglion cells and also demonstrated c-myc as a critical regulator of neuronal survival and axon regeneration. |
doi_str_mv | 10.1016/j.neuron.2015.03.060 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4551425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627315002846</els_id><sourcerecordid>1682889789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-e9263511861621f7e92aee049f2dc0f7df99e86a7c192884349e0bcf3827bf5f3</originalsourceid><addsrcrecordid>eNqFkUuLFDEUhYMoTjv6D0QK3LipMu9KNsIwvhoGfKA7IaRSN2OK6mRMqhr635uxx_Gx0FVI8p2bk3MQekxwRzCRz6cuwppT7CgmosOswxLfQRuCdd9yovVdtMFKy1bSnp2gB6VMGBMuNLmPTqjQrCdSb9CXbZzWfGi3cVwdjM1LcHOI0CTfbOOSQyzBNR_hEiJku4Q9NGdDmMNyqId7sHOVDIfmw2rjEpYj8D6nBdIuuPIQ3fN2LvDoZj1Fn1-_-nT-tr1492Z7fnbROqHx0oKmkglClCSSEt_XvQXAXHs6Ouz70WsNStreEU2V4oxrwIPzTNF-8MKzU_TiOPdqHXYwOqjO7WyuctjZfDDJBvPnTQxfzWXaGy4E4VTUAc9uBuT0bYWymF0oDubZRkhrMaRnVDEhKPs_KlX1qHulK_r0L3RKa441iR8U5YxiVSl-pFxOpWTwt74JNtdNm8kcmzbXTRvMTG26yp78_udb0c9qf4UCNfl9gGyKCxBrySGDW8yYwr9f-A5cybzS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1682243208</pqid></control><display><type>article</type><title>Injury-Induced Decline of Intrinsic Regenerative Ability Revealed by Quantitative Proteomics</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Belin, Stephane ; Nawabi, Homaira ; Wang, Chen ; Tang, Shaojun ; Latremoliere, Alban ; Warren, Peter ; Schorle, Hubert ; Uncu, Ceren ; Woolf, Clifford J. ; He, Zhigang ; Steen, Judith A.</creator><creatorcontrib>Belin, Stephane ; Nawabi, Homaira ; Wang, Chen ; Tang, Shaojun ; Latremoliere, Alban ; Warren, Peter ; Schorle, Hubert ; Uncu, Ceren ; Woolf, Clifford J. ; He, Zhigang ; Steen, Judith A.</creatorcontrib><description>Neurons differ in their responses to injury, but the underlying mechanisms remain poorly understood. Using quantitative proteomics, we characterized the injury-triggered response from purified intact and axotomized retinal ganglion cells (RGCs). Subsequent informatics analyses revealed a network of injury-response signaling hubs. In addition to confirming known players, such as mTOR, this also identified new candidates, such as c-myc, NFκB, and Huntingtin. Similar to mTOR, c-myc has been implicated as a key regulator of anabolic metabolism and is downregulated by axotomy. Forced expression of c-myc in RGCs, either before or after injury, promotes dramatic RGC survival and axon regeneration after optic nerve injury. Finally, in contrast to RGCs, neither c-myc nor mTOR was downregulated in injured peripheral sensory neurons. Our studies suggest that c-myc and other injury-responsive pathways are critical to the intrinsic regenerative mechanisms and might represent a novel target for developing neural repair strategies in adults.
