Counteraction of antibiotic production and degradation stabilizes microbial communities

Mathematical modelling and simulations reveal that including antibiotic degraders in ecological models of microbial species interaction allows the system to robustly move towards an intermixed stable state, more representative of real-world observations. Microbial community structure Understanding h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2015-05, Vol.521 (7553), p.516-519
Hauptverfasser: Kelsic, Eric D., Zhao, Jeffrey, Vetsigian, Kalin, Kishony, Roy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 519
container_issue 7553
container_start_page 516
container_title Nature (London)
container_volume 521
creator Kelsic, Eric D.
Zhao, Jeffrey
Vetsigian, Kalin
Kishony, Roy
description Mathematical modelling and simulations reveal that including antibiotic degraders in ecological models of microbial species interaction allows the system to robustly move towards an intermixed stable state, more representative of real-world observations. Microbial community structure Understanding how stability in multispecies communities is maintained in the face of negative interactions via antibiotic production is a key goal in microbial ecology. Most ecological models for antibiotic interactions assume pairwise relationships between species that result in rock–scissor–paper type cycling and spatial separation. This doesn't reflect the in situ observations though, where communities are far more intermixed. Instead, Eric Kelsic and colleagues propose a three-species interaction assay, in which one species is capable of antibiotic degradation. Using a mixture of modelling and experimental validation, the authors show that including antibiotic degraders allows the system to robustly move towards an intermixed stable state. A major challenge in theoretical ecology is understanding how natural microbial communities support species diversity 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , and in particular how antibiotic-producing, -sensitive and -resistant species coexist 9 , 10 , 11 , 12 , 13 , 14 , 15 . While cyclic ‘rock–paper–scissors’ interactions can stabilize communities in spatial environments 9 , 10 , 11 , coexistence in unstructured environments remains unexplained 12 , 16 . Here, using simulations and analytical models, we show that the opposing actions of antibiotic production and degradation enable coexistence even in well-mixed environments. Coexistence depends on three-way interactions in which an antibiotic-degrading species attenuates the inhibitory interactions between two other species. These interactions enable coexistence that is robust to substantial differences in inherent species growth rates and to invasion by ‘cheating’ species that cease to produce or degrade antibiotics. At least two antibiotics are required for stability, with greater numbers of antibiotics enabling more complex communities and diverse dynamic behaviours ranging from stable fixed points to limit cycles and chaos. Together, these results show how multi-species antibiotic interactions can generate ecological stability in both spatially structured and mixed microbial communities, suggesting strategies for engineering synthetic ecosystems and highlighting the importance of toxin pro
doi_str_mv 10.1038/nature14485
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4551410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A659917276</galeid><sourcerecordid>A659917276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c806t-7f4890113ffff4133100184024e5c0037553ce75648765e6e112cedba58310c73</originalsourceid><addsrcrecordid>eNqNk9uL1DAUh4Mo7jj65LsUfVG0a9Lm0r4Iw-BlYVHQlX0MaXpas7TJbJKK-teb2VnXGali8hCS8-V3knNB6CHBxwSX1Uur4uSBUFqxW2hBqOA55ZW4jRYYF1WOq5IfoXshXGCMGRH0LjoqWF0XjPIFOl-7yUbwSkfjbOa6TNloGuOi0dnGu3baGZRtsxZ6r1p1tQ9RNWYwPyBko9HeNUYNmXbjOFkTDYT76E6nhgAPrtcl-vzm9dn6XX764e3JenWa6wrzmIuOVjUmpOzSoKQsCcakorigwDTGpWCs1CAYp5XgDDgQUmhoG8WqhGpRLtGrne5makZoNdjo1SA33ozKf5dOGXloseaL7N1XSRkjNMVviZ5eC3h3OUGIcjRBwzAoC24KkvCK0jIFtU7okz_QCzd5m753RdWM1qL4TfVqAGls55JfvRWVK57iTkQh-D8pShjjJRHbx-UzVA82JWxwFjqTjg9UH8_wemMu5X9B-56PZ6A0W0j5nnX97OBCYiJ8i72aQpAnnz4ess__zq7OztfvZ-lUZiF46G6yS7DcdoDc64BEP9oviBv2V8kn4MUOCMlke_B7WZzR-wlUdAs7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1684954972</pqid></control><display><type>article</type><title>Counteraction of antibiotic production and degradation stabilizes microbial communities</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Kelsic, Eric D. ; Zhao, Jeffrey ; Vetsigian, Kalin ; Kishony, Roy</creator><creatorcontrib>Kelsic, Eric D. ; Zhao, Jeffrey ; Vetsigian, Kalin ; Kishony, Roy</creatorcontrib><description>Mathematical modelling and simulations reveal that including antibiotic degraders in ecological models of microbial species interaction allows the system to robustly move towards an intermixed stable