Large-scale RNA-Seq Transcriptome Analysis of 4043 Cancers and 548 Normal Tissue Controls across 12 TCGA Cancer Types
The Cancer Genome Atlas (TCGA) has accrued RNA-Seq-based transcriptome data for more than 4000 cancer tissue samples across 12 cancer types, translating these data into biological insights remains a major challenge. We analyzed and compared the transcriptomes of 4043 cancer and 548 normal tissue sam...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2015-08, Vol.5 (1), p.13413-13413, Article 13413 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13413 |
---|---|
container_issue | 1 |
container_start_page | 13413 |
container_title | Scientific reports |
container_volume | 5 |
creator | Peng, Li Bian, Xiu Wu Li, Di Kang Xu, Chuan Wang, Guang Ming Xia, Qing You Xiong, Qing |
description | The Cancer Genome Atlas (TCGA) has accrued RNA-Seq-based transcriptome data for more than 4000 cancer tissue samples across 12 cancer types, translating these data into biological insights remains a major challenge. We analyzed and compared the transcriptomes of 4043 cancer and 548 normal tissue samples from 21 TCGA cancer types and created a comprehensive catalog of gene expression alterations for each cancer type. By clustering genes into co-regulated gene sets, we identified seven cross-cancer gene signatures altered across a diverse panel of primary human cancer samples. A 14-gene signature extracted from these seven cross-cancer gene signatures precisely differentiated between cancerous and normal samples, the predictive accuracy of leave-one-out cross-validation (LOOCV) were 92.04%, 96.23%, 91.76%, 90.05%, 88.17%, 94.29% and 99.10% for BLCA, BRCA, COAD, HNSC, LIHC, LUAD and LUSC, respectively. A lung cancer-specific gene signature, containing SFTPA1 and SFTPA2 genes, accurately distinguished lung cancer from other cancer samples, the predictive accuracy of LOOCV for TCGA and GSE5364 data were 95.68% and 100%, respectively. These gene signatures provide rich insights into the transcriptional programs that trigger tumorigenesis and metastasis and many genes in the signature gene panels may be of significant value to the diagnosis and treatment of cancer. |
doi_str_mv | 10.1038/srep13413 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4544034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1706207225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-785aa99e36e28ceb455a6aa563858d7b273fcd96d92685615fefe0873d020c8a3</originalsourceid><addsrcrecordid>eNplkV-L1DAUxYMo7rLug19AAr6oUM3fNnkRhqKrMKyg9Tlk0tuxS9t0c6cL8-2NzjiMmjwkcH45OdxDyHPO3nImzTtMMHOpuHxELgVTuhBSiMdn9wtyjXjH8tLCKm6fkgtRCpu3uiTL2qctFBj8APTr7ar4Bve0SX7CkPp5F0egq8kPe-yRxo4qpiSt_RQgIfVTS7Uy9Dam0Q-06REXoHWcdikOWQ4pIlIuaFPfrI6vaLOfAZ-RJ50fEK6P5xX5_vFDU38q1l9uPterdRGUNLuiMtp7a0GWIEyAjdLal97rUhpt2mojKtmF1patFaXRJdcddMBMJVsmWDBeXpH3B9952YzQBsjR_ODm1I8-7V30vftbmfofbhsfnNJKMamywaujQYr3C-DOjT0GGAY_QVzQ8YqVglVC6Iy-_Ae9i0vKs8uUsTYzzLBMvT5Qv4eToDuF4cz96tOd-szsi_P0J_JPexl4cwAwS9MW0tmX_7n9BEg_p4k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899722080</pqid></control><display><type>article</type><title>Large-scale RNA-Seq Transcriptome Analysis of 4043 Cancers and 548 Normal Tissue Controls across 12 TCGA Cancer Types</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Peng, Li ; Bian, Xiu Wu ; Li, Di Kang ; Xu, Chuan ; Wang, Guang Ming ; Xia, Qing You ; Xiong, Qing</creator><creatorcontrib>Peng, Li ; Bian, Xiu Wu ; Li, Di Kang ; Xu, Chuan ; Wang, Guang Ming ; Xia, Qing You ; Xiong, Qing</creatorcontrib><description>The Cancer Genome Atlas (TCGA) has accrued RNA-Seq-based transcriptome data for more than 4000 cancer tissue samples across 12 cancer types, translating these data into biological insights remains a major challenge. We analyzed and compared the transcriptomes of 4043 cancer and 548 normal tissue samples from 21 TCGA cancer types and created a comprehensive catalog of gene expression alterations for each cancer type. By clustering genes into co-regulated gene sets, we identified seven cross-cancer gene signatures altered across a diverse panel of primary human cancer samples. A 14-gene signature extracted from these seven cross-cancer gene signatures precisely differentiated between cancerous and normal samples, the predictive accuracy of leave-one-out cross-validation (LOOCV) were 92.04%, 96.23%, 91.76%, 90.05%, 88.17%, 94.29% and 99.10% for BLCA, BRCA, COAD, HNSC, LIHC, LUAD and LUSC, respectively. A lung cancer-specific gene signature, containing SFTPA1 and SFTPA2 genes, accurately distinguished lung cancer from other cancer samples, the predictive accuracy of LOOCV for TCGA and GSE5364 data were 95.68% and 100%, respectively. These gene signatures provide rich insights into the transcriptional programs that trigger tumorigenesis and metastasis and many genes in the signature gene panels may be of significant value to the diagnosis and treatment of cancer.