Phosphatase and tensin homolog (PTEN) regulates hepatic lipogenesis, microsomal triglyceride transfer protein, and the secretion of apolipoprotein B–containing lipoproteins
Hepatic apolipoprotein B (apoB) lipoprotein production is metabolically regulated via the phosphoinositide 3‐kinase cascade; however, the role of the key negative regulator of this pathway, the tumor suppressor phosphatase with tensin homology (PTEN), is unknown. Here, we demonstrate that hepatic pr...
Gespeichert in:
Veröffentlicht in: | Hepatology (Baltimore, Md.) Md.), 2008-12, Vol.48 (6), p.1799-1809 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1809 |
---|---|
container_issue | 6 |
container_start_page | 1799 |
container_title | Hepatology (Baltimore, Md.) |
container_volume | 48 |
creator | Qiu, Wei Federico, Lisa Naples, Mark Avramoglu, Rita Kohen Meshkani, Reza Zhang, Jing Tsai, Julie Hussain, Mahmood Dai, Kezhi Iqbal, Jahangir Kontos, Christopher D. Horie, Yasuo Suzuki, Akira Adeli, Khosrow |
description | Hepatic apolipoprotein B (apoB) lipoprotein production is metabolically regulated via the phosphoinositide 3‐kinase cascade; however, the role of the key negative regulator of this pathway, the tumor suppressor phosphatase with tensin homology (PTEN), is unknown. Here, we demonstrate that hepatic protein levels of apoB100 and microsomal triglyceride transfer protein (MTP) are significantly down‐regulated (73% and 36%, respectively) in the liver of PTEN liver‐specific knockout (KO) mice, and this is accompanied by increased triglyceride (TG) accumulation and lipogenic gene expression, and reduced hepatic apoB secretion in freshly isolated hepatocytes. MTP protein mass and lipid transfer activity were also significantly reduced in liver of PTEN KO mice. Overexpression of the dominant negative mutant PTEN C/S124 (adenovirus expressing PTEN C/S mutant [AdPTENC/S]) possessing constitutive phospoinositide 3‐kinase activity in HepG2 cells led to significant reductions in both secreted apoB100 and cellular MTP mass (76% and 34%, respectively), and increased messenger RNA (mRNA) levels of sterol regulatory element binding protein 1c (SREBP‐1c), fatty acid synthase (FAS), and acetyl‐CoA carboxylase (ACC). Reduced apoB100 secretion induced by AdPTENC/S was associated with increased degradation of newly‐synthesized cellular apoB100, in a lactacystin‐sensitive manner, suggesting enhanced proteasomal degradation. AdPTENC/S also reduced apoB‐lipoprotein production in McA‐RH7777 and primary hamster hepatocytes. Our findings suggest a link between PTEN expression and hepatic production of apoB‐containing lipoproteins. We postulate that perturbations in PTEN not only may influence hepatic insulin signaling and hepatic lipogenesis, but also may alter hepatic apoB‐lipoprotein production and the MTP stability. On loss of PTEN activity, increased lipid substrate availability in the face of reduced hepatic lipoprotein production capacity can rapidly lead to hepatosteatosis and fatty liver. (HEPATOLOGY 2008;48:1799–1809.) |