•Proteomics analysis of intact and injured retinal ganglion cells•Identification of a molecular network of neuronal injury responses•c-myc as a critical regulator of injury responses and axon regeneration•Functional interactions between c-myc and other known regeneration regulators
Belin et al. used comparative proteomics approaches and revealed a signaling network of injury responses in axotomized retinal ganglion cells and also demonstrated c-myc as a critical regulator of neuronal survival and axon regeneration.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2015.03.060</identifier><identifier>PMID: 25937169</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Axons - metabolism ; Axons - pathology ; Axotomy - methods ; Cell Survival - physiology ; Disease Models, Animal ; Experiments ; Gene expression ; Informatics ; Kinases ; Labeling ; Mice, Inbred C57BL ; Mice, Transgenic ; Nerve Regeneration - physiology ; Neurons ; Neurons - metabolism ; Neurons - pathology ; Optic nerve ; Optic Nerve - metabolism ; Optic Nerve - pathology ; Optic Nerve Injuries - metabolism ; Peptides ; Proteins ; Proteomics ; Retinal Ganglion Cells - metabolism ; Signal Transduction - physiology ; Studies ; Transcription factors</subject><ispartof>Neuron (Cambridge, Mass.), 2015-05, Vol.86 (4), p.1000-1014</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited May 20, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-e9263511861621f7e92aee049f2dc0f7df99e86a7c192884349e0bcf3827bf5f3</citedby><cites>FETCH-LOGICAL-c590t-e9263511861621f7e92aee049f2dc0f7df99e86a7c192884349e0bcf3827bf5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627315002846$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25937169$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Belin, Stephane</creatorcontrib><creatorcontrib>Nawabi, Homaira</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Tang, Shaojun</creatorcontrib><creatorcontrib>Latremoliere, Alban</creatorcontrib><creatorcontrib>Warren, Peter</creatorcontrib><creatorcontrib>Schorle, Hubert</creatorcontrib><creatorcontrib>Uncu, Ceren</creatorcontrib><creatorcontrib>Woolf, Clifford J.</creatorcontrib><creatorcontrib>He, Zhigang</creatorcontrib><creatorcontrib>Steen, Judith A.</creatorcontrib><title>Injury-Induced Decline of Intrinsic Regenerative Ability Revealed by Quantitative Proteomics</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Neurons differ in their responses to injury, but the underlying mechanisms remain poorly understood. Using quantitative proteomics, we characterized the injury-triggered response from purified intact and axotomized retinal ganglion cells (RGCs). Subsequent informatics analyses revealed a network of injury-response signaling hubs. In addition to confirming known players, such as mTOR, this also identified new candidates, such as c-myc, NFκB, and Huntingtin. Similar to mTOR, c-myc has been implicated as a key regulator of anabolic metabolism and is downregulated by axotomy. Forced expression of c-myc in RGCs, either before or after injury, promotes dramatic RGC survival and axon regeneration after optic nerve injury. Finally, in contrast to RGCs, neither c-myc nor mTOR was downregulated in injured peripheral sensory neurons. Our studies suggest that c-myc and other injury-responsive pathways are critical to the intrinsic regenerative mechanisms and might represent a novel target for developing neural repair strategies in adults.
•Proteomics analysis of intact and injured retinal ganglion cells•Identification of a molecular network of neuronal injury responses•c-myc as a critical regulator of injury responses and axon regeneration•Functional interactions between c-myc and other known regeneration regulators
Belin et al. used comparative proteomics approaches and revealed a signaling network of injury responses in axotomized retinal ganglion cells and also demonstrated c-myc as a critical regulator of neuronal survival and axon regeneration.</description><subject>Animals</subject><subject>Axons - metabolism</subject><subject>Axons - pathology</subject><subject>Axotomy - methods</subject><subject>Cell Survival - physiology</subject><subject>Disease Models, Animal</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Informatics</subject><subject>Kinases</subject><subject>Labeling</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Nerve Regeneration - physiology</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Optic nerve</subject><subject>Optic Nerve - metabolism</subject><subject>Optic Nerve - pathology</subject><subject>Optic Nerve Injuries - metabolism</subject><subject>Peptides</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Retinal Ganglion Cells - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Studies</subject><subject>Transcription factors</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUuLFDEUhYMoTjv6D0QK3LipMu9KNsIwvhoGfKA7IaRSN2OK6mRMqhr635uxx_Gx0FVI8p2bk3MQekxwRzCRz6cuwppT7CgmosOswxLfQRuCdd9yovVdtMFKy1bSnp2gB6VMGBMuNLmPTqjQrCdSb9CXbZzWfGi3cVwdjM1LcHOI0CTfbOOSQyzBNR_hEiJku4Q9NGdDmMNyqId7sHOVDIfmw2rjEpYj8D6nBdIuuPIQ3fN2LvDoZj1Fn1-_-nT-tr1492Z7fnbROqHx0oKmkglClCSSEt_XvQXAXHs6Ouz70WsNStreEU2V4oxrwIPzTNF-8MKzU_TiOPdqHXYwOqjO7WyuctjZfDDJBvPnTQxfzWXaGy4E4VTUAc9uBuT0bYWymF0oDubZRkhrMaRnVDEhKPs_KlX1qHulK_r0L3RKa441iR8U5YxiVSl-pFxOpWTwt74JNtdNm8kcmzbXTRvMTG26yp78_udb0c9qf4UCNfl9gGyKCxBrySGDW8yYwr9f-A5cybzS</recordid><startdate>20150520</startdate><enddate>20150520</enddate><creator>Belin, Stephane</creator><creator>Nawabi, Homaira</creator><creator>Wang, Chen</creator><creator>Tang, Shaojun</creator><creator>Latremoliere, Alban</creator><creator>Warren, Peter</creator><creator>Schorle, Hubert</creator><creator>Uncu, Ceren</creator><creator>Woolf, Clifford J.