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep13413</identifier><identifier>PMID: 26292924</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114 ; 631/553/1833 ; 631/67/69 ; Breast cancer ; Carcinogenesis - genetics ; Case-Control Studies ; Cluster Analysis ; Databases, Genetic ; Gene expression ; Gene Expression Profiling - methods ; Gene Expression Regulation, Neoplastic ; Genetic Association Studies ; Genomes ; Humanities and Social Sciences ; Humans ; Lung cancer ; Metastases ; multidisciplinary ; Neoplasm Proteins - genetics ; Neoplasm Proteins - metabolism ; Neoplasms - genetics ; Reproducibility of Results ; Ribonucleic acid ; RNA ; Science ; Sequence Analysis, RNA - methods ; Transcription ; Tumorigenesis</subject><ispartof>Scientific reports, 2015-08, Vol.5 (1), p.13413-13413, Article 13413</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Aug 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-785aa99e36e28ceb455a6aa563858d7b273fcd96d92685615fefe0873d020c8a3</citedby><cites>FETCH-LOGICAL-c438t-785aa99e36e28ceb455a6aa563858d7b273fcd96d92685615fefe0873d020c8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4544034/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4544034/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,41118,42187,51574,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26292924$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Li</creatorcontrib><creatorcontrib>Bian, Xiu Wu</creatorcontrib><creatorcontrib>Li, Di Kang</creatorcontrib><creatorcontrib>Xu, Chuan</creatorcontrib><creatorcontrib>Wang, Guang Ming</creatorcontrib><creatorcontrib>Xia, Qing You</creatorcontrib><creatorcontrib>Xiong, Qing</creatorcontrib><title>Large-scale RNA-Seq Transcriptome Analysis of 4043 Cancers and 548 Normal Tissue Controls across 12 TCGA Cancer Types</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The Cancer Genome Atlas (TCGA) has accrued RNA-Seq-based transcriptome data for more than 4000 cancer tissue samples across 12 cancer types, translating these data into biological insights remains a major challenge. We analyzed and compared the transcriptomes of 4043 cancer and 548 normal tissue samples from 21 TCGA cancer types and created a comprehensive catalog of gene expression alterations for each cancer type. By clustering genes into co-regulated gene sets, we identified seven cross-cancer gene signatures altered across a diverse panel of primary human cancer samples. A 14-gene signature extracted from these seven cross-cancer gene signatures precisely differentiated between cancerous and normal samples, the predictive accuracy of leave-one-out cross-validation (LOOCV) were 92.04%, 96.23%, 91.76%, 90.05%, 88.17%, 94.29% and 99.10% for BLCA, BRCA, COAD, HNSC, LIHC, LUAD and LUSC, respectively. A lung cancer-specific gene signature, containing SFTPA1 and SFTPA2 genes, accurately distinguished lung cancer from other cancer samples, the predictive accuracy of LOOCV for TCGA and GSE5364 data were 95.68% and 100%, respectively. These gene signatures provide rich insights into the transcriptional programs that trigger tumorigenesis and metastasis and many genes in the signature gene panels may be of significant value to the diagnosis and treatment of cancer.</description><subject>631/114</subject><subject>631/553/1833</subject><subject>631/67/69</subject><subject>Breast cancer</subject><subject>Carcinogenesis - genetics</subject><subject>Case-Control Studies</subject><subject>Cluster Analysis</subject><subject>Databases, Genetic</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genetic Association Studies</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Lung cancer</subject><subject>Metastases</subject><subject>multidisciplinary</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Neoplasms - genetics</subject><subject>Reproducibility of Results</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Science</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Transcription</subject><subject>Tumorigenesis</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV-L1DAUxYMo7rLug19AAr6oUM3fNnkRhqKrMKyg9Tlk0tuxS9t0c6cL8-2NzjiMmjwkcH45OdxDyHPO3nImzTtMMHOpuHxELgVTuhBSiMdn9wtyjXjH8tLCKm6fkgtRCpu3uiTL2qctFBj8APTr7ar4Bve0SX7CkPp5F0egq8kPe-yRxo4qpiSt_RQgIfVTS7Uy9Dam0Q-06REXoHWcdikOWQ4pIlIuaFPfrI6vaLOfAZ-RJ50fEK6P5xX5_vFDU38q1l9uPterdRGUNLuiMtp7a0GWIEyAjdLal97rUhpt2mojKtmF1patFaXRJdcddMBMJVsmWDBeXpH3B9952YzQBsjR_ODm1I8-7V30vftbmfofbhsfnNJKMamywaujQYr3C-DOjT0GGAY_QVzQ8YqVglVC6Iy-_Ae9i0vKs8uUsTYzzLBMvT5Qv4eToDuF4cz96tOd-szsi_P0J_JPexl4cwAwS9MW0tmX_7n9BEg_p4k</recordid><startdate>20150821</startdate><enddate>20150821</enddate><creator>Peng, Li</creator><creator>Bian, Xiu Wu</creator><creator>Li, Di Kang</creator><creator>Xu, Chuan</creator><creator>Wang, Guang Ming</creator><creator>Xia, Qing You</creator><creator>Xiong, Qing</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150821</creationdate><title>Large-scale