doi_str_mv | 10.1002/hep.22565 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4544759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69839230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5095-a9006b887c9c18a6d1992e9078273b52088824e3714d88d43933a3f773b2840c3</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhSMEokNhwQsgb0Ct1LT-yY-9QaLVQJEqmEVZWx7nJjFy7GBnQLPjHXgPHoonwUOiUhasrKv76Rzfc7LsOcHnBGN60cN4TmlZlQ-yFSlpnTNW4ofZCtMa54IwcZQ9ifEzxlgUlD_OjojAtMKErrKfm97HsVeTioCUa9AELhqHej946zt0srldfzhFAbqdVRNElLzUZDSyZvQdOIgmnqHB6OCjH5RFUzCd3WsIpoE0KBdbCGgMfgLjzmaLHlAEHWAy3iHfIjX6g9wCoctf339o7yZlnHEdureKT7NHrbIRni3vcfbp7fr26jq_-fju_dWbm1yXWJS5EhhXW85rLTThqmqIEBQErjmt2bakmHNOC2A1KRrOm4IJxhRr67SkvMCaHWevZ91xtx2g0eDSKVaOwQwq7KVXRv67caaXnf8qi7Io6lIkgVeLQPBfdhAnOZiowVrlwO-irARngjKcwNMZPCQYA7R3JgTLQ7syJS7_tJvYF_d_9Zdc6kzAywVQUSvbpvi1iXdculswUvHEXczcN2Nh_39Heb3ezNa_Aa8nwRc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69839230</pqid></control><display><type>article</type><title>Phosphatase and tensin homolog (PTEN) regulates hepatic lipogenesis, microsomal triglyceride transfer protein, and the secretion of apolipoprotein B–containing lipoproteins</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Qiu, Wei ; Federico, Lisa ; Naples, Mark ; Avramoglu, Rita Kohen ; Meshkani, Reza ; Zhang, Jing ; Tsai, Julie ; Hussain, Mahmood ; Dai, Kezhi ; Iqbal, Jahangir ; Kontos, Christopher D. ; Horie, Yasuo ; Suzuki, Akira ; Adeli, Khosrow</creator><creatorcontrib>Qiu, Wei ; Federico, Lisa ; Naples, Mark ; Avramoglu, Rita Kohen ; Meshkani, Reza ; Zhang, Jing ; Tsai, Julie ; Hussain, Mahmood ; Dai, Kezhi ; Iqbal, Jahangir ; Kontos, Christopher D. ; Horie, Yasuo ; Suzuki, Akira ; Adeli, Khosrow</creatorcontrib><description>Hepatic apolipoprotein B (apoB) lipoprotein production is metabolically regulated via the phosphoinositide 3‐kinase cascade; however, the role of the key negative regulator of this pathway, the tumor suppressor phosphatase with tensin homology (PTEN), is unknown. Here, we demonstrate that hepatic protein levels of apoB100 and microsomal triglyceride transfer protein (MTP) are significantly down‐regulated (73% and 36%, respectively) in the liver of PTEN liver‐specific knockout (KO) mice, and this is accompanied by increased triglyceride (TG) accumulation and lipogenic gene expression, and reduced hepatic apoB secretion in freshly isolated hepatocytes. MTP protein mass and lipid transfer activity were also significantly reduced in liver of PTEN KO mice. Overexpression of the dominant negative mutant PTEN C/S124 (adenovirus expressing PTEN C/S mutant [AdPTENC/S]) possessing constitutive phospoinositide 3‐kinase activity in HepG2 cells led to significant reductions in both secreted apoB100 and cellular MTP mass (76% and 34%, respectively), and increased messenger RNA (mRNA) levels of sterol regulatory element binding protein 1c (SREBP‐1c), fatty acid synthase (FAS), and acetyl‐CoA carboxylase (ACC). Reduced apoB100 secretion induced by AdPTENC/S was associated with increased degradation of newly‐synthesized cellular apoB100, in a lactacystin‐sensitive manner, suggesting enhanced proteasomal degradation. AdPTENC/S also reduced apoB‐lipoprotein production in McA‐RH7777 and primary hamster hepatocytes. Our findings suggest a link between PTEN expression and hepatic production of apoB‐containing lipoproteins. We postulate that perturbations in PTEN not only may influence hepatic insulin signaling and hepatic lipogenesis, but also may alter hepatic apoB‐lipoprotein production and the MTP stability. On loss of PTEN activity, increased lipid substrate availability in the face of reduced hepatic lipoprotein production capacity can rapidly lead to hepatosteatosis and fatty liver. (HEPATOLOGY 2008;48:1799–1809.)