Phosphatase and tensin homolog (PTEN) regulates hepatic lipogenesis, microsomal triglyceride transfer protein, and the secretion of apolipoprotein B–containing lipoproteins

Hepatic apolipoprotein B (apoB) lipoprotein production is metabolically regulated via the phosphoinositide 3‐kinase cascade; however, the role of the key negative regulator of this pathway, the tumor suppressor phosphatase with tensin homology (PTEN), is unknown. Here, we demonstrate that hepatic pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hepatology (Baltimore, Md.) Md.), 2008-12, Vol.48 (6), p.1799-1809
Hauptverfasser: Qiu, Wei, Federico, Lisa, Naples, Mark, Avramoglu, Rita Kohen, Meshkani, Reza, Zhang, Jing, Tsai, Julie, Hussain, Mahmood, Dai, Kezhi, Iqbal, Jahangir, Kontos, Christopher D., Horie, Yasuo, Suzuki, Akira, Adeli, Khosrow
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1809
container_issue 6
container_start_page 1799
container_title Hepatology (Baltimore, Md.)
container_volume 48
creator Qiu, Wei
Federico, Lisa
Naples, Mark
Avramoglu, Rita Kohen
Meshkani, Reza
Zhang, Jing
Tsai, Julie
Hussain, Mahmood
Dai, Kezhi
Iqbal, Jahangir
Kontos, Christopher D.
Horie, Yasuo
Suzuki, Akira
Adeli, Khosrow
description Hepatic apolipoprotein B (apoB) lipoprotein production is metabolically regulated via the phosphoinositide 3‐kinase cascade; however, the role of the key negative regulator of this pathway, the tumor suppressor phosphatase with tensin homology (PTEN), is unknown. Here, we demonstrate that hepatic protein levels of apoB100 and microsomal triglyceride transfer protein (MTP) are significantly down‐regulated (73% and 36%, respectively) in the liver of PTEN liver‐specific knockout (KO) mice, and this is accompanied by increased triglyceride (TG) accumulation and lipogenic gene expression, and reduced hepatic apoB secretion in freshly isolated hepatocytes. MTP protein mass and lipid transfer activity were also significantly reduced in liver of PTEN KO mice. Overexpression of the dominant negative mutant PTEN C/S124 (adenovirus expressing PTEN C/S mutant [AdPTENC/S]) possessing constitutive phospoinositide 3‐kinase activity in HepG2 cells led to significant reductions in both secreted apoB100 and cellular MTP mass (76% and 34%, respectively), and increased messenger RNA (mRNA) levels of sterol regulatory element binding protein 1c (SREBP‐1c), fatty acid synthase (FAS), and acetyl‐CoA carboxylase (ACC). Reduced apoB100 secretion induced by AdPTENC/S was associated with increased degradation of newly‐synthesized cellular apoB100, in a lactacystin‐sensitive manner, suggesting enhanced proteasomal degradation. AdPTENC/S also reduced apoB‐lipoprotein production in McA‐RH7777 and primary hamster hepatocytes. Our findings suggest a link between PTEN expression and hepatic production of apoB‐containing lipoproteins. We postulate that perturbations in PTEN not only may influence hepatic insulin signaling and hepatic lipogenesis, but also may alter hepatic apoB‐lipoprotein production and the MTP stability. On loss of PTEN activity, increased lipid substrate availability in the face of reduced hepatic lipoprotein production capacity can rapidly lead to hepatosteatosis and fatty liver. (HEPATOLOGY 2008;48:1799–1809.)