state, more representative of real-world observations. Microbial community structure Understanding how stability in multispecies communities is maintained in the face of negative interactions via antibiotic production is a key goal in microbial ecology. Most ecological models for antibiotic interactions assume pairwise relationships between species that result in rock–scissor–paper type cycling and spatial separation. This doesn't reflect the in situ observations though, where communities are far more intermixed. Instead, Eric Kelsic and colleagues propose a three-species interaction assay, in which one species is capable of antibiotic degradation. Using a mixture of modelling and experimental validation, the authors show that including antibiotic degraders allows the system to robustly move towards an intermixed stable state. A major challenge in theoretical ecology is understanding how natural microbial communities support species diversity 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , and in particular how antibiotic-producing, -sensitive and -resistant species coexist 9 , 10 , 11 , 12 , 13 , 14 , 15 . While cyclic ‘rock–paper–scissors’ interactions can stabilize communities in spatial environments 9 , 10 , 11 , coexistence in unstructured environments remains unexplained 12 , 16 . Here, using simulations and analytical models, we show that the opposing actions of antibiotic production and degradation enable coexistence even in well-mixed environments. Coexistence depends on three-way interactions in which an antibiotic-degrading species attenuates the inhibitory interactions between two other species. These interactions enable coexistence that is robust to substantial differences in inherent species growth rates and to invasion by ‘cheating’ species that cease to produce or degrade antibiotics. At least two antibiotics are required for stability, with greater numbers of antibiotics enabling more complex communities and diverse dynamic behaviours ranging from stable fixed points to limit cycles and chaos. Together, these results show how multi-species antibiotic interactions can generate ecological stability in both spatially structured and mixed microbial communities, suggesting strategies for engineering synthetic ecosystems and highlighting the importance of toxin production and degradation for microbial biodiversity.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature14485</identifier><identifier>PMID: 25992546</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/34 ; 631/158/855 ; 631/326/22/1290 ; 631/326/2565 ; 631/92/604 ; Analysis ; Anti-Bacterial Agents - biosynthesis ; Anti-Bacterial Agents - metabolism ; Antibiotics ; Biodegradation ; Biodiversity ; Coexistence ; Ecology ; Ecosystem ; Ecosystems ; Environmental aspects ; Humanities and Social Sciences ; Invasive species ; letter ; Methods ; Microbial activity ; Microbial colonies ; Microbial enzymes ; Microorganisms ; Models, Biological ; multidisciplinary ; Observations ; Pairwise comparison ; Production processes ; Science ; Soil Microbiology ; Species diversity ; Structure ; Toxins</subject><ispartof>Nature (London), 2015-05, Vol.521 (7553), p.516-519</ispartof><rights>Springer Nature Limited 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group May 28, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c806t-7f4890113ffff4133100184024e5c0037553ce75648765e6e112cedba58310c73</citedby><cites>FETCH-LOGICAL-c806t-7f4890113ffff4133100184024e5c0037553ce75648765e6e112cedba58310c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature14485$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature14485$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25992546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kelsic, Eric D.</creatorcontrib><creatorcontrib>Zhao, Jeffrey</creatorcontrib><creatorcontrib>Vetsigian, Kalin</creatorcontrib><creatorcontrib>Kishony, Roy</creatorcontrib><title>Counteraction of antibiotic production and degradation stabilizes microbial communities</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Mathematical modelling and simulations reveal that including antibiotic degraders in ecological models of microbial species interaction allows the system to robustly move towards an intermixed stable state, more representative of real-world observations. Microbial community structure Understanding how stability in multispecies communities is maintained in the face of negative interactions via antibiotic production is a key goal in microbial ecology. Most ecological models for antibiotic interactions assume pairwise relationships between species that result in rock–scissor–paper type cycling and spatial separation. This doesn't reflect the in situ observations though, where communities are far more intermixed. Instead, Eric Kelsic and colleagues propose a three-species interaction assay, in which one species