Test-retest reliability of freesurfer measurements within and between sites: Effects of visual approval process

In the last decade, many studies have used automated processes to analyze magnetic resonance imaging (MRI) data such as cortical thickness, which is one indicator of neuronal health. Due to the convenience of image processing software (e.g., FreeSurfer), standard practice is to rely on automated res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2015-09, Vol.36 (9), p.3472-3485
Hauptverfasser: Iscan, Zafer, Jin, Tony B., Kendrick, Alexandria, Szeglin, Bryan, Lu, Hanzhang, Trivedi, Madhukar, Fava, Maurizio, McGrath, Patrick J., Weissman, Myrna, Kurian, Benji T., Adams, Phillip, Weyandt, Sarah, Toups, Marisa, Carmody, Thomas, McInnis, Melvin, Cusin, Cristina, Cooper, Crystal, Oquendo, Maria A., Parsey, Ramin V., DeLorenzo, Christine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3485
container_issue 9
container_start_page 3472
container_title Human brain mapping
container_volume 36
creator Iscan, Zafer
Jin, Tony B.
Kendrick, Alexandria
Szeglin, Bryan
Lu, Hanzhang
Trivedi, Madhukar
Fava, Maurizio
McGrath, Patrick J.
Weissman, Myrna
Kurian, Benji T.
Adams, Phillip
Weyandt, Sarah
Toups, Marisa
Carmody, Thomas
McInnis, Melvin
Cusin, Cristina
Cooper, Crystal
Oquendo, Maria A.
Parsey, Ramin V.
DeLorenzo, Christine
description In the last decade, many studies have used automated processes to analyze magnetic resonance imaging (MRI) data such as cortical thickness, which is one indicator of neuronal health. Due to the convenience of image processing software (e.g., FreeSurfer), standard practice is to rely on automated results without performing visual inspection of intermediate processing. In this work, structural MRIs of 40 healthy controls who were scanned twice were used to determine the test–retest reliability of FreeSurfer‐derived cortical measures in four groups of subjects—those 25 that passed visual inspection (approved), those 15 that failed visual inspection (disapproved), a combined group, and a subset of 10 subjects (Travel) whose test and retest scans occurred at different sites. Test–retest correlation (TRC), intraclass correlation coefficient (ICC), and percent difference (PD) were used to measure the reliability in the Destrieux and Desikan–Killiany (DK) atlases. In the approved subjects, reliability of cortical thickness/surface area/volume (DK atlas only) were: TRC (0.82/0.88/0.88), ICC (0.81/0.87/0.88), PD (0.86/1.19/1.39), which represent a significant improvement over these measures when disapproved subjects are included. Travel subjects’ results show that cortical thickness reliability is more sensitive to site differences than the cortical surface area and volume. To determine the effect of visual inspection on sample size required for studies of MRI‐derived cortical thickness, the number of subjects required to show group differences was calculated. Significant differences observed across imaging sites, between visually approved/disapproved subjects, and across regions with different sizes suggest that these measures should be used with caution. Hum Brain Mapp 36:3472–3485, 2015. © 2015 Wiley Periodicals, Inc.