</description><identifier>ISSN: 0270-9139</identifier><identifier>EISSN: 1527-3350</identifier><identifier>DOI: 10.1002/hep.22565</identifier><identifier>PMID: 19026012</identifier><identifier>CODEN: HPTLD9</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Acetyl-CoA Carboxylase - metabolism ; Animals ; Apolipoprotein B-100 - metabolism ; Apolipoproteins B - metabolism ; Biological and medical sciences ; Carrier Proteins - metabolism ; Cells, Cultured ; Disease Models, Animal ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Fatty Acid Synthases - metabolism ; Fatty Liver - metabolism ; Fatty Liver - pathology ; Gastroenterology. Liver. Pancreas. Abdomen ; Insulin - metabolism ; Lipogenesis - physiology ; Liver - metabolism ; Liver - pathology ; Liver. Biliary tract. Portal circulation. Exocrine pancreas ; Medical sciences ; Mice ; Mice, Knockout ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphoric Monoester Hydrolases - metabolism ; PTEN Phosphohydrolase - metabolism ; Receptors, LDL - metabolism ; Sterol Regulatory Element Binding Protein 1 - metabolism ; Triglycerides - metabolism</subject><ispartof>Hepatology (Baltimore, Md.), 2008-12, Vol.48 (6), p.1799-1809</ispartof><rights>Copyright © 2008 American Association for the Study of Liver Diseases</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5095-a9006b887c9c18a6d1992e9078273b52088824e3714d88d43933a3f773b2840c3</citedby><cites>FETCH-LOGICAL-c5095-a9006b887c9c18a6d1992e9078273b52088824e3714d88d43933a3f773b2840c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhep.22565$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhep.22565$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20893168$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19026012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiu, Wei</creatorcontrib><creatorcontrib>Federico, Lisa</creatorcontrib><creatorcontrib>Naples, Mark</creatorcontrib><creatorcontrib>Avramoglu, Rita Kohen</creatorcontrib><creatorcontrib>Meshkani, Reza</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Tsai, Julie</creatorcontrib><creatorcontrib>Hussain, Mahmood</creatorcontrib><creatorcontrib>Dai, Kezhi</creatorcontrib><creatorcontrib>Iqbal, Jahangir</creatorcontrib><creatorcontrib>Kontos, Christopher D.</creatorcontrib><creatorcontrib>Horie, Yasuo</creatorcontrib><creatorcontrib>Suzuki, Akira</creatorcontrib><creatorcontrib>Adeli, Khosrow</creatorcontrib><title>Phosphatase and tensin homolog (PTEN) regulates hepatic lipogenesis, microsomal triglyceride transfer protein, and the secretion of apolipoprotein B–containing lipoproteins</title><title>Hepatology (Baltimore, Md.)</title><addtitle>Hepatology</addtitle><description>Hepatic apolipoprotein B (apoB) lipoprotein production is metabolically regulated via the phosphoinositide 3‐kinase cascade; however, the role of the key negative regulator of this pathway, the tumor suppressor phosphatase with tensin homology (PTEN), is unknown. Here, we demonstrate that hepatic protein levels of apoB100 and microsomal triglyceride transfer protein (MTP) are significantly down‐regulated (73% and 36%, respectively) in the liver of PTEN liver‐specific knockout (KO) mice, and this is accompanied by increased triglyceride (TG) accumulation and lipogenic gene expression, and reduced hepatic apoB secretion in freshly isolated hepatocytes. MTP protein mass and lipid transfer activity were also significantly reduced in liver of PTEN KO mice. Overexpression of the dominant negative mutant PTEN C/S124 (adenovirus expressing PTEN C/S mutant [AdPTENC/S]) possessing constitutive phospoinositide 3‐kinase activity in HepG2 cells led to significant reductions in both secreted apoB100 and cellular MTP