Injury-Induced Decline of Intrinsic Regenerative Ability Revealed by Quantitative Proteomics

Neurons differ in their responses to injury, but the underlying mechanisms remain poorly understood. Using quantitative proteomics, we characterized the injury-triggered response from purified intact and axotomized retinal ganglion cells (RGCs). Subsequent informatics analyses revealed a network of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2015-05, Vol.86 (4), p.1000-1014
Hauptverfasser: Belin, Stephane, Nawabi, Homaira, Wang, Chen, Tang, Shaojun, Latremoliere, Alban, Warren, Peter, Schorle, Hubert, Uncu, Ceren, Woolf, Clifford J., He, Zhigang, Steen, Judith A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1014
container_issue 4
container_start_page 1000
container_title Neuron (Cambridge, Mass.)
container_volume 86
creator Belin, Stephane
Nawabi, Homaira
Wang, Chen
Tang, Shaojun
Latremoliere, Alban
Warren, Peter
Schorle, Hubert
Uncu, Ceren
Woolf, Clifford J.
He, Zhigang
Steen, Judith A.
description Neurons differ in their responses to injury, but the underlying mechanisms remain poorly understood. Using quantitative proteomics, we characterized the injury-triggered response from purified intact and axotomized retinal ganglion cells (RGCs). Subsequent informatics analyses revealed a network of injury-response signaling hubs. In addition to confirming known players, such as mTOR, this also identified new candidates, such as c-myc, NFκB, and Huntingtin. Similar to mTOR, c-myc has been implicated as a key regulator of anabolic metabolism and is downregulated by axotomy. Forced expression of c-myc in RGCs, either before or after injury, promotes dramatic RGC survival and axon regeneration after optic nerve injury. Finally, in contrast to RGCs, neither c-myc nor mTOR was downregulated in injured peripheral sensory neurons. Our studies suggest that c-myc and other injury-responsive pathways are critical to the intrinsic regenerative mechanisms and might represent a novel target for developing neural repair strategies in adults. •Proteomics analysis of intact and injured retinal ganglion cells•Identification of a molecular network of neuronal injury responses•c-myc as a critical regulator of injury responses and axon regeneration•Functional interactions between c-myc and other known regeneration regulators Belin et al. used comparative proteomics approaches and revealed a signaling network of injury responses in axotomized retinal ganglion cells and also demonstrated c-myc as a critical regulator of neuronal survival and axon regeneration.
doi_str_mv 10.1016/j.neuron.2015.03.060
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4551425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627315002846</els_id><sourcerecordid>1682889789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-e9263511861621f7e92aee049f2dc0f7df99e86a7c192884349e0bcf3827bf5f3</originalsourceid><addsrcrecordid>eNqFkUuLFDEUhYMoTjv6D0QK3LipMu9KNsIwvhoGfKA7IaRSN2OK6mRMqhr635uxx_Gx0FVI8p2bk3MQekxwRzCRz6cuwppT7CgmosOswxLfQRuCdd9yovVdtMFKy1bSnp2gB6VMGBMuNLmPTqjQrCdSb9CXbZzWfGi3cVwdjM1LcHOI0CTfbOOSQyzBNR_hEiJku4Q9NGdDmMNyqId7sHOVDIfmw2rjEpYj8D6nBdIuuPIQ3fN2LvDoZj1Fn1-_-nT-tr1492Z7fnbROqHx0oKmkglClCSSEt_XvQXAXHs6Ouz70WsNStreEU2V4oxrwIPzTNF-8MKzU_TiOPdqHXYwOqjO7WyuctjZfDDJBvPnTQxfzWXaGy4E4VTUAc9uBuT0bYWymF0oDubZRkhrMaRnVDEhKPs_KlX1qHulK_r0L3RKa441iR8U5YxiVSl-pFxOpWTwt74JNtdNm8kcmzbXTRvMTG26yp78_udb0c9qf4UCNfl9gGyKCxBrySGDW8yYwr9f-A5cybzS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1682243208</pqid></control><display><type>article</type><title>Injury-Induced Decline of Intrinsic Regenerative Ability Revealed by Quantitative Proteomics</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Belin, Stephane ; Nawabi, Homaira ; Wang, Chen ; Tang, Shaojun ; Latremoliere, Alban ; Warren, Peter ; Schorle, Hubert ; Uncu, Ceren ; Woolf, Clifford J. ; He, Zhigang ; Steen, Judith A.</creator><creatorcontrib>Belin, Stephane ; Nawabi, Homaira ; Wang, Chen ; Tang, Shaojun ; Latremoliere, Alban ; Warren, Peter ; Schorle, Hubert ; Uncu, Ceren ; Woolf, Clifford J. ; He, Zhigang ; Steen, Judith A.