Test-retest reliability of freesurfer measurements within and between sites: Effects of visual approval process
In the last decade, many studies have used automated processes to analyze magnetic resonance imaging (MRI) data such as cortical thickness, which is one indicator of neuronal health. Due to the convenience of image processing software (e.g., FreeSurfer), standard practice is to rely on automated res...
Gespeichert in:
Veröffentlicht in: | Human brain mapping 2015-09, Vol.36 (9), p.3472-3485 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3485 |
---|---|
container_issue | 9 |
container_start_page | 3472 |
container_title | Human brain mapping |
container_volume | 36 |
creator | Iscan, Zafer Jin, Tony B. Kendrick, Alexandria Szeglin, Bryan Lu, Hanzhang Trivedi, Madhukar Fava, Maurizio McGrath, Patrick J. Weissman, Myrna Kurian, Benji T. Adams, Phillip Weyandt, Sarah Toups, Marisa Carmody, Thomas McInnis, Melvin Cusin, Cristina Cooper, Crystal Oquendo, Maria A. Parsey, Ramin V. DeLorenzo, Christine |
description | In the last decade, many studies have used automated processes to analyze magnetic resonance imaging (MRI) data such as cortical thickness, which is one indicator of neuronal health. Due to the convenience of image processing software (e.g., FreeSurfer), standard practice is to rely on automated results without performing visual inspection of intermediate processing. In this work, structural MRIs of 40 healthy controls who were scanned twice were used to determine the test–retest reliability of FreeSurfer‐derived cortical measures in four groups of subjects—those 25 that passed visual inspection (approved), those 15 that failed visual inspection (disapproved), a combined group, and a subset of 10 subjects (Travel) whose test and retest scans occurred at different sites. Test–retest correlation (TRC), intraclass correlation coefficient (ICC), and percent difference (PD) were used to measure the reliability in the Destrieux and Desikan–Killiany (DK) atlases. In the approved subjects, reliability of cortical thickness/surface area/volume (DK atlas only) were: TRC (0.82/0.88/0.88), ICC (0.81/0.87/0.88), PD (0.86/1.19/1.39), which represent a significant improvement over these measures when disapproved subjects are included. Travel subjects’ results show that cortical thickness reliability is more sensitive to site differences than the cortical surface area and volume. To determine the effect of visual inspection on sample size required for studies of MRI‐derived cortical thickness, the number of subjects required to show group differences was calculated. Significant differences observed across imaging sites, between visually approved/disapproved subjects, and across regions with different sizes suggest that these measures should be used with caution. Hum Brain Mapp 36:3472–3485, 2015. © 2015 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/hbm.22856 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4545736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1712773053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6506-e20941136d7868afe7e8148174c6443a6b2f7357fe8ab9094ee0cbd7353ef6a93</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiMEol8c-APIEhd6SOuxYzvhUAmqskXqx6UViIvlZMesSxIvdrLL_nu83XYFSEg9zSv7mVcz82bZa6BHQCk7ntXdEWOlkM-yXaCVyilU_PlaS5FXhYKdbC_GO0oBBIWX2Q6TlHOQ5W7mbzAOecAhFRKwdaZ2rRtWxFtiA2Icg8VAOjRJYYf9EMnSDTPXE9NPSY3DErEn0SWD9-TMWmwSkZoXLo6mJWY-D36RRCoNxniQvbCmjfjqoe5nt5_Obk7P84vryefTDxd5IwWVOTJaFQBcTlUpS2NRYQlFCapoZFFwI2tmFRfKYmnqKrGItKmn6Ymjlabi-9nJxnc-1h1OmzR4MK2eB9eZsNLeOP33T-9m-rtf6EIUQnGZDN49GAT_c0zX0Z2LDbat6dGPUYMCphSngj8BpUKxinJI6Nt_0Ds_hj5d4p7irAKxpg43VBN8jAHtdm6gep24Tonr-8QT--bPRbfkY8QJON4AS9fi6v9O-vzj5aNlvulwccBf2w4TfmipuBL6y9VET9QVXIqvXH_jvwHtZ8Wt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705329151</pqid></control><display><type>article</type><title>Test-retest