mass (76% and 34%, respectively), and increased messenger RNA (mRNA) levels of sterol regulatory element binding protein 1c (SREBP‐1c), fatty acid synthase (FAS), and acetyl‐CoA carboxylase (ACC). Reduced apoB100 secretion induced by AdPTENC/S was associated with increased degradation of newly‐synthesized cellular apoB100, in a lactacystin‐sensitive manner, suggesting enhanced proteasomal degradation. AdPTENC/S also reduced apoB‐lipoprotein production in McA‐RH7777 and primary hamster hepatocytes. Our findings suggest a link between PTEN expression and hepatic production of apoB‐containing lipoproteins. We postulate that perturbations in PTEN not only may influence hepatic insulin signaling and hepatic lipogenesis, but also may alter hepatic apoB‐lipoprotein production and the MTP stability. On loss of PTEN activity, increased lipid substrate availability in the face of reduced hepatic lipoprotein production capacity can rapidly lead to hepatosteatosis and fatty liver. (HEPATOLOGY 2008;48:1799–1809.)</description><subject>Acetyl-CoA Carboxylase - metabolism</subject><subject>Animals</subject><subject>Apolipoprotein B-100 - metabolism</subject><subject>Apolipoproteins B - metabolism</subject><subject>Biological and medical sciences</subject><subject>Carrier Proteins - metabolism</subject><subject>Cells, Cultured</subject><subject>Disease Models, Animal</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Fatty Acid Synthases - metabolism</subject><subject>Fatty Liver - metabolism</subject><subject>Fatty Liver - pathology</subject><subject>Gastroenterology. Liver. Pancreas. Abdomen</subject><subject>Insulin - metabolism</subject><subject>Lipogenesis - physiology</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Liver. Biliary tract. Portal circulation. Exocrine pancreas</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>PTEN Phosphohydrolase - metabolism</subject><subject>Receptors, LDL - metabolism</subject><subject>Sterol Regulatory Element Binding Protein 1 - metabolism</subject><subject>Triglycerides - metabolism</subject><issn>0270-9139</issn><issn>1527-3350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1u1DAUhSMEokNhwQsgb0Ct1LT-yY-9QaLVQJEqmEVZWx7nJjFy7GBnQLPjHXgPHoonwUOiUhasrKv76Rzfc7LsOcHnBGN60cN4TmlZlQ-yFSlpnTNW4ofZCtMa54IwcZQ9ifEzxlgUlD_OjojAtMKErrKfm97HsVeTioCUa9AELhqHej946zt0srldfzhFAbqdVRNElLzUZDSyZvQdOIgmnqHB6OCjH5RFUzCd3WsIpoE0KBdbCGgMfgLjzmaLHlAEHWAy3iHfIjX6g9wCoctf339o7yZlnHEdureKT7NHrbIRni3vcfbp7fr26jq_-fju_dWbm1yXWJS5EhhXW85rLTThqmqIEBQErjmt2bakmHNOC2A1KRrOm4IJxhRr67SkvMCaHWevZ91xtx2g0eDSKVaOwQwq7KVXRv67caaXnf8qi7Io6lIkgVeLQPBfdhAnOZiowVrlwO-irARngjKcwNMZPCQYA7R3JgTLQ7syJS7_tJvYF_d_9Zdc6kzAywVQUSvbpvi1iXdculswUvHEXczcN2Nh_39Heb3ezNa_Aa8nwRc</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Qiu, Wei</creator><creator>Federico, Lisa</creator><creator>Naples, Mark</creator><creator>Avramoglu, Rita Kohen</creator><creator>Meshkani, Reza</creator><creator>Zhang, Jing</creator><creator>Tsai, Julie</creator><creator>Hussain, Mahmood</creator><creator>Dai, Kezhi</creator><creator>Iqbal, Jahangir</creator><creator>Kontos, Christopher D.