MESMER: minimal ensemble solutions to multiple experimental restraints

Macromolecular structures and interactions are intrinsically heterogeneous, temporally adopting a range of configurations that can confound the analysis of data from bulk experiments. To obtain quantitative insights into heterogeneous systems, an ensemble-based approach can be employed, in which pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2015-06, Vol.31 (12), p.1951-1958
Hauptverfasser: Ihms, Elihu C, Foster, Mark P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1958
container_issue 12
container_start_page 1951
container_title Bioinformatics (Oxford, England)
container_volume 31
creator Ihms, Elihu C
Foster, Mark P
description Macromolecular structures and interactions are intrinsically heterogeneous, temporally adopting a range of configurations that can confound the analysis of data from bulk experiments. To obtain quantitative insights into heterogeneous systems, an ensemble-based approach can be employed, in which predicted data computed from a collection of models is compared to the observed experimental results. By simultaneously fitting orthogonal structural data (e.g. small-angle X-ray scattering, nuclear magnetic resonance residual dipolar couplings, dipolar electron-electron resonance spectra), the range and population of accessible macromolecule structures can be probed. We have developed MESMER, software that enables the user to identify ensembles that can recapitulate experimental data by refining thousands of component collections selected from an input pool of potential structures. The MESMER suite includes a powerful graphical user interface (GUI) to streamline usage of the command-line tools, calculate data from structure libraries and perform analyses of conformational and structural heterogeneity. To allow for incorporation of other data types, modular Python plugins enable users to compute and fit data from nearly any type of quantitative experimental data. Conformational heterogeneity in three macromolecular systems was analyzed with MESMER, demonstrating the utility of the streamlined, user-friendly software. https://code.google.com/p/mesmer/
doi_str_mv 10.1093/bioinformatics/btv079
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4542774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1689311987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-37597d2478d5d7eeffd47d2a6b18ada92c90fc58497872bfbe24f22d9c6aa7fe3</originalsourceid><addsrcrecordid>eNpVUV1LwzAUDaK4Of0JSh99qUuatGl8EGRsKmwIfjyHtE000iY1SYf-eyObwz3dr3PPPdwDwDmCVwgyPK201UZZ14mgaz-twhpSdgDGCBc0JSVCh7sc4hE48f4DQpjDvDgGoywvKMYEjsFiNX9ezZ-uk04b3Yk2kcbLrmpl4m07BG2NT4JNuqENuo9d-dVLpztpQsQ66YMT2gR_Co6UaL0828YJeF3MX2b36fLx7mF2u0xrglBIMc0ZbTJCyyZvqJRKNSTWoqhQKRrBsppBVeclYbSkWaUqmRGVZQ2rCyGokngCbja8_VB1sqmjDida3kdJwn1zKzTfnxj9zt_smpOcZJSSSHC5JXD2c4j6ead9LdtWGGkHz1FRMowQK2mE5hto7az3TqrdGQT5rwd83wO-8SDuXfzXuNv6ezr-ASyRi3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1689311987</pqid></control><display><type>article</type><title>MESMER: minimal ensemble solutions to multiple experimental restraints</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Ihms, Elihu C ; Foster, Mark P</creator><creatorcontrib>Ihms, Elihu C ; Foster, Mark P</creatorcontrib><description>Macromolecular structures and interactions are intrinsically heterogeneous, temporally adopting a range of configurations that can confound the analysis of data from bulk experiments. To obtain quantitative insights into heterogeneous systems, an ensemble-based approach can be employed, in which predicted data computed from a collection of models is compared to the observed experimental results. By simultaneously fitting orthogonal structural data (e.g. small-angle X-ray scattering, nuclear magnetic resonance residual dipolar couplings, dipolar electron-electron resonance spectra), the range and population of accessible macromolecule structures can be probed. We have developed MESMER, software that enables the user to identify ensembles that can recapitulate experimental data by refining thousands of component collections selected from an input pool of potential structures. The MESMER suite includes a powerful graphical user interface (GUI) to streamline usage of the command-line tools, calculate data from structure libraries and perform analyses of conformational