reliability of freesurfer measurements within and between sites: Effects of visual approval process</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Iscan, Zafer ; Jin, Tony B. ; Kendrick, Alexandria ; Szeglin, Bryan ; Lu, Hanzhang ; Trivedi, Madhukar ; Fava, Maurizio ; McGrath, Patrick J. ; Weissman, Myrna ; Kurian, Benji T. ; Adams, Phillip ; Weyandt, Sarah ; Toups, Marisa ; Carmody, Thomas ; McInnis, Melvin ; Cusin, Cristina ; Cooper, Crystal ; Oquendo, Maria A. ; Parsey, Ramin V. ; DeLorenzo, Christine</creator><creatorcontrib>Iscan, Zafer ; Jin, Tony B. ; Kendrick, Alexandria ; Szeglin, Bryan ; Lu, Hanzhang ; Trivedi, Madhukar ; Fava, Maurizio ; McGrath, Patrick J. ; Weissman, Myrna ; Kurian, Benji T. ; Adams, Phillip ; Weyandt, Sarah ; Toups, Marisa ; Carmody, Thomas ; McInnis, Melvin ; Cusin, Cristina ; Cooper, Crystal ; Oquendo, Maria A. ; Parsey, Ramin V. ; DeLorenzo, Christine</creatorcontrib><description>In the last decade, many studies have used automated processes to analyze magnetic resonance imaging (MRI) data such as cortical thickness, which is one indicator of neuronal health. Due to the convenience of image processing software (e.g., FreeSurfer), standard practice is to rely on automated results without performing visual inspection of intermediate processing. In this work, structural MRIs of 40 healthy controls who were scanned twice were used to determine the test–retest reliability of FreeSurfer‐derived cortical measures in four groups of subjects—those 25 that passed visual inspection (approved), those 15 that failed visual inspection (disapproved), a combined group, and a subset of 10 subjects (Travel) whose test and retest scans occurred at different sites. Test–retest correlation (TRC), intraclass correlation coefficient (ICC), and percent difference (PD) were used to measure the reliability in the Destrieux and Desikan–Killiany (DK) atlases. In the approved subjects, reliability of cortical thickness/surface area/volume (DK atlas only) were: TRC (0.82/0.88/0.88), ICC (0.81/0.87/0.88), PD (0.86/1.19/1.39), which represent a significant improvement over these measures when disapproved subjects are included. Travel subjects’ results show that cortical thickness reliability is more sensitive to site differences than the cortical surface area and volume. To determine the effect of visual inspection on sample size required for studies of MRI‐derived cortical thickness, the number of subjects required to show group differences was calculated. Significant differences observed across imaging sites, between visually approved/disapproved subjects, and across regions with different sizes suggest that these measures should be used with caution. Hum Brain Mapp 36:3472–3485, 2015. © 2015 Wiley Periodicals, Inc.</description><identifier>ISSN: 1065-9471</identifier><identifier>ISSN: 1097-0193</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.22856</identifier><identifier>PMID: 26033168</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Adolescent ; Adult ; Aged ; Cerebral Cortex - anatomy & histology ; cerebral cortical surface area ; cerebral cortical thickness ; cerebral cortical volume ; FreeSurfer ; Humans ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Middle Aged ; multisite MRI ; Organ Size ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Software ; test-retest reliability ; Young Adult</subject><ispartof>Human brain mapping, 2015-09, Vol.36 (9), p.3472-3485</ispartof><rights>2015 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6506-e20941136d7868afe7e8148174c6443a6b2f7357fe8ab9094ee0cbd7353ef6a93</citedby><cites>FETCH-LOGICAL-c6506-e20941136d7868afe7e8148174c6443a6b2f7357fe8ab9094ee0cbd7353ef6a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4545736/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4545736/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26033168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iscan, Zafer</creatorcontrib><creatorcontrib>Jin, Tony B.