</creator><creator>Horie, Yasuo</creator><creator>Suzuki, Akira</creator><creator>Adeli, Khosrow</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200812</creationdate><title>Phosphatase and tensin homolog (PTEN) regulates hepatic lipogenesis, microsomal triglyceride transfer protein, and the secretion of apolipoprotein B–containing lipoproteins</title><author>Qiu, Wei ; Federico, Lisa ; Naples, Mark ; Avramoglu, Rita Kohen ; Meshkani, Reza ; Zhang, Jing ; Tsai, Julie ; Hussain, Mahmood ; Dai, Kezhi ; Iqbal, Jahangir ; Kontos, Christopher D. ; Horie, Yasuo ; Suzuki, Akira ; Adeli, Khosrow</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5095-a9006b887c9c18a6d1992e9078273b52088824e3714d88d43933a3f773b2840c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acetyl-CoA Carboxylase - metabolism</topic><topic>Animals</topic><topic>Apolipoprotein B-100 - metabolism</topic><topic>Apolipoproteins B - metabolism</topic><topic>Biological and medical sciences</topic><topic>Carrier Proteins - metabolism</topic><topic>Cells, Cultured</topic><topic>Disease Models, Animal</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Fatty Acid Synthases - metabolism</topic><topic>Fatty Liver - metabolism</topic><topic>Fatty Liver - pathology</topic><topic>Gastroenterology. Liver. Pancreas. Abdomen</topic><topic>Insulin - metabolism</topic><topic>Lipogenesis - physiology</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Liver. Biliary tract. Portal circulation. Exocrine pancreas</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>PTEN Phosphohydrolase - metabolism</topic><topic>Receptors, LDL - metabolism</topic><topic>Sterol Regulatory Element Binding Protein 1 - metabolism</topic><topic>Triglycerides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Wei</creatorcontrib><creatorcontrib>Federico, Lisa</creatorcontrib><creatorcontrib>Naples, Mark</creatorcontrib><creatorcontrib>Avramoglu, Rita Kohen</creatorcontrib><creatorcontrib>Meshkani, Reza</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Tsai, Julie</creatorcontrib><creatorcontrib>Hussain, Mahmood</creatorcontrib><creatorcontrib>Dai, Kezhi</creatorcontrib><creatorcontrib>Iqbal, Jahangir</creatorcontrib><creatorcontrib>Kontos, Christopher D.</creatorcontrib><creatorcontrib>Horie, Yasuo</creatorcontrib><creatorcontrib>Suzuki, Akira</creatorcontrib><creatorcontrib>Adeli, Khosrow</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Hepatology (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Wei</au><au>Federico, Lisa</au><au>Naples, Mark</au><au>Avramoglu, Rita Kohen</au><au>Meshkani, Reza</au><au>Zhang, Jing</au><au>Tsai, Julie</au><au>Hussain, Mahmood</au><au>Dai, Kezhi</au><au>Iqbal, Jahangir</au><au>Kontos, Christopher D.</au><au>Horie, Yasuo</au><au>Suzuki, Akira</au><au>Adeli, Khosrow</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphatase and tensin homolog (PTEN) regulates hepatic lipogenesis, microsomal triglyceride transfer protein, and the secretion of apolipoprotein B–containing lipoproteins</atitle><jtitle>Hepatology (Baltimore, Md.)</jtitle><addtitle>Hepatology</addtitle><date>2008-12</date><risdate>2008</risdate><volume>48</volume><issue>6</issue><spage>1799</spage><epage>1809</epage><pages>1799-1809</pages><issn>0270-9139</issn><eissn>1527-3350</eissn><coden>HPTLD9</coden><abstract>Hepatic apolipoprotein B (apoB) lipoprotein production is metabolically regulated via the phosphoinositide 3‐kinase cascade; however, the role of the key negative regulator of this pathway, the tumor suppressor phosphatase with tensin homology (PTEN), is unknown. Here, we demonstrate that hepatic protein levels of apoB100 and microsomal triglyceride transfer protein (MTP) are significantly down‐regulated (73% and 36%, respectively) in the liver of PTEN liver‐specific knockout (KO) mice, and this is accompanied by increased triglyceride (TG) accumulation and lipogenic gene expression, and