doi_str_mv 10.1002/hep.22565
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4544759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69839230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5095-a9006b887c9c18a6d1992e9078273b52088824e3714d88d43933a3f773b2840c3</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhSMEokNhwQsgb0Ct1LT-yY-9QaLVQJEqmEVZWx7nJjFy7GBnQLPjHXgPHoonwUOiUhasrKv76Rzfc7LsOcHnBGN60cN4TmlZlQ-yFSlpnTNW4ofZCtMa54IwcZQ9ifEzxlgUlD_OjojAtMKErrKfm97HsVeTioCUa9AELhqHej946zt0srldfzhFAbqdVRNElLzUZDSyZvQdOIgmnqHB6OCjH5RFUzCd3WsIpoE0KBdbCGgMfgLjzmaLHlAEHWAy3iHfIjX6g9wCoctf339o7yZlnHEdureKT7NHrbIRni3vcfbp7fr26jq_-fju_dWbm1yXWJS5EhhXW85rLTThqmqIEBQErjmt2bakmHNOC2A1KRrOm4IJxhRr67SkvMCaHWevZ91xtx2g0eDSKVaOwQwq7KVXRv67caaXnf8qi7Io6lIkgVeLQPBfdhAnOZiowVrlwO-irARngjKcwNMZPCQYA7R3JgTLQ7syJS7_tJvYF_d_9Zdc6kzAywVQUSvbpvi1iXdculswUvHEXczcN2Nh_39Heb3ezNa_Aa8nwRc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69839230</pqid></control><display><type>article</type><title>Phosphatase and tensin homolog (PTEN) regulates hepatic lipogenesis, microsomal triglyceride transfer protein, and the secretion of apolipoprotein B–containing lipoproteins</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Qiu, Wei ; Federico, Lisa ; Naples, Mark ; Avramoglu, Rita Kohen ; Meshkani, Reza ; Zhang, Jing ; Tsai, Julie ; Hussain, Mahmood ; Dai, Kezhi ; Iqbal, Jahangir ; Kontos, Christopher D. ; Horie, Yasuo ; Suzuki, Akira ; Adeli, Khosrow</creator><creatorcontrib>Qiu, Wei ; Federico, Lisa ; Naples, Mark ; Avramoglu, Rita Kohen ; Meshkani, Reza ; Zhang, Jing ; Tsai, Julie ; Hussain, Mahmood ; Dai, Kezhi ; Iqbal, Jahangir ; Kontos, Christopher D. ; Horie, Yasuo ; Suzuki, Akira ; Adeli, Khosrow</creatorcontrib><description>Hepatic apolipoprotein B (apoB) lipoprotein production is metabolically regulated via the phosphoinositide 3‐kinase cascade; however, the role of the key negative regulator of this pathway, the tumor suppressor phosphatase with tensin homology (PTEN), is unknown. Here, we demonstrate that hepatic protein levels of apoB100 and microsomal triglyceride transfer protein (MTP) are significantly down‐regulated (73% and 36%, respectively) in the liver of PTEN liver‐specific knockout (KO) mice, and this is accompanied by increased triglyceride (TG) accumulation and lipogenic gene expression, and reduced hepatic apoB secretion in freshly isolated hepatocytes. MTP protein mass and lipid transfer activity were also significantly reduced in liver of PTEN KO mice. Overexpression of the dominant negative mutant PTEN C/S124 (adenovirus expressing PTEN C/S mutant [AdPTENC/S]) possessing constitutive phospoinositide 3‐kinase activity in HepG2 cells led to significant reductions in both secreted apoB100 and cellular MTP mass (76% and 34%, respectively), and increased messenger RNA (mRNA) levels of sterol regulatory element binding protein 1c (SREBP‐1c), fatty acid synthase (FAS), and acetyl‐CoA carboxylase (ACC). Reduced apoB100 secretion induced by AdPTENC/S was associated with increased degradation of newly‐synthesized cellular apoB100, in a lactacystin‐sensitive manner, suggesting enhanced proteasomal degradation. AdPTENC/S also reduced apoB‐lipoprotein production in McA‐RH7777 and primary hamster hepatocytes. Our findings suggest a link between PTEN expression and hepatic production of apoB‐containing lipoproteins. We postulate that perturbations in PTEN not only may influence hepatic insulin signaling and hepatic lipogenesis, but also may alter hepatic apoB‐lipoprotein production and the MTP stability. On loss of PTEN activity, increased lipid substrate availability in the face of reduced hepatic lipoprotein production capacity can rapidly lead to hepatosteatosis and fatty liver. (HEPATOLOGY 2008;48:1799–1809.)