doi_str_mv 10.1002/hbm.22856
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4545736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1712773053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6506-e20941136d7868afe7e8148174c6443a6b2f7357fe8ab9094ee0cbd7353ef6a93</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiMEol8c-APIEhd6SOuxYzvhUAmqskXqx6UViIvlZMesSxIvdrLL_nu83XYFSEg9zSv7mVcz82bZa6BHQCk7ntXdEWOlkM-yXaCVyilU_PlaS5FXhYKdbC_GO0oBBIWX2Q6TlHOQ5W7mbzAOecAhFRKwdaZ2rRtWxFtiA2Icg8VAOjRJYYf9EMnSDTPXE9NPSY3DErEn0SWD9-TMWmwSkZoXLo6mJWY-D36RRCoNxniQvbCmjfjqoe5nt5_Obk7P84vryefTDxd5IwWVOTJaFQBcTlUpS2NRYQlFCapoZFFwI2tmFRfKYmnqKrGItKmn6Ymjlabi-9nJxnc-1h1OmzR4MK2eB9eZsNLeOP33T-9m-rtf6EIUQnGZDN49GAT_c0zX0Z2LDbat6dGPUYMCphSngj8BpUKxinJI6Nt_0Ds_hj5d4p7irAKxpg43VBN8jAHtdm6gep24Tonr-8QT--bPRbfkY8QJON4AS9fi6v9O-vzj5aNlvulwccBf2w4TfmipuBL6y9VET9QVXIqvXH_jvwHtZ8Wt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705329151</pqid></control><display><type>article</type><title>Test-retest reliability of freesurfer measurements within and between sites: Effects of visual approval process</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Iscan, Zafer ; Jin, Tony B. ; Kendrick, Alexandria ; Szeglin, Bryan ; Lu, Hanzhang ; Trivedi, Madhukar ; Fava, Maurizio ; McGrath, Patrick J. ; Weissman, Myrna ; Kurian, Benji T. ; Adams, Phillip ; Weyandt, Sarah ; Toups, Marisa ; Carmody, Thomas ; McInnis, Melvin ; Cusin, Cristina ; Cooper, Crystal ; Oquendo, Maria A. ; Parsey, Ramin V. ; DeLorenzo, Christine</creator><creatorcontrib>Iscan, Zafer ; Jin, Tony B. ; Kendrick, Alexandria ; Szeglin, Bryan ; Lu, Hanzhang ; Trivedi, Madhukar ; Fava, Maurizio ; McGrath, Patrick J. ; Weissman, Myrna ; Kurian, Benji T. ; Adams, Phillip ; Weyandt, Sarah ; Toups, Marisa ; Carmody, Thomas ; McInnis, Melvin ; Cusin, Cristina ; Cooper, Crystal ; Oquendo, Maria A. ; Parsey, Ramin V. ; DeLorenzo, Christine</creatorcontrib><description>In the last decade, many studies have used automated processes to analyze magnetic resonance imaging (MRI) data such as cortical thickness, which is one indicator of neuronal health. Due to the convenience of image processing software (e.g., FreeSurfer), standard practice is to rely on automated results without performing visual inspection of intermediate processing. In this work, structural MRIs of 40 healthy controls who were scanned twice were used to determine the test–retest reliability of FreeSurfer‐derived cortical measures in four groups of subjects—those 25 that passed visual inspection (approved), those 15 that failed visual inspection (disapproved), a combined group, and a subset of 10 subjects (Travel) whose test and retest scans occurred at different sites. Test–retest correlation (TRC), intraclass correlation coefficient (ICC), and percent difference (PD) were used to measure the reliability in the Destrieux and Desikan–Killiany (DK) atlases. In the approved subjects, reliability of cortical thickness/surface area/volume (DK atlas only) were: TRC (0.82/0.88/0.88), ICC (0.81/0.87/0.88), PD (0.86/1.19/1.39), which represent a significant improvement over these measures when disapproved subjects are included. Travel subjects’ results show that cortical thickness reliability is more sensitive to site differences than the cortical surface area and volume. To determine the effect of visual inspection on sample size required for studies of MRI‐derived cortical thickness, the number of subjects required to show group differences was calculated. Significant differences observed across imaging sites, between visually approved/disapproved subjects, and across regions with different sizes suggest that these measures should be used with caution. Hum Brain Mapp 36:3472–3485, 2015. © 2015 Wiley Periodicals, Inc.