</creatorcontrib><description>Neurons differ in their responses to injury, but the underlying mechanisms remain poorly understood. Using quantitative proteomics, we characterized the injury-triggered response from purified intact and axotomized retinal ganglion cells (RGCs). Subsequent informatics analyses revealed a network of injury-response signaling hubs. In addition to confirming known players, such as mTOR, this also identified new candidates, such as c-myc, NFκB, and Huntingtin. Similar to mTOR, c-myc has been implicated as a key regulator of anabolic metabolism and is downregulated by axotomy. Forced expression of c-myc in RGCs, either before or after injury, promotes dramatic RGC survival and axon regeneration after optic nerve injury. Finally, in contrast to RGCs, neither c-myc nor mTOR was downregulated in injured peripheral sensory neurons. Our studies suggest that c-myc and other injury-responsive pathways are critical to the intrinsic regenerative mechanisms and might represent a novel target for developing neural repair strategies in adults. •Proteomics analysis of intact and injured retinal ganglion cells•Identification of a molecular network of neuronal injury responses•c-myc as a critical regulator of injury responses and axon regeneration•Functional interactions between c-myc and other known regeneration regulators Belin et al. used comparative proteomics approaches and revealed a signaling network of injury responses in axotomized retinal ganglion cells and also demonstrated c-myc as a critical regulator of neuronal survival and axon regeneration.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2015.03.060</identifier><identifier>PMID: 25937169</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Axons - metabolism ; Axons - pathology ; Axotomy - methods ; Cell Survival - physiology ; Disease Models, Animal ; Experiments ; Gene expression ; Informatics ; Kinases ; Labeling ; Mice, Inbred C57BL ; Mice, Transgenic ; Nerve Regeneration - physiology ; Neurons ; Neurons - metabolism ; Neurons - pathology ; Optic nerve ; Optic Nerve - metabolism ; Optic Nerve - pathology ; Optic Nerve Injuries - metabolism ; Peptides ; Proteins ; Proteomics ; Retinal Ganglion Cells - metabolism ; Signal Transduction - physiology ; Studies ; Transcription factors</subject><ispartof>Neuron (Cambridge, Mass.), 2015-05, Vol.86 (4), p.1000-1014</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited May 20, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-e9263511861621f7e92aee049f2dc0f7df99e86a7c192884349e0bcf3827bf5f3</citedby><cites>FETCH-LOGICAL-c590t-e9263511861621f7e92aee049f2dc0f7df99e86a7c192884349e0bcf3827bf5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627315002846$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25937169$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Belin, Stephane</creatorcontrib><creatorcontrib>Nawabi, Homaira</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Tang, Shaojun</creatorcontrib><creatorcontrib>Latremoliere, Alban</creatorcontrib><creatorcontrib>Warren, Peter</creatorcontrib><creatorcontrib>Schorle, Hubert</creatorcontrib><creatorcontrib>Uncu, Ceren</creatorcontrib><creatorcontrib>Woolf, Clifford J.</creatorcontrib><creatorcontrib>He, Zhigang</creatorcontrib><creatorcontrib>Steen, Judith A.</creatorcontrib><title>Injury-Induced Decline of Intrinsic Regenerative Ability Revealed by Quantitative Proteomics</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Neurons differ in their responses to injury, but the underlying mechanisms remain poorly understood. Using quantitative proteomics, we characterized the injury-triggered response from purified intact and axotomized retinal ganglion cells (RGCs). Subsequent informatics analyses revealed a network of injury-response signaling hubs. In addition to confirming known players, such as mTOR, this also identified new candidates, such as c-myc, NFκB, and Huntingtin. Similar to mTOR, c-myc has been implicated as a key regulator of anabolic metabolism and is downregulated by axotomy. Forced expression of c-myc in RGCs, either before or after injury, promotes dramatic RGC