</description><identifier>ISSN: 0270-9139</identifier><identifier>EISSN: 1527-3350</identifier><identifier>DOI: 10.1002/hep.22565</identifier><identifier>PMID: 19026012</identifier><identifier>CODEN: HPTLD9</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Acetyl-CoA Carboxylase - metabolism ; Animals ; Apolipoprotein B-100 - metabolism ; Apolipoproteins B - metabolism ; Biological and medical sciences ; Carrier Proteins - metabolism ; Cells, Cultured ; Disease Models, Animal ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Fatty Acid Synthases - metabolism ; Fatty Liver - metabolism ; Fatty Liver - pathology ; Gastroenterology. Liver. Pancreas. Abdomen ; Insulin - metabolism ; Lipogenesis - physiology ; Liver - metabolism ; Liver - pathology ; Liver. Biliary tract. Portal circulation. Exocrine pancreas ; Medical sciences ; Mice ; Mice, Knockout ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphoric Monoester Hydrolases - metabolism ; PTEN Phosphohydrolase - metabolism ; Receptors, LDL - metabolism ; Sterol Regulatory Element Binding Protein 1 - metabolism ; Triglycerides - metabolism</subject><ispartof>Hepatology (Baltimore, Md.), 2008-12, Vol.48 (6), p.1799-1809</ispartof><rights>Copyright © 2008 American Association for the Study of Liver Diseases</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5095-a9006b887c9c18a6d1992e9078273b52088824e3714d88d43933a3f773b2840c3</citedby><cites>FETCH-LOGICAL-c5095-a9006b887c9c18a6d1992e9078273b52088824e3714d88d43933a3f773b2840c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhep.22565$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhep.22565$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20893168$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19026012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiu, Wei</creatorcontrib><creatorcontrib>Federico, Lisa</creatorcontrib><creatorcontrib>Naples, Mark</creatorcontrib><creatorcontrib>Avramoglu, Rita Kohen</creatorcontrib><creatorcontrib>Meshkani, Reza</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Tsai, Julie</creatorcontrib><creatorcontrib>Hussain, Mahmood</creatorcontrib><creatorcontrib>Dai, Kezhi</creatorcontrib><creatorcontrib>Iqbal, Jahangir</creatorcontrib><creatorcontrib>Kontos, Christopher D.</creatorcontrib><creatorcontrib>Horie, Yasuo</creatorcontrib><creatorcontrib>Suzuki, Akira</creatorcontrib><creatorcontrib>Adeli, Khosrow</creatorcontrib><title>Phosphatase and tensin homolog (PTEN) regulates hepatic lipogenesis, microsomal triglyceride transfer protein, and the secretion of apolipoprotein B–containing lipoproteins</title><title>Hepatology (Baltimore, Md.)</title><addtitle>Hepatology</addtitle><description>Hepatic apolipoprotein B (apoB) lipoprotein production is metabolically regulated via the phosphoinositide 3‐kinase cascade; however, the role of the key negative regulator of this pathway, the tumor suppressor phosphatase with tensin homology (PTEN), is unknown. Here, we demonstrate that hepatic protein levels of apoB100 and microsomal triglyceride transfer protein (MTP) are significantly down‐regulated (73% and 36%, respectively) in the liver of PTEN liver‐specific knockout (KO) mice, and this is accompanied by increased triglyceride (TG) accumulation and lipogenic gene expression, and reduced hepatic apoB secretion in freshly isolated hepatocytes. MTP protein mass and lipid transfer activity were also significantly reduced in liver of PTEN