</description><identifier>ISSN: 1065-9471</identifier><identifier>ISSN: 1097-0193</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.22856</identifier><identifier>PMID: 26033168</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Adolescent ; Adult ; Aged ; Cerebral Cortex - anatomy &amp; histology ; cerebral cortical surface area ; cerebral cortical thickness ; cerebral cortical volume ; FreeSurfer ; Humans ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Middle Aged ; multisite MRI ; Organ Size ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Software ; test-retest reliability ; Young Adult</subject><ispartof>Human brain mapping, 2015-09, Vol.36 (9), p.3472-3485</ispartof><rights>2015 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6506-e20941136d7868afe7e8148174c6443a6b2f7357fe8ab9094ee0cbd7353ef6a93</citedby><cites>FETCH-LOGICAL-c6506-e20941136d7868afe7e8148174c6443a6b2f7357fe8ab9094ee0cbd7353ef6a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4545736/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4545736/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26033168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iscan, Zafer</creatorcontrib><creatorcontrib>Jin, Tony B.</creatorcontrib><creatorcontrib>Kendrick, Alexandria</creatorcontrib><creatorcontrib>Szeglin, Bryan</creatorcontrib><creatorcontrib>Lu, Hanzhang</creatorcontrib><creatorcontrib>Trivedi, Madhukar</creatorcontrib><creatorcontrib>Fava, Maurizio</creatorcontrib><creatorcontrib>McGrath, Patrick J.</creatorcontrib><creatorcontrib>Weissman, Myrna</creatorcontrib><creatorcontrib>Kurian, Benji T.</creatorcontrib><creatorcontrib>Adams, Phillip</creatorcontrib><creatorcontrib>Weyandt, Sarah</creatorcontrib><creatorcontrib>Toups, Marisa</creatorcontrib><creatorcontrib>Carmody, Thomas</creatorcontrib><creatorcontrib>McInnis, Melvin</creatorcontrib><creatorcontrib>Cusin, Cristina</creatorcontrib><creatorcontrib>Cooper, Crystal</creatorcontrib><creatorcontrib>Oquendo, Maria A.</creatorcontrib><creatorcontrib>Parsey, Ramin V.</creatorcontrib><creatorcontrib>DeLorenzo, Christine</creatorcontrib><title>Test-retest reliability of freesurfer measurements within and between sites: Effects of visual approval process</title><title>Human brain mapping</title><addtitle>Hum. Brain Mapp</addtitle><description>In the last decade, many studies have used automated processes to analyze magnetic resonance imaging (MRI) data such as cortical thickness, which is one indicator of neuronal health. Due to the convenience of image processing software (e.g., FreeSurfer), standard practice is to rely on automated results without performing visual inspection of intermediate processing. In this work, structural MRIs of 40 healthy controls who were scanned twice were used to determine the test–retest reliability of FreeSurfer‐derived cortical measures in four groups of subjects—those 25 that passed visual inspection (approved), those 15 that failed visual inspection (disapproved), a combined group, and a subset of 10 subjects (Travel) whose test and retest scans occurred at different sites. Test–retest correlation (TRC), intraclass correlation coefficient (ICC), and percent difference (PD) were used to measure the reliability in the Destrieux and Desikan–Killiany (DK) atlases. In the approved subjects, reliability of cortical thickness/surface area/volume (DK atlas only) were: TRC (0.82/0.88/0.88), ICC (0.81/0.87/0.88), PD (0.86/1.19/1.39), which represent a significant improvement over these measures when disapproved subjects are included. Travel subjects’ results show that cortical thickness reliability is more sensitive to site differences than the cortical surface area and volume. To determine the effect of visual inspection on sample size required for studies of MRI‐derived cortical thickness, the number of subjects required to show group differences was calculated. Significant differences observed across imaging sites, between visually approved/disapproved subjects, and across regions with different sizes suggest that these measures should be used with caution. Hum Brain Mapp 36:3472–3485, 2015. © 2015 Wiley Periodicals, Inc.