</creator><creator>He, Zhigang</creator><creator>Steen, Judith A.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150520</creationdate><title>Injury-Induced Decline of Intrinsic Regenerative Ability Revealed by Quantitative Proteomics</title><author>Belin, Stephane ; Nawabi, Homaira ; Wang, Chen ; Tang, Shaojun ; Latremoliere, Alban ; Warren, Peter ; Schorle, Hubert ; Uncu, Ceren ; Woolf, Clifford J. ; He, Zhigang ; Steen, Judith A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-e9263511861621f7e92aee049f2dc0f7df99e86a7c192884349e0bcf3827bf5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Axons - metabolism</topic><topic>Axons - pathology</topic><topic>Axotomy - methods</topic><topic>Cell Survival - physiology</topic><topic>Disease Models, Animal</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Informatics</topic><topic>Kinases</topic><topic>Labeling</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Nerve Regeneration - physiology</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Optic nerve</topic><topic>Optic Nerve - metabolism</topic><topic>Optic Nerve - pathology</topic><topic>Optic Nerve Injuries - metabolism</topic><topic>Peptides</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Retinal Ganglion Cells - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Studies</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belin, Stephane</creatorcontrib><creatorcontrib>Nawabi, Homaira</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Tang, Shaojun</creatorcontrib><creatorcontrib>Latremoliere, Alban</creatorcontrib><creatorcontrib>Warren, Peter</creatorcontrib><creatorcontrib>Schorle, Hubert</creatorcontrib><creatorcontrib>Uncu, Ceren</creatorcontrib><creatorcontrib>Woolf, Clifford J.</creatorcontrib><creatorcontrib>He, Zhigang</creatorcontrib><creatorcontrib>Steen, Judith A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belin, Stephane</au><au>Nawabi, Homaira</au><au>Wang, Chen</au><au>Tang, Shaojun</au><au>Latremoliere, Alban</au><au>Warren, Peter</au><au>Schorle, Hubert</au><au>Uncu, Ceren</au><au>Woolf, Clifford J.</au><au>He, Zhigang</au><au>Steen, Judith A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Injury-Induced Decline of Intrinsic Regenerative Ability Revealed by Quantitative Proteomics</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2015-05-20</date><risdate>2015</risdate><volume>86</volume><issue>4</issue><spage>1000</spage><epage>1014</epage><pages>1000-1014</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Neurons differ in their responses to injury, but the underlying mechanisms remain poorly understood. Using quantitative proteomics, we characterized the injury-triggered response from purified intact and axotomized retinal ganglion cells (RGCs). Subsequent informatics analyses revealed a network of injury-response signaling hubs. In addition to confirming known players, such as mTOR, this also identified new candidates, such as c-myc, NFκB, and Huntingtin. Similar to mTOR, c-myc has been implicated as a key regulator of anabolic metabolism and is downregulated by axotomy. Forced expression of c-myc in RGCs, either before or after injury, promotes dramatic RGC survival and axon regeneration after optic nerve injury. Finally, in contrast to RGCs, neither c-myc nor mTOR was downregulated in injured peripheral sensory neurons. Our studies suggest that c-myc and other injury-responsive pathways are critical to the intrinsic regenerative mechanisms and might represent a novel target for developing neural repair strategies in adults.
•Proteomics analysis of intact and injured retinal ganglion cells•Identification of a molecular network of neuronal injury responses•c-myc as a critical regulator of injury responses and axon regeneration•Functional interactions between c-myc and other known regeneration regulators
Belin et al. used comparative proteomics approaches and revealed a signaling network of injury responses in axotomized retinal ganglion cells and also demonstrated c-myc as a critical regulator of neuronal survival and axon regeneration.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25937169</pmid><doi>10.1016/j.neuron.2015.03.060</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2015-05, Vol.86 (4), p.1000-1014 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4551425 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals Axons - metabolism Axons - pathology Axotomy - methods Cell Survival - physiology Disease Models, Animal Experiments Gene expression Informatics Kinases Labeling Mice, Inbred C57BL Mice, Transgenic Nerve Regeneration - physiology Neurons Neurons - metabolism Neurons - pathology Optic nerve Optic Nerve - metabolism Optic Nerve - pathology Optic Nerve Injuries - metabolism Peptides Proteins Proteomics Retinal Ganglion Cells - metabolism Signal Transduction - physiology Studies Transcription factors |
title | Injury-Induced Decline of Intrinsic Regenerative Ability Revealed by Quantitative Proteomics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T02%3A25%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Injury-Induced%20Decline%20of%20Intrinsic%20Regenerative%20Ability%20Revealed%20by%20Quantitative%20Proteomics&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Belin,%20Stephane&rft.date=2015-05-20&rft.volume=86&rft.issue=4&rft.spage=1000&rft.epage=1014&rft.pages=1000-1014&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2015.03.060&rft_dat=%3Cproquest_pubme%3E1682889789%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1682243208&rft_id=info:pmid/25937169&rft_els_id=S0896627315002846&rfr_iscdi=true |