KO mice. Overexpression of the dominant negative mutant PTEN C/S124 (adenovirus expressing PTEN C/S mutant [AdPTENC/S]) possessing constitutive phospoinositide 3‐kinase activity in HepG2 cells led to significant reductions in both secreted apoB100 and cellular MTP mass (76% and 34%, respectively), and increased messenger RNA (mRNA) levels of sterol regulatory element binding protein 1c (SREBP‐1c), fatty acid synthase (FAS), and acetyl‐CoA carboxylase (ACC). Reduced apoB100 secretion induced by AdPTENC/S was associated with increased degradation of newly‐synthesized cellular apoB100, in a lactacystin‐sensitive manner, suggesting enhanced proteasomal degradation. AdPTENC/S also reduced apoB‐lipoprotein production in McA‐RH7777 and primary hamster hepatocytes. Our findings suggest a link between PTEN expression and hepatic production of apoB‐containing lipoproteins. We postulate that perturbations in PTEN not only may influence hepatic insulin signaling and hepatic lipogenesis, but also may alter hepatic apoB‐lipoprotein production and the MTP stability. On loss of PTEN activity, increased lipid substrate availability in the face of reduced hepatic lipoprotein production capacity can rapidly lead to hepatosteatosis and fatty liver. (HEPATOLOGY 2008;48:1799–1809.)</description><subject>Acetyl-CoA Carboxylase - metabolism</subject><subject>Animals</subject><subject>Apolipoprotein B-100 - metabolism</subject><subject>Apolipoproteins B - metabolism</subject><subject>Biological and medical sciences</subject><subject>Carrier Proteins - metabolism</subject><subject>Cells, Cultured</subject><subject>Disease Models, Animal</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Fatty Acid Synthases - metabolism</subject><subject>Fatty Liver - metabolism</subject><subject>Fatty Liver - pathology</subject><subject>Gastroenterology. Liver. Pancreas. Abdomen</subject><subject>Insulin - metabolism</subject><subject>Lipogenesis - physiology</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Liver. Biliary tract. Portal circulation. Exocrine pancreas</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>PTEN Phosphohydrolase - metabolism</subject><subject>Receptors, LDL - metabolism</subject><subject>Sterol Regulatory Element Binding Protein 1 - metabolism</subject><subject>Triglycerides - metabolism</subject><issn>0270-9139</issn><issn>1527-3350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1u1DAUhSMEokNhwQsgb0Ct1LT-yY-9QaLVQJEqmEVZWx7nJjFy7GBnQLPjHXgPHoonwUOiUhasrKv76Rzfc7LsOcHnBGN60cN4TmlZlQ-yFSlpnTNW4ofZCtMa54IwcZQ9ifEzxlgUlD_OjojAtMKErrKfm97HsVeTioCUa9AELhqHej946zt0srldfzhFAbqdVRNElLzUZDSyZvQdOIgmnqHB6OCjH5RFUzCd3WsIpoE0KBdbCGgMfgLjzmaLHlAEHWAy3iHfIjX6g9wCoctf339o7yZlnHEdureKT7NHrbIRni3vcfbp7fr26jq_-fju_dWbm1yXWJS5EhhXW85rLTThqmqIEBQErjmt2bakmHNOC2A1KRrOm4IJxhRr67SkvMCaHWevZ91xtx2g0eDSKVaOwQwq7KVXRv67caaXnf8qi7Io6lIkgVeLQPBfdhAnOZiowVrlwO-irARngjKcwNMZPCQYA7R3JgTLQ7syJS7_tJvYF_d_9Zdc6kzAywVQUSvbpvi1iXdculswUvHEXczcN2Nh_39Heb3ezNa_Aa8nwRc</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Qiu, Wei</creator><creator>Federico, Lisa</creator><creator>Naples, Mark</creator><creator>Avramoglu, Rita Kohen</creator><creator>Meshkani, Reza</creator><creator>Zhang, Jing</creator><creator>Tsai, Julie</creator><creator>Hussain, Mahmood</creator><creator>Dai, Kezhi</creator><creator>Iqbal, Jahangir</creator><creator>Kontos, Christopher D.