</creatorcontrib><creatorcontrib>Kendrick, Alexandria</creatorcontrib><creatorcontrib>Szeglin, Bryan</creatorcontrib><creatorcontrib>Lu, Hanzhang</creatorcontrib><creatorcontrib>Trivedi, Madhukar</creatorcontrib><creatorcontrib>Fava, Maurizio</creatorcontrib><creatorcontrib>McGrath, Patrick J.</creatorcontrib><creatorcontrib>Weissman, Myrna</creatorcontrib><creatorcontrib>Kurian, Benji T.</creatorcontrib><creatorcontrib>Adams, Phillip</creatorcontrib><creatorcontrib>Weyandt, Sarah</creatorcontrib><creatorcontrib>Toups, Marisa</creatorcontrib><creatorcontrib>Carmody, Thomas</creatorcontrib><creatorcontrib>McInnis, Melvin</creatorcontrib><creatorcontrib>Cusin, Cristina</creatorcontrib><creatorcontrib>Cooper, Crystal</creatorcontrib><creatorcontrib>Oquendo, Maria A.</creatorcontrib><creatorcontrib>Parsey, Ramin V.</creatorcontrib><creatorcontrib>DeLorenzo, Christine</creatorcontrib><title>Test-retest reliability of freesurfer measurements within and between sites: Effects of visual approval process</title><title>Human brain mapping</title><addtitle>Hum. Brain Mapp</addtitle><description>In the last decade, many studies have used automated processes to analyze magnetic resonance imaging (MRI) data such as cortical thickness, which is one indicator of neuronal health. Due to the convenience of image processing software (e.g., FreeSurfer), standard practice is to rely on automated results without performing visual inspection of intermediate processing. In this work, structural MRIs of 40 healthy controls who were scanned twice were used to determine the test–retest reliability of FreeSurfer‐derived cortical measures in four groups of subjects—those 25 that passed visual inspection (approved), those 15 that failed visual inspection (disapproved), a combined group, and a subset of 10 subjects (Travel) whose test and retest scans occurred at different sites. Test–retest correlation (TRC), intraclass correlation coefficient (ICC), and percent difference (PD) were used to measure the reliability in the Destrieux and Desikan–Killiany (DK) atlases. In the approved subjects, reliability of cortical thickness/surface area/volume (DK atlas only) were: TRC (0.82/0.88/0.88), ICC (0.81/0.87/0.88), PD (0.86/1.19/1.39), which represent a significant improvement over these measures when disapproved subjects are included. Travel subjects’ results show that cortical thickness reliability is more sensitive to site differences than the cortical surface area and volume. To determine the effect of visual inspection on sample size required for studies of MRI‐derived cortical thickness, the number of subjects required to show group differences was calculated. Significant differences observed across imaging sites, between visually approved/disapproved subjects, and across regions with different sizes suggest that these measures should be used with caution. Hum Brain Mapp 36:3472–3485, 2015. © 2015 Wiley Periodicals, Inc.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Cerebral Cortex - anatomy & histology</subject><subject>cerebral cortical surface area</subject><subject>cerebral cortical thickness</subject><subject>cerebral cortical volume</subject><subject>FreeSurfer</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Middle Aged</subject><subject>multisite MRI</subject><subject>Organ Size</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Software</subject><subject>test-retest reliability</subject><subject>Young