Human cell dedifferentiation in mesenchymal condensates through controlled autophagy
Tissue and whole organ regeneration is a dramatic biological response to injury that occurs across different plant and animal phyla. It frequently requires the dedifferentiation of mature cells to a condensed mesenchymal blastema, from which replacement tissues develop. Human somatic cells cannot re...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2015-08, Vol.5 (1), p.13113-13113, Article 13113 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13113 |
---|---|
container_issue | 1 |
container_start_page | 13113 |
container_title | Scientific reports |
container_volume | 5 |
creator | Pennock, Rebecca Bray, Elen Pryor, Paul James, Sally McKeegan, Paul Sturmey, Roger Genever, Paul |
description | Tissue and whole organ regeneration is a dramatic biological response to injury that occurs across different plant and animal phyla. It frequently requires the dedifferentiation of mature cells to a condensed mesenchymal blastema, from which replacement tissues develop. Human somatic cells cannot regenerate in this way and differentiation is considered irreversible under normal developmental conditions. Here, we sought to establish
in vitro
conditions to mimic blastema formation by generating different three-dimensional (3D) condensates of human mesenchymal stromal cells (MSCs). We identified specific 3D growth environments that were sufficient to dedifferentiate aged human MSCs to an early mesendoderm-like state with reversal of age-associated cell hypertrophy and restoration of organized tissue regenerating capacity
in vivo
. An optimal auophagic response was required to promote cytoplasmic remodeling, mitochondrial regression and a bioenergetic shift from oxidative phosphorylation to anaerobic metabolism. Our evidence suggests that human cell dedifferentiation can be achieved through autonomously controlled autophagic flux. |
doi_str_mv | 10.1038/srep13113 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4542335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899721870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-288550ea4a0dcf030e27227832331466c5b11b4e8d2eb349bf1f9e57e48ac5bf3</originalsourceid><addsrcrecordid>eNplkV1LwzAYhYMobsxd-Aek4I0K03yuzY0gQ50w8GZeh7R9u3