</creator><creator>Horie, Yasuo</creator><creator>Suzuki, Akira</creator><creator>Adeli, Khosrow</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200812</creationdate><title>Phosphatase and tensin homolog (PTEN) regulates hepatic lipogenesis, microsomal triglyceride transfer protein, and the secretion of apolipoprotein B–containing lipoproteins</title><author>Qiu, Wei ; Federico, Lisa ; Naples, Mark ; Avramoglu, Rita Kohen ; Meshkani, Reza ; Zhang, Jing ; Tsai, Julie ; Hussain, Mahmood ; Dai, Kezhi ; Iqbal, Jahangir ; Kontos, Christopher D. ; Horie, Yasuo ; Suzuki, Akira ; Adeli, Khosrow</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5095-a9006b887c9c18a6d1992e9078273b52088824e3714d88d43933a3f773b2840c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acetyl-CoA Carboxylase - metabolism</topic><topic>Animals</topic><topic>Apolipoprotein B-100 - metabolism</topic><topic>Apolipoproteins B - metabolism</topic><topic>Biological and medical sciences</topic><topic>Carrier Proteins - metabolism</topic><topic>Cells, Cultured</topic><topic>Disease Models, Animal</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Fatty Acid Synthases - metabolism</topic><topic>Fatty Liver - metabolism</topic><topic>Fatty Liver - pathology</topic><topic>Gastroenterology. Liver. Pancreas. Abdomen</topic><topic>Insulin - metabolism</topic><topic>Lipogenesis - physiology</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Liver. Biliary tract. Portal circulation. Exocrine pancreas</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>PTEN Phosphohydrolase - metabolism</topic><topic>Receptors, LDL - metabolism</topic><topic>Sterol Regulatory Element Binding Protein 1 - metabolism</topic><topic>Triglycerides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Wei</creatorcontrib><creatorcontrib>Federico, Lisa</creatorcontrib><creatorcontrib>Naples, Mark</creatorcontrib><creatorcontrib>Avramoglu, Rita Kohen</creatorcontrib><creatorcontrib>Meshkani, Reza</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Tsai, Julie</creatorcontrib><creatorcontrib>Hussain, Mahmood</creatorcontrib><creatorcontrib>Dai, Kezhi</creatorcontrib><creatorcontrib>Iqbal, Jahangir</creatorcontrib><creatorcontrib>Kontos, Christopher D.</creatorcontrib><creatorcontrib>Horie, Yasuo</creatorcontrib><creatorcontrib>Suzuki, Akira</creatorcontrib><creatorcontrib>Adeli, Khosrow</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Hepatology (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Wei</au><au>Federico, Lisa</au><au>Naples, Mark</au><au>Avramoglu, Rita Kohen</au><au>Meshkani, Reza</au><au>Zhang, Jing</au><au>Tsai, Julie</au><au>Hussain, Mahmood</au><au>Dai, Kezhi</au><au>Iqbal, Jahangir</au><au>Kontos, Christopher D.</au><au>Horie, Yasuo</au><au>Suzuki, Akira</au><au>Adeli, Khosrow</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphatase and tensin homolog (PTEN) regulates hepatic lipogenesis, microsomal triglyceride transfer protein, and the secretion of apolipoprotein B–containing lipoproteins</atitle><jtitle>Hepatology (Baltimore, Md.)</jtitle><addtitle>Hepatology</addtitle><date>2008-12</date><risdate>2008</risdate><volume>48</volume><issue>6</issue><spage>1799</spage><epage>1809</epage><pages>1799-1809</pages><issn>0270-9139</issn><eissn>1527-3350</eissn><coden>HPTLD9</coden><abstract>Hepatic apolipoprotein B (apoB) lipoprotein production is metabolically regulated via the phosphoinositide 3‐kinase cascade; however, the role of the key negative regulator of this pathway, the tumor suppressor phosphatase with tensin homology (PTEN), is unknown. Here, we demonstrate that hepatic protein levels of apoB100 and microsomal triglyceride transfer protein (MTP) are significantly down‐regulated (73% and 36%, respectively) in the liver of PTEN liver‐specific knockout (KO) mice, and this is accompanied by increased