RNA-Seq Transcriptome Analysis of 4043 Cancers and 548 Normal Tissue Controls across 12 TCGA Cancer Types</title><author>Peng, Li ; Bian, Xiu Wu ; Li, Di Kang ; Xu, Chuan ; Wang, Guang Ming ; Xia, Qing You ; Xiong, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-785aa99e36e28ceb455a6aa563858d7b273fcd96d92685615fefe0873d020c8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>631/114</topic><topic>631/553/1833</topic><topic>631/67/69</topic><topic>Breast cancer</topic><topic>Carcinogenesis - genetics</topic><topic>Case-Control Studies</topic><topic>Cluster Analysis</topic><topic>Databases, Genetic</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genetic Association Studies</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Lung cancer</topic><topic>Metastases</topic><topic>multidisciplinary</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Neoplasms - genetics</topic><topic>Reproducibility of Results</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Science</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Transcription</topic><topic>Tumorigenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Li</creatorcontrib><creatorcontrib>Bian, Xiu Wu</creatorcontrib><creatorcontrib>Li, Di Kang</creatorcontrib><creatorcontrib>Xu, Chuan</creatorcontrib><creatorcontrib>Wang, Guang Ming</creatorcontrib><creatorcontrib>Xia, Qing You</creatorcontrib><creatorcontrib>Xiong, Qing</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Li</au><au>Bian, Xiu Wu</au><au>Li, Di Kang</au><au>Xu, Chuan</au><au>Wang, Guang Ming</au><au>Xia, Qing You</au><au>Xiong, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-scale RNA-Seq Transcriptome Analysis of 4043 Cancers and 548 Normal Tissue Controls across 12 TCGA Cancer Types</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-08-21</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>13413</spage><epage>13413</epage><pages>13413-13413</pages><artnum>13413</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The Cancer Genome Atlas (TCGA) has accrued RNA-Seq-based transcriptome data for more than 4000 cancer tissue samples across 12 cancer types, translating these data into biological insights remains a major challenge. We analyzed and compared the transcriptomes of 4043 cancer and 548 normal tissue samples from 21 TCGA cancer types and created a comprehensive catalog of gene expression alterations for each cancer type. By clustering genes into co-regulated gene sets, we identified seven cross-cancer gene signatures altered across a diverse panel of primary human cancer samples. A 14-gene signature extracted from these seven cross-cancer gene signatures precisely differentiated between cancerous and normal samples, the predictive accuracy of leave-one-out cross-validation (LOOCV) were 92.04%, 96.23%, 91.76%, 90.05%, 88.17%, 94.29% and 99.10% for BLCA, BRCA, COAD, HNSC, LIHC, LUAD and LUSC, respectively. A lung cancer-specific gene signature, containing SFTPA1 and SFTPA2 genes, accurately distinguished lung cancer from other cancer samples, the predictive accuracy of LOOCV for TCGA and GSE5364 data were 95.68% and 100%, respectively. These gene signatures provide rich insights into the transcriptional programs that trigger tumorigenesis and metastasis and many genes in the signature gene panels may be of significant value to the diagnosis and treatment of cancer.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26292924</pmid><doi>10.1038/srep13413</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2015-08, Vol.5 (1), p.13413-13413, Article 13413 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4544034 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 631/114 631/553/1833 631/67/69 Breast cancer Carcinogenesis - genetics Case-Control Studies Cluster Analysis Databases, Genetic Gene expression Gene Expression Profiling - methods Gene Expression Regulation, Neoplastic Genetic Association Studies Genomes Humanities and Social Sciences Humans Lung cancer Metastases multidisciplinary Neoplasm Proteins - genetics Neoplasm Proteins - metabolism Neoplasms - genetics Reproducibility of Results Ribonucleic acid RNA Science Sequence Analysis, RNA - methods Transcription Tumorigenesis |
title | Large-scale RNA-Seq Transcriptome Analysis of 4043 Cancers and 548 Normal Tissue Controls across 12 TCGA Cancer Types |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-scale%20RNA-Seq%20Transcriptome%20Analysis%20of%204043%20Cancers%20and%20548%20Normal%20Tissue%20Controls%20across%2012%20TCGA%20Cancer%20Types&rft.jtitle=Scientific%20reports&rft.au=Peng,%20Li&rft.date=2015-08-21&rft.volume=5&rft.issue=1&rft.spage=13413&rft.epage=13413&rft.pages=13413-13413&rft.artnum=13413&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep13413&rft_dat=%3Cproquest_pubme%3E1706207225%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899722080&rft_id=info:pmid/26292924&rfr_iscdi=true |