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Cerebral Cortex - anatomy &amp; histology</subject><subject>cerebral cortical surface area</subject><subject>cerebral cortical thickness</subject><subject>cerebral cortical volume</subject><subject>FreeSurfer</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Middle Aged</subject><subject>multisite MRI</subject><subject>Organ Size</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Software</subject><subject>test-retest reliability</subject><subject>Young Adult</subject><issn>1065-9471</issn><issn>1097-0193</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhiMEol8c-APIEhd6SOuxYzvhUAmqskXqx6UViIvlZMesSxIvdrLL_nu83XYFSEg9zSv7mVcz82bZa6BHQCk7ntXdEWOlkM-yXaCVyilU_PlaS5FXhYKdbC_GO0oBBIWX2Q6TlHOQ5W7mbzAOecAhFRKwdaZ2rRtWxFtiA2Icg8VAOjRJYYf9EMnSDTPXE9NPSY3DErEn0SWD9-TMWmwSkZoXLo6mJWY-D36RRCoNxniQvbCmjfjqoe5nt5_Obk7P84vryefTDxd5IwWVOTJaFQBcTlUpS2NRYQlFCapoZFFwI2tmFRfKYmnqKrGItKmn6Ymjlabi-9nJxnc-1h1OmzR4MK2eB9eZsNLeOP33T-9m-rtf6EIUQnGZDN49GAT_c0zX0Z2LDbat6dGPUYMCphSngj8BpUKxinJI6Nt_0Ds_hj5d4p7irAKxpg43VBN8jAHtdm6gep24Tonr-8QT--bPRbfkY8QJON4AS9fi6v9O-vzj5aNlvulwccBf2w4TfmipuBL6y9VET9QVXIqvXH_jvwHtZ8Wt</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Iscan, Zafer</creator><creator>Jin, Tony B.</creator><creator>Kendrick, Alexandria</creator><creator>Szeglin, Bryan</creator><creator>Lu, Hanzhang</creator><creator>Trivedi, Madhukar</creator><creator>Fava, Maurizio</creator><creator>McGrath, Patrick J.</creator><creator>Weissman, Myrna</creator><creator>Kurian, Benji T.</creator><creator>Adams, Phillip</creator><creator>Weyandt, Sarah</creator><creator>Toups, Marisa</creator><creator>Carmody, Thomas</creator><creator>McInnis, Melvin</creator><creator>Cusin, Cristina</creator><creator>Cooper, Crystal</creator><creator>Oquendo, Maria A.</creator><creator>Parsey, Ramin V.</creator><creator>DeLorenzo, Christine</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201509</creationdate><title>Test-retest reliability of freesurfer measurements within and between sites: Effects of visual approval process</title><author>Iscan, Zafer ; Jin, Tony B. ; Kendrick, Alexandria ; Szeglin, Bryan ; Lu, Hanzhang ; Trivedi, Madhukar ; Fava, Maurizio ; McGrath, Patrick J. ; Weissman, Myrna ; Kurian, Benji T. ; Adams, Phillip ; Weyandt, Sarah ; Toups, Marisa ; Carmody, Thomas ; McInnis, Melvin ; Cusin, Cristina ; Cooper, Crystal ; Oquendo, Maria A. ; Parsey, Ramin V. ; DeLorenzo, Christine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6506-e20941136d7868afe7e8148174c6443a6b2f7357fe8ab9094ee0cbd7353ef6a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Cerebral Cortex - anatomy &amp; histology</topic><topic>cerebral cortical surface area</topic><topic>cerebral cortical thickness</topic><topic>cerebral cortical volume</topic><topic>FreeSurfer</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Middle Aged</topic><topic>multisite MRI</topic><topic>Organ Size</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Software</topic><topic>test-retest reliability</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iscan, Zafer</creatorcontrib><creatorcontrib>Jin, Tony B.</creatorcontrib><creatorcontrib>Kendrick, Alexandria</creatorcontrib><creatorcontrib>Szeglin, Bryan</creatorcontrib><creatorcontrib>Lu, Hanzhang</creatorcontrib><creatorcontrib>Trivedi, Madhukar</creatorcontrib><creatorcontrib>Fava, Maurizio</creatorcontrib><creatorcontrib>McGrath, Patrick J.</creatorcontrib><creatorcontrib>Weissman, Myrna</creatorcontrib><creatorcontrib>Kurian, Benji T.</creatorcontrib><creatorcontrib>Adams, Phillip</creatorcontrib><creatorcontrib>Weyandt, Sarah</creatorcontrib><creatorcontrib>Toups, Marisa</creatorcontrib><creatorcontrib>Carmody, Thomas</creatorcontrib><creatorcontrib>McInnis, Melvin</creatorcontrib><creatorcontrib>Cusin, Cristina</creatorcontrib><creatorcontrib>Cooper, Crystal</creatorcontrib><creatorcontrib>Oquendo, Maria A.</creatorcontrib><creatorcontrib>Parsey, Ramin V.</creatorcontrib><creatorcontrib>DeLorenzo, Christine</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iscan, Zafer</au><au>Jin, Tony B.