triglyceride (TG) accumulation and lipogenic gene expression, and reduced hepatic apoB secretion in freshly isolated hepatocytes. MTP protein mass and lipid transfer activity were also significantly reduced in liver of PTEN KO mice. Overexpression of the dominant negative mutant PTEN C/S124 (adenovirus expressing PTEN C/S mutant [AdPTENC/S]) possessing constitutive phospoinositide 3‐kinase activity in HepG2 cells led to significant reductions in both secreted apoB100 and cellular MTP mass (76% and 34%, respectively), and increased messenger RNA (mRNA) levels of sterol regulatory element binding protein 1c (SREBP‐1c), fatty acid synthase (FAS), and acetyl‐CoA carboxylase (ACC). Reduced apoB100 secretion induced by AdPTENC/S was associated with increased degradation of newly‐synthesized cellular apoB100, in a lactacystin‐sensitive manner, suggesting enhanced proteasomal degradation. AdPTENC/S also reduced apoB‐lipoprotein production in McA‐RH7777 and primary hamster hepatocytes. Our findings suggest a link between PTEN expression and hepatic production of apoB‐containing lipoproteins. We postulate that perturbations in PTEN not only may influence hepatic insulin signaling and hepatic lipogenesis, but also may alter hepatic apoB‐lipoprotein production and the MTP stability. On loss of PTEN activity, increased lipid substrate availability in the face of reduced hepatic lipoprotein production capacity can rapidly lead to hepatosteatosis and fatty liver. (HEPATOLOGY 2008;48:1799–1809.)</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19026012</pmid><doi>10.1002/hep.22565</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-9139
ispartof Hepatology (Baltimore, Md.), 2008-12, Vol.48 (6), p.1799-1809
issn 0270-9139
1527-3350
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4544759
source Wiley Online Library - AutoHoldings Journals; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Acetyl-CoA Carboxylase - metabolism
Animals
Apolipoprotein B-100 - metabolism
Apolipoproteins B - metabolism
Biological and medical sciences
Carrier Proteins - metabolism
Cells, Cultured
Disease Models, Animal
Extracellular Signal-Regulated MAP Kinases - metabolism
Fatty Acid Synthases - metabolism
Fatty Liver - metabolism
Fatty Liver - pathology
Gastroenterology. Liver. Pancreas. Abdomen
Insulin - metabolism
Lipogenesis - physiology
Liver - metabolism
Liver - pathology
Liver. Biliary tract. Portal circulation. Exocrine pancreas
Medical sciences
Mice
Mice, Knockout
Phosphatidylinositol 3-Kinases - metabolism
Phosphoric Monoester Hydrolases - metabolism
PTEN Phosphohydrolase - metabolism
Receptors, LDL - metabolism
Sterol Regulatory Element Binding Protein 1 - metabolism
Triglycerides - metabolism
title Phosphatase and tensin homolog (PTEN) regulates hepatic lipogenesis, microsomal triglyceride transfer protein, and the secretion of apolipoprotein B–containing lipoproteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T18%3A29%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphatase%20and%20tensin%20homolog%20(PTEN)%20regulates%20hepatic%20lipogenesis,%20microsomal%20triglyceride%20transfer%20protein,%20and%20the%20secretion%20of%20apolipoprotein%20B%E2%80%93containing%20lipoproteins&rft.jtitle=Hepatology%20(Baltimore,%20Md.)&rft.au=Qiu,%20Wei&rft.date=2008-12&rft.volume=48&rft.issue=6&rft.spage=1799&rft.epage=1809&rft.pages=1799-1809&rft.issn=0270-9139&rft.eissn=1527-3350&rft.coden=HPTLD9&rft_id=info:doi/10.1002/hep.22565&rft_dat=%3Cproquest_pubme%3E69839230%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69839230&rft_id=info:pmid/19026012&rfr_iscdi=true