and structural heterogeneity. To allow for incorporation of other data types, modular Python plugins enable users to compute and fit data from nearly any type of quantitative experimental data. Conformational heterogeneity in three macromolecular systems was analyzed with MESMER, demonstrating the utility of the streamlined, user-friendly software. https://code.google.com/p/mesmer/</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btv079</identifier><identifier>PMID: 25673340</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Acid Phosphatase - chemistry ; Calmodulin - chemistry ; Computational Biology - methods ; Computer Simulation ; Endosomal Sorting Complexes Required for Transport - chemistry ; Humans ; Isoenzymes - chemistry ; Models, Molecular ; Multiprotein Complexes - chemistry ; Nuclear Magnetic Resonance, Biomolecular ; Original Papers ; Protein Conformation ; Scattering, Small Angle ; Software ; Tartrate-Resistant Acid Phosphatase</subject><ispartof>Bioinformatics (Oxford, England), 2015-06, Vol.31 (12), p.1951-1958</ispartof><rights>The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.</rights><rights>The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-37597d2478d5d7eeffd47d2a6b18ada92c90fc58497872bfbe24f22d9c6aa7fe3</citedby><cites>FETCH-LOGICAL-c411t-37597d2478d5d7eeffd47d2a6b18ada92c90fc58497872bfbe24f22d9c6aa7fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4542774/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4542774/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25673340$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ihms, Elihu C</creatorcontrib><creatorcontrib>Foster, Mark P</creatorcontrib><title>MESMER: minimal ensemble solutions to multiple experimental restraints</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Macromolecular structures and interactions are intrinsically heterogeneous, temporally adopting a range of configurations that can confound the analysis of data from bulk experiments. To obtain quantitative insights into heterogeneous systems, an ensemble-based approach can be employed, in which predicted data computed from a collection of models is compared to the observed experimental results. By simultaneously fitting orthogonal structural data (e.g. small-angle X-ray scattering, nuclear magnetic resonance residual dipolar couplings, dipolar electron-electron resonance spectra), the range and population of accessible macromolecule structures can be probed. We have developed MESMER, software that enables the user to identify ensembles that can recapitulate experimental data by refining thousands of component collections selected from an input pool of potential structures. The MESMER suite includes a powerful graphical user interface (GUI) to streamline usage of the command-line tools, calculate data from structure libraries and perform analyses of conformational and structural heterogeneity. To allow for incorporation of other data types, modular Python plugins enable users to compute and fit data from nearly any type of quantitative experimental data. Conformational heterogeneity in three macromolecular systems was analyzed with MESMER, demonstrating the utility of the streamlined, user-friendly software. https://code.google.com/p/mesmer/</description><subject>Acid Phosphatase - chemistry</subject><subject>Calmodulin - chemistry</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Endosomal Sorting Complexes Required for Transport - chemistry</subject><subject>Humans</subject><subject>Isoenzymes - chemistry</subject><subject>Models, Molecular</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Original Papers</subject><subject>Protein Conformation</subject><subject>Scattering, Small Angle</subject><subject>Software</subject><subject>Tartrate-Resistant Acid Phosphatase</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUV1LwzAUDaK4Of0JSh99qUuatGl8EGRsKmwIfjyHtE000iY1SYf-eyObwz3dr3PPPdwDwDmCVwgyPK201UZZ14mgaz-twhpSdgDGCBc0JSVCh7sc4hE48f4DQpjDvDgGoywvKMYEjsFiNX9ezZ-uk04b3Yk2kcbLrmpl4m07BG2NT4JNuqENuo9d-dVLpztpQsQ66YMT2gR_Co6UaL0828YJeF3MX2b36fLx7mF2u0xrglBIMc0ZbTJCyyZvqJRKNSTWoqhQKRrBsppBVeclYbSkWaUqmRGVZQ2rCyGokngCbja8_VB1sqmjDida3kdJwn1zKzTfnxj9zt_smpOcZJSSSHC5JXD2c4j6ead9LdtWGGkHz1FRMowQK2mE5hto7az3TqrdGQT5rwd83wO-8SDuXfzXuNv6ezr-ASyRi3g</recordid><startdate>20150615</startdate><enddate>20150615</enddate><creator>Ihms, Elihu