is capable of antibiotic degradation. Using a mixture of modelling and experimental validation, the authors show that including antibiotic degraders allows the system to robustly move towards an intermixed stable state. A major challenge in theoretical ecology is understanding how natural microbial communities support species diversity 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , and in particular how antibiotic-producing, -sensitive and -resistant species coexist 9 , 10 , 11 , 12 , 13 , 14 , 15 . While cyclic ‘rock–paper–scissors’ interactions can stabilize communities in spatial environments 9 , 10 , 11 , coexistence in unstructured environments remains unexplained 12 , 16 . Here, using simulations and analytical models, we show that the opposing actions of antibiotic production and degradation enable coexistence even in well-mixed environments. Coexistence depends on three-way interactions in which an antibiotic-degrading species attenuates the inhibitory interactions between two other species. These interactions enable coexistence that is robust to substantial differences in inherent species growth rates and to invasion by ‘cheating’ species that cease to produce or degrade antibiotics. At least two antibiotics are required for stability, with greater numbers of antibiotics enabling more complex communities and diverse dynamic behaviours ranging from stable fixed points to limit cycles and chaos. Together, these results show how multi-species antibiotic interactions can generate ecological stability in both spatially structured and mixed microbial communities, suggesting strategies for engineering synthetic ecosystems and highlighting the importance of toxin production and degradation for microbial biodiversity.</description><subject>14/34</subject><subject>631/158/855</subject><subject>631/326/22/1290</subject><subject>631/326/2565</subject><subject>631/92/604</subject><subject>Analysis</subject><subject>Anti-Bacterial Agents - biosynthesis</subject><subject>Anti-Bacterial Agents - metabolism</subject><subject>Antibiotics</subject><subject>Biodegradation</subject><subject>Biodiversity</subject><subject>Coexistence</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Environmental aspects</subject><subject>Humanities and Social Sciences</subject><subject>Invasive species</subject><subject>letter</subject><subject>Methods</subject><subject>Microbial activity</subject><subject>Microbial colonies</subject><subject>Microbial enzymes</subject><subject>Microorganisms</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Observations</subject><subject>Pairwise comparison</subject><subject>Production processes</subject><subject>Science</subject><subject>Soil Microbiology</subject><subject>Species diversity</subject><subject>Structure</subject><subject>Toxins</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNk9uL1DAUh4Mo7jj65LsUfVG0a9Lm0r4Iw-BlYVHQlX0MaXpas7TJbJKK-teb2VnXGali8hCS8-V3knNB6CHBxwSX1Uur4uSBUFqxW2hBqOA55ZW4jRYYF1WOq5IfoXshXGCMGRH0LjoqWF0XjPIFOl-7yUbwSkfjbOa6TNloGuOi0dnGu3baGZRtsxZ6r1p1tQ9RNWYwPyBko9HeNUYNmXbjOFkTDYT76E6nhgAPrtcl-vzm9dn6XX764e3JenWa6wrzmIuOVjUmpOzSoKQsCcakorigwDTGpWCs1CAYp5XgDDgQUmhoG8WqhGpRLtGrne5makZoNdjo1SA33ozKf5dOGXloseaL7N1XSRkjNMVviZ5eC3h3OUGIcjRBwzAoC24KkvCK0jIFtU7okz_QCzd5m753RdWM1qL4TfVqAGls55JfvRWVK57iTkQh-D8pShjjJRHbx-UzVA82JWxwFjqTjg9UH8_wemMu5X9B-56PZ6A0W0j5nnX97OBCYiJ8i72aQpAnnz4ess__zq7OztfvZ-lUZiF46G6yS7DcdoDc64BEP9oviBv2V8kn4MUOCMlke_B7WZzR-wlUdAs7</recordid><startdate>20150528</startdate><enddate>20150528</enddate><creator>Kelsic, Eric D.</creator><creator>Zhao, Jeffrey</creator><creator>Vetsigian, Kalin</creator><creator>Kishony, Roy</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150528</creationdate><title>Counteraction of antibiotic production and degradation stabilizes microbial communities</title><author>Kelsic, Eric D. ; Zhao, Jeffrey ; Vetsigian, Kalin ; Kishony, Roy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c806t-7f4890113ffff4133100184024e5c0037553ce75648765e6e112cedba58310c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>14/34</topic><topic>631/158/855</topic><topic>631/326/22/1290</topic><topic>631/326/2565</topic><topic>631/92/604</topic><topic>Analysis</topic><topic>Anti-Bacterial Agents - biosynthesis</topic><topic>Anti-Bacterial Agents - metabolism</topic><topic>Antibiotics</topic><topic>Biodegradation</topic><topic>Biodiversity</topic><topic>Coexistence</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Environmental aspects</topic><topic>Humanities and Social Sciences</topic><topic>Invasive species</topic><topic>letter</topic><topic>Methods</topic><topic>Microbial activity</topic><topic>Microbial colonies</topic><topic>Microbial enzymes</topic><topic>Microorganisms</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Observations</topic><topic>Pairwise comparison</topic><topic>Production processes</topic><topic>Science</topic><topic>Soil Microbiology</topic><topic>Species diversity</topic><topic>Structure</topic><topic>Toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelsic, Eric D.