survival and axon regeneration after optic nerve injury. Finally, in contrast to RGCs, neither c-myc nor mTOR was downregulated in injured peripheral sensory neurons. Our studies suggest that c-myc and other injury-responsive pathways are critical to the intrinsic regenerative mechanisms and might represent a novel target for developing neural repair strategies in adults. •Proteomics analysis of intact and injured retinal ganglion cells•Identification of a molecular network of neuronal injury responses•c-myc as a critical regulator of injury responses and axon regeneration•Functional interactions between c-myc and other known regeneration regulators Belin et al. used comparative proteomics approaches and revealed a signaling network of injury responses in axotomized retinal ganglion cells and also demonstrated c-myc as a critical regulator of neuronal survival and axon regeneration.</description><subject>Animals</subject><subject>Axons - metabolism</subject><subject>Axons - pathology</subject><subject>Axotomy - methods</subject><subject>Cell Survival - physiology</subject><subject>Disease Models, Animal</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Informatics</subject><subject>Kinases</subject><subject>Labeling</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Nerve Regeneration - physiology</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Optic nerve</subject><subject>Optic Nerve - metabolism</subject><subject>Optic Nerve - pathology</subject><subject>Optic Nerve Injuries - metabolism</subject><subject>Peptides</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Retinal Ganglion Cells - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Studies</subject><subject>Transcription factors</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUuLFDEUhYMoTjv6D0QK3LipMu9KNsIwvhoGfKA7IaRSN2OK6mRMqhr635uxx_Gx0FVI8p2bk3MQekxwRzCRz6cuwppT7CgmosOswxLfQRuCdd9yovVdtMFKy1bSnp2gB6VMGBMuNLmPTqjQrCdSb9CXbZzWfGi3cVwdjM1LcHOI0CTfbOOSQyzBNR_hEiJku4Q9NGdDmMNyqId7sHOVDIfmw2rjEpYj8D6nBdIuuPIQ3fN2LvDoZj1Fn1-_-nT-tr1492Z7fnbROqHx0oKmkglClCSSEt_XvQXAXHs6Ouz70WsNStreEU2V4oxrwIPzTNF-8MKzU_TiOPdqHXYwOqjO7WyuctjZfDDJBvPnTQxfzWXaGy4E4VTUAc9uBuT0bYWymF0oDubZRkhrMaRnVDEhKPs_KlX1qHulK_r0L3RKa441iR8U5YxiVSl-pFxOpWTwt74JNtdNm8kcmzbXTRvMTG26yp78_udb0c9qf4UCNfl9gGyKCxBrySGDW8yYwr9f-A5cybzS</recordid><startdate>20150520</startdate><enddate>20150520</enddate><creator>Belin, Stephane</creator><creator>Nawabi, Homaira</creator><creator>Wang, Chen</creator><creator>Tang, Shaojun</creator><creator>Latremoliere, Alban</creator><creator>Warren, Peter</creator><creator>Schorle, Hubert</creator><creator>Uncu, Ceren</creator><creator>Woolf, Clifford J.</creator><creator>He, Zhigang</creator><creator>Steen, Judith A.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150520</creationdate><title>Injury-Induced Decline of Intrinsic Regenerative Ability Revealed by Quantitative Proteomics</title><author>Belin, Stephane ; Nawabi, Homaira ; Wang, Chen ; Tang, Shaojun ; Latremoliere, Alban ; Warren, Peter ; Schorle, Hubert ; Uncu, Ceren ; Woolf, Clifford J. ; He, Zhigang ; Steen, Judith A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-e9263511861621f7e92aee049f2dc0f7df99e86a7c192884349e0bcf3827bf5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Axons - metabolism</topic><topic>Axons - pathology</topic><topic>Axotomy - methods</topic><topic>Cell Survival - physiology</topic><topic>Disease Models, Animal</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Informatics</topic><topic>Kinases</topic><topic>Labeling</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Nerve Regeneration - physiology</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Optic nerve</topic><topic>Optic Nerve - metabolism</topic><topic>Optic Nerve - pathology</topic><topic>Optic Nerve Injuries - metabolism</topic><topic>Peptides</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Retinal Ganglion Cells - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Studies</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belin, Stephane</creatorcontrib><creatorcontrib>Nawabi, Homaira</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Tang, Shaojun</creatorcontrib><creatorcontrib>Latremoliere, Alban</creatorcontrib><creatorcontrib>Warren, Peter</creatorcontrib><creatorcontrib>Schorle, Hubert</creatorcontrib><creatorcontrib>Uncu, Ceren</creatorcontrib><creatorcontrib>Woolf, Clifford J.