C</creator><creator>Foster, Mark P</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150615</creationdate><title>MESMER: minimal ensemble solutions to multiple experimental restraints</title><author>Ihms, Elihu C ; Foster, Mark P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-37597d2478d5d7eeffd47d2a6b18ada92c90fc58497872bfbe24f22d9c6aa7fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acid Phosphatase - chemistry</topic><topic>Calmodulin - chemistry</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Endosomal Sorting Complexes Required for Transport - chemistry</topic><topic>Humans</topic><topic>Isoenzymes - chemistry</topic><topic>Models, Molecular</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Original Papers</topic><topic>Protein Conformation</topic><topic>Scattering, Small Angle</topic><topic>Software</topic><topic>Tartrate-Resistant Acid Phosphatase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ihms, Elihu C</creatorcontrib><creatorcontrib>Foster, Mark P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ihms, Elihu C</au><au>Foster, Mark P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MESMER: minimal ensemble solutions to multiple experimental restraints</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2015-06-15</date><risdate>2015</risdate><volume>31</volume><issue>12</issue><spage>1951</spage><epage>1958</epage><pages>1951-1958</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Macromolecular structures and interactions are intrinsically heterogeneous, temporally adopting a range of configurations that can confound the analysis of data from bulk experiments. To obtain quantitative insights into heterogeneous systems, an ensemble-based approach can be employed, in which predicted data computed from a collection of models is compared to the observed experimental results. By simultaneously fitting orthogonal structural data (e.g. small-angle X-ray scattering, nuclear magnetic resonance residual dipolar couplings, dipolar electron-electron resonance spectra), the range and population of accessible macromolecule structures can be probed. We have developed MESMER, software that enables the user to identify ensembles that can recapitulate experimental data by refining thousands of component collections selected from an input pool of potential structures. The MESMER suite includes a powerful graphical user interface (GUI) to streamline usage of the command-line tools, calculate data from structure libraries and perform analyses of conformational and structural heterogeneity. To allow for incorporation of other data types, modular Python plugins enable users to compute and fit data from nearly any type of quantitative experimental data. Conformational heterogeneity in three macromolecular systems was analyzed with MESMER, demonstrating the utility of the streamlined, user-friendly software. https://code.google.com/p/mesmer/</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>25673340</pmid><doi>10.1093/bioinformatics/btv079</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics (Oxford, England), 2015-06, Vol.31 (12), p.1951-1958
issn 1367-4803
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4542774
source Oxford Journals Open Access Collection; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Acid Phosphatase - chemistry
Calmodulin - chemistry
Computational Biology - methods
Computer Simulation
Endosomal Sorting Complexes Required for Transport - chemistry
Humans
Isoenzymes - chemistry
Models, Molecular
Multiprotein Complexes - chemistry
Nuclear Magnetic Resonance, Biomolecular
Original Papers
Protein Conformation
Scattering, Small Angle
Software
Tartrate-Resistant Acid Phosphatase
title MESMER: minimal ensemble solutions to multiple experimental restraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A35%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MESMER:%20minimal%20ensemble%20solutions%20to%20multiple%20experimental%20restraints&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Ihms,%20Elihu%20C&rft.date=2015-06-15&rft.volume=31&rft.issue=12&rft.spage=1951&rft.epage=1958&rft.pages=1951-1958&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btv079&rft_dat=%3Cproquest_pubme%3E1689311987%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1689311987&rft_id=info:pmid/25673340&rfr_iscdi=true