</creatorcontrib><creatorcontrib>Zhao, Jeffrey</creatorcontrib><creatorcontrib>Vetsigian, Kalin</creatorcontrib><creatorcontrib>Kishony, Roy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelsic, Eric D.</au><au>Zhao, Jeffrey</au><au>Vetsigian, Kalin</au><au>Kishony, Roy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Counteraction of antibiotic production and degradation stabilizes microbial communities</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2015-05-28</date><risdate>2015</risdate><volume>521</volume><issue>7553</issue><spage>516</spage><epage>519</epage><pages>516-519</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Mathematical modelling and simulations reveal that including antibiotic degraders in ecological models of microbial species interaction allows the system to robustly move towards an intermixed stable state, more representative of real-world observations. Microbial community structure Understanding how stability in multispecies communities is maintained in the face of negative interactions via antibiotic production is a key goal in microbial ecology. Most ecological models for antibiotic interactions assume pairwise relationships between species that result in rock–scissor–paper type cycling and spatial separation. This doesn't reflect the in situ observations though, where communities are far more intermixed. Instead, Eric Kelsic and colleagues propose a three-species interaction assay, in which one species is capable of antibiotic degradation. Using a mixture of modelling and experimental validation, the authors show that including antibiotic degraders allows the system to robustly move towards an intermixed stable state. A major challenge in theoretical ecology is understanding how natural microbial communities support species diversity 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , and in particular how antibiotic-producing, -sensitive and -resistant species coexist 9 , 10 , 11 , 12 , 13 , 14 , 15 . While cyclic ‘rock–paper–scissors’ interactions can stabilize communities in spatial environments 9 , 10 , 11 , coexistence in unstructured environments remains unexplained 12 , 16 . Here, using simulations and analytical models, we show that the opposing actions of antibiotic production and degradation enable coexistence even in well-mixed environments. Coexistence depends on three-way interactions in which an antibiotic-degrading species attenuates the inhibitory interactions between two other species. These interactions enable coexistence that is robust to substantial differences in inherent species growth rates and to invasion by ‘cheating’ species that cease to produce or degrade antibiotics. At least two antibiotics are required for stability, with greater numbers of antibiotics enabling more complex communities and diverse dynamic behaviours ranging from stable fixed points to limit cycles and chaos. Together, these results show how multi-species antibiotic interactions can generate ecological stability in both spatially structured and mixed microbial communities, suggesting strategies for engineering synthetic ecosystems and highlighting the importance of toxin production and degradation for microbial biodiversity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25992546</pmid><doi>10.1038/nature14485</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2015-05, Vol.521 (7553), p.516-519
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4551410
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 14/34
631/158/855
631/326/22/1290
631/326/2565
631/92/604
Analysis
Anti-Bacterial Agents - biosynthesis
Anti-Bacterial Agents - metabolism
Antibiotics
Biodegradation
Biodiversity
Coexistence
Ecology
Ecosystem
Ecosystems
Environmental aspects
Humanities and Social Sciences
Invasive species
letter
Methods
Microbial activity
Microbial colonies
Microbial enzymes
Microorganisms
Models, Biological
multidisciplinary
Observations
Pairwise comparison
Production processes
Science
Soil Microbiology
Species diversity
Structure
Toxins
title Counteraction of antibiotic production and degradation stabilizes microbial communities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A04%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Counteraction%20of%20antibiotic%20production%20and%20degradation%20stabilizes%20microbial%20communities&rft.jtitle=Nature%20(London)&rft.au=Kelsic,%20Eric%20D.&rft.date=2015-05-28&rft.volume=521&rft.issue=7553&rft.spage=516&rft.epage=519&rft.pages=516-519&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature14485&rft_dat=%3Cgale_pubme%3EA659917276%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1684954972&rft_id=info:pmid/25992546&rft_galeid=A659917276&rfr_iscdi=true