</au><au>Kendrick, Alexandria</au><au>Szeglin, Bryan</au><au>Lu, Hanzhang</au><au>Trivedi, Madhukar</au><au>Fava, Maurizio</au><au>McGrath, Patrick J.</au><au>Weissman, Myrna</au><au>Kurian, Benji T.</au><au>Adams, Phillip</au><au>Weyandt, Sarah</au><au>Toups, Marisa</au><au>Carmody, Thomas</au><au>McInnis, Melvin</au><au>Cusin, Cristina</au><au>Cooper, Crystal</au><au>Oquendo, Maria A.</au><au>Parsey, Ramin V.</au><au>DeLorenzo, Christine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Test-retest reliability of freesurfer measurements within and between sites: Effects of visual approval process</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum. Brain Mapp</addtitle><date>2015-09</date><risdate>2015</risdate><volume>36</volume><issue>9</issue><spage>3472</spage><epage>3485</epage><pages>3472-3485</pages><issn>1065-9471</issn><issn>1097-0193</issn><eissn>1097-0193</eissn><abstract>In the last decade, many studies have used automated processes to analyze magnetic resonance imaging (MRI) data such as cortical thickness, which is one indicator of neuronal health. Due to the convenience of image processing software (e.g., FreeSurfer), standard practice is to rely on automated results without performing visual inspection of intermediate processing. In this work, structural MRIs of 40 healthy controls who were scanned twice were used to determine the test–retest reliability of FreeSurfer‐derived cortical measures in four groups of subjects—those 25 that passed visual inspection (approved), those 15 that failed visual inspection (disapproved), a combined group, and a subset of 10 subjects (Travel) whose test and retest scans occurred at different sites. Test–retest correlation (TRC), intraclass correlation coefficient (ICC), and percent difference (PD) were used to measure the reliability in the Destrieux and Desikan–Killiany (DK) atlases. In the approved subjects, reliability of cortical thickness/surface area/volume (DK atlas only) were: TRC (0.82/0.88/0.88), ICC (0.81/0.87/0.88), PD (0.86/1.19/1.39), which represent a significant improvement over these measures when disapproved subjects are included. Travel subjects’ results show that cortical thickness reliability is more sensitive to site differences than the cortical surface area and volume. To determine the effect of visual inspection on sample size required for studies of MRI‐derived cortical thickness, the number of subjects required to show group differences was calculated. Significant differences observed across imaging sites, between visually approved/disapproved subjects, and across regions with different sizes suggest that these measures should be used with caution. Hum Brain Mapp 36:3472–3485, 2015. © 2015 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26033168</pmid><doi>10.1002/hbm.22856</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2015-09, Vol.36 (9), p.3472-3485
issn 1065-9471
1097-0193
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4545736
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Adolescent
Adult
Aged
Cerebral Cortex - anatomy & histology
cerebral cortical surface area
cerebral cortical thickness
cerebral cortical volume
FreeSurfer
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Middle Aged
multisite MRI
Organ Size
Pattern Recognition, Automated - methods
Reproducibility of Results
Software
test-retest reliability
Young Adult
title Test-retest reliability of freesurfer measurements within and between sites: Effects of visual approval process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Test-retest%20reliability%20of%20freesurfer%20measurements%20within%20and%20between%20sites:%20Effects%20of%20visual%20approval%20process&rft.jtitle=Human%20brain%20mapping&rft.au=Iscan,%20Zafer&rft.date=2015-09&rft.volume=36&rft.issue=9&rft.spage=3472&rft.epage=3485&rft.pages=3472-3485&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.22856&rft_dat=%3Cproquest_pubme%3E1712773053%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705329151&rft_id=info:pmid/26033168&rfr_iscdi=true