reduced hepatic apoB secretion in freshly isolated hepatocytes. MTP protein mass and lipid transfer activity were also significantly reduced in liver of PTEN KO mice. Overexpression of the dominant negative mutant PTEN C/S124 (adenovirus expressing PTEN C/S mutant [AdPTENC/S]) possessing constitutive phospoinositide 3‐kinase activity in HepG2 cells led to significant reductions in both secreted apoB100 and cellular MTP mass (76% and 34%, respectively), and increased messenger RNA (mRNA) levels of sterol regulatory element binding protein 1c (SREBP‐1c), fatty acid synthase (FAS), and acetyl‐CoA carboxylase (ACC). Reduced apoB100 secretion induced by AdPTENC/S was associated with increased degradation of newly‐synthesized cellular apoB100, in a lactacystin‐sensitive manner, suggesting enhanced proteasomal degradation. AdPTENC/S also reduced apoB‐lipoprotein production in McA‐RH7777 and primary hamster hepatocytes. Our findings suggest a link between PTEN expression and hepatic production of apoB‐containing lipoproteins. We postulate that perturbations in PTEN not only may influence hepatic insulin signaling and hepatic lipogenesis, but also may alter hepatic apoB‐lipoprotein production and the MTP stability. On loss of PTEN activity, increased lipid substrate availability in the face of reduced hepatic lipoprotein production capacity can rapidly lead to hepatosteatosis and fatty liver. (HEPATOLOGY 2008;48:1799–1809.)</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19026012</pmid><doi>10.1002/hep.22565</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-9139 |
ispartof | Hepatology (Baltimore, Md.), 2008-12, Vol.48 (6), p.1799-1809 |
issn | 0270-9139 1527-3350 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4544759 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Acetyl-CoA Carboxylase - metabolism Animals Apolipoprotein B-100 - metabolism Apolipoproteins B - metabolism Biological and medical sciences Carrier Proteins - metabolism Cells, Cultured Disease Models, Animal Extracellular Signal-Regulated MAP Kinases - metabolism Fatty Acid Synthases - metabolism Fatty Liver - metabolism Fatty Liver - pathology Gastroenterology. Liver. Pancreas. Abdomen Insulin - metabolism Lipogenesis - physiology Liver - metabolism Liver - pathology Liver. Biliary tract. Portal circulation. Exocrine pancreas Medical sciences Mice Mice, Knockout Phosphatidylinositol 3-Kinases - metabolism Phosphoric Monoester Hydrolases - metabolism PTEN Phosphohydrolase - metabolism Receptors, LDL - metabolism Sterol Regulatory Element Binding Protein 1 - metabolism Triglycerides - metabolism |
title | Phosphatase and tensin homolog (PTEN) regulates hepatic lipogenesis, microsomal triglyceride transfer protein, and the secretion of apolipoprotein B–containing lipoproteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T18%3A29%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphatase%20and%20tensin%20homolog%20(PTEN)%20regulates%20hepatic%20lipogenesis,%20microsomal%20triglyceride%20transfer%20protein,%20and%20the%20secretion%20of%20apolipoprotein%20B%E2%80%93containing%20lipoproteins&rft.jtitle=Hepatology%20(Baltimore,%20Md.)&rft.au=Qiu,%20Wei&rft.date=2008-12&rft.volume=48&rft.issue=6&rft.spage=1799&rft.epage=1809&rft.pages=1799-1809&rft.issn=0270-9139&rft.eissn=1527-3350&rft.coden=HPTLD9&rft_id=info:doi/10.1002/hep.22565&rft_dat=%3Cproquest_pubme%3E69839230%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69839230&rft_id=info:pmid/19026012&rfr_iscdi=true |