Adult</subject><issn>1065-9471</issn><issn>1097-0193</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhiMEol8c-APIEhd6SOuxYzvhUAmqskXqx6UViIvlZMesSxIvdrLL_nu83XYFSEg9zSv7mVcz82bZa6BHQCk7ntXdEWOlkM-yXaCVyilU_PlaS5FXhYKdbC_GO0oBBIWX2Q6TlHOQ5W7mbzAOecAhFRKwdaZ2rRtWxFtiA2Icg8VAOjRJYYf9EMnSDTPXE9NPSY3DErEn0SWD9-TMWmwSkZoXLo6mJWY-D36RRCoNxniQvbCmjfjqoe5nt5_Obk7P84vryefTDxd5IwWVOTJaFQBcTlUpS2NRYQlFCapoZFFwI2tmFRfKYmnqKrGItKmn6Ymjlabi-9nJxnc-1h1OmzR4MK2eB9eZsNLeOP33T-9m-rtf6EIUQnGZDN49GAT_c0zX0Z2LDbat6dGPUYMCphSngj8BpUKxinJI6Nt_0Ds_hj5d4p7irAKxpg43VBN8jAHtdm6gep24Tonr-8QT--bPRbfkY8QJON4AS9fi6v9O-vzj5aNlvulwccBf2w4TfmipuBL6y9VET9QVXIqvXH_jvwHtZ8Wt</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Iscan, Zafer</creator><creator>Jin, Tony B.</creator><creator>Kendrick, Alexandria</creator><creator>Szeglin, Bryan</creator><creator>Lu, Hanzhang</creator><creator>Trivedi, Madhukar</creator><creator>Fava, Maurizio</creator><creator>McGrath, Patrick J.</creator><creator>Weissman, Myrna</creator><creator>Kurian, Benji T.</creator><creator>Adams, Phillip</creator><creator>Weyandt, Sarah</creator><creator>Toups, Marisa</creator><creator>Carmody, Thomas</creator><creator>McInnis, Melvin</creator><creator>Cusin, Cristina</creator><creator>Cooper, Crystal</creator><creator>Oquendo, Maria A.</creator><creator>Parsey, Ramin V.</creator><creator>DeLorenzo, Christine</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201509</creationdate><title>Test-retest reliability of freesurfer measurements within and between sites: Effects of visual approval process</title><author>Iscan, Zafer ; Jin, Tony B. ; Kendrick, Alexandria ; Szeglin, Bryan ; Lu, Hanzhang ; Trivedi, Madhukar ; Fava, Maurizio ; McGrath, Patrick J. ; Weissman, Myrna ; Kurian, Benji T. ; Adams, Phillip ; Weyandt, Sarah ; Toups, Marisa ; Carmody, Thomas ; McInnis, Melvin ; Cusin, Cristina ; Cooper, Crystal ; Oquendo, Maria A. ; Parsey, Ramin V. ; DeLorenzo, Christine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6506-e20941136d7868afe7e8148174c6443a6b2f7357fe8ab9094ee0cbd7353ef6a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Cerebral Cortex - anatomy & histology</topic><topic>cerebral cortical surface area</topic><topic>cerebral cortical thickness</topic><topic>cerebral cortical volume</topic><topic>FreeSurfer</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Middle Aged</topic><topic>multisite MRI</topic><topic>Organ Size</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Software</topic><topic>test-retest reliability</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iscan, Zafer</creatorcontrib><creatorcontrib>Jin, Tony B.</creatorcontrib><creatorcontrib>Kendrick, Alexandria</creatorcontrib><creatorcontrib>Szeglin, Bryan</creatorcontrib><creatorcontrib>Lu, Hanzhang</creatorcontrib><creatorcontrib>Trivedi, Madhukar</creatorcontrib><creatorcontrib>Fava, Maurizio</creatorcontrib><creatorcontrib>McGrath, Patrick J.</creatorcontrib><creatorcontrib>Weissman, Myrna</creatorcontrib><creatorcontrib>Kurian, Benji T.</creatorcontrib><creatorcontrib>Adams, Phillip</creatorcontrib><creatorcontrib>Weyandt, Sarah</creatorcontrib><creatorcontrib>Toups, Marisa</creatorcontrib><creatorcontrib>Carmody, Thomas</creatorcontrib><creatorcontrib>McInnis, Melvin</creatorcontrib><creatorcontrib>Cusin, Cristina</creatorcontrib><creatorcontrib>Cooper, Crystal</creatorcontrib><creatorcontrib>Oquendo, Maria A.</creatorcontrib><creatorcontrib>Parsey, Ramin V.</creatorcontrib><creatorcontrib>DeLorenzo, Christine</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iscan, Zafer</au><au>Jin, Tony B.</au><au>Kendrick, Alexandria</au><au>Szeglin, Bryan</au><au>Lu, Hanzhang</au><au>Trivedi, Madhukar</au><au>Fava, Maurizio</au><au>McGrath, Patrick J.</au><au>Weissman, Myrna</au><au>Kurian, Benji T.