</creatorcontrib><creatorcontrib>He, Zhigang</creatorcontrib><creatorcontrib>Steen, Judith A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belin, Stephane</au><au>Nawabi, Homaira</au><au>Wang, Chen</au><au>Tang, Shaojun</au><au>Latremoliere, Alban</au><au>Warren, Peter</au><au>Schorle, Hubert</au><au>Uncu, Ceren</au><au>Woolf, Clifford J.</au><au>He, Zhigang</au><au>Steen, Judith A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Injury-Induced Decline of Intrinsic Regenerative Ability Revealed by Quantitative Proteomics</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2015-05-20</date><risdate>2015</risdate><volume>86</volume><issue>4</issue><spage>1000</spage><epage>1014</epage><pages>1000-1014</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Neurons differ in their responses to injury, but the underlying mechanisms remain poorly understood. Using quantitative proteomics, we characterized the injury-triggered response from purified intact and axotomized retinal ganglion cells (RGCs). Subsequent informatics analyses revealed a network of injury-response signaling hubs. In addition to confirming known players, such as mTOR, this also identified new candidates, such as c-myc, NFκB, and Huntingtin. Similar to mTOR, c-myc has been implicated as a key regulator of anabolic metabolism and is downregulated by axotomy. Forced expression of c-myc in RGCs, either before or after injury, promotes dramatic RGC survival and axon regeneration after optic nerve injury. Finally, in contrast to RGCs, neither c-myc nor mTOR was downregulated in injured peripheral sensory neurons. Our studies suggest that c-myc and other injury-responsive pathways are critical to the intrinsic regenerative mechanisms and might represent a novel target for developing neural repair strategies in adults. •Proteomics analysis of intact and injured retinal ganglion cells•Identification of a molecular network of neuronal injury responses•c-myc as a critical regulator of injury responses and axon regeneration•Functional interactions between c-myc and other known regeneration regulators Belin et al. used comparative proteomics approaches and revealed a signaling network of injury responses in axotomized retinal ganglion cells and also demonstrated c-myc as a critical regulator of neuronal survival and axon regeneration.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25937169</pmid><doi>10.1016/j.neuron.2015.03.060</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2015-05, Vol.86 (4), p.1000-1014
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4551425
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Axons - metabolism
Axons - pathology
Axotomy - methods
Cell Survival - physiology
Disease Models, Animal
Experiments
Gene expression
Informatics
Kinases
Labeling
Mice, Inbred C57BL
Mice, Transgenic
Nerve Regeneration - physiology
Neurons
Neurons - metabolism
Neurons - pathology
Optic nerve
Optic Nerve - metabolism
Optic Nerve - pathology
Optic Nerve Injuries - metabolism
Peptides
Proteins
Proteomics
Retinal Ganglion Cells - metabolism
Signal Transduction - physiology
Studies
Transcription factors
title Injury-Induced Decline of Intrinsic Regenerative Ability Revealed by Quantitative Proteomics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T02%3A25%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Injury-Induced%20Decline%20of%20Intrinsic%20Regenerative%20Ability%20Revealed%20by%20Quantitative%20Proteomics&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Belin,%20Stephane&rft.date=2015-05-20&rft.volume=86&rft.issue=4&rft.spage=1000&rft.epage=1014&rft.pages=1000-1014&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2015.03.060&rft_dat=%3Cproquest_pubme%3E1682889789%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1682243208&rft_id=info:pmid/25937169&rft_els_id=S0896627315002846&rfr_iscdi=true