</au><au>Adams, Phillip</au><au>Weyandt, Sarah</au><au>Toups, Marisa</au><au>Carmody, Thomas</au><au>McInnis, Melvin</au><au>Cusin, Cristina</au><au>Cooper, Crystal</au><au>Oquendo, Maria A.</au><au>Parsey, Ramin V.</au><au>DeLorenzo, Christine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Test-retest reliability of freesurfer measurements within and between sites: Effects of visual approval process</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum. Brain Mapp</addtitle><date>2015-09</date><risdate>2015</risdate><volume>36</volume><issue>9</issue><spage>3472</spage><epage>3485</epage><pages>3472-3485</pages><issn>1065-9471</issn><issn>1097-0193</issn><eissn>1097-0193</eissn><abstract>In the last decade, many studies have used automated processes to analyze magnetic resonance imaging (MRI) data such as cortical thickness, which is one indicator of neuronal health. Due to the convenience of image processing software (e.g., FreeSurfer), standard practice is to rely on automated results without performing visual inspection of intermediate processing. In this work, structural MRIs of 40 healthy controls who were scanned twice were used to determine the test–retest reliability of FreeSurfer‐derived cortical measures in four groups of subjects—those 25 that passed visual inspection (approved), those 15 that failed visual inspection (disapproved), a combined group, and a subset of 10 subjects (Travel) whose test and retest scans occurred at different sites. Test–retest correlation (TRC), intraclass correlation coefficient (ICC), and percent difference (PD) were used to measure the reliability in the Destrieux and Desikan–Killiany (DK) atlases. In the approved subjects, reliability of cortical thickness/surface area/volume (DK atlas only) were: TRC (0.82/0.88/0.88), ICC (0.81/0.87/0.88), PD (0.86/1.19/1.39), which represent a significant improvement over these measures when disapproved subjects are included. Travel subjects’ results show that cortical thickness reliability is more sensitive to site differences than the cortical surface area and volume. To determine the effect of visual inspection on sample size required for studies of MRI‐derived cortical thickness, the number of subjects required to show group differences was calculated. Significant differences observed across imaging sites, between visually approved/disapproved subjects, and across regions with different sizes suggest that these measures should be used with caution. Hum Brain Mapp 36:3472–3485, 2015. © 2015 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26033168</pmid><doi>10.1002/hbm.22856</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2015-09, Vol.36 (9), p.3472-3485 |
issn | 1065-9471 1097-0193 1097-0193 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4545736 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Adolescent Adult Aged Cerebral Cortex - anatomy & histology cerebral cortical surface area cerebral cortical thickness cerebral cortical volume FreeSurfer Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Middle Aged multisite MRI Organ Size Pattern Recognition, Automated - methods Reproducibility of Results Software test-retest reliability Young Adult |
title | Test-retest reliability of freesurfer measurements within and between sites: Effects of visual approval process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Test-retest%20reliability%20of%20freesurfer%20measurements%20within%20and%20between%20sites:%20Effects%20of%20visual%20approval%20process&rft.jtitle=Human%20brain%20mapping&rft.au=Iscan,%20Zafer&rft.date=2015-09&rft.volume=36&rft.issue=9&rft.spage=3472&rft.epage=3485&rft.pages=3472-3485&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.22856&rft_dat=%3Cproquest_pubme%3E1712773053%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705329151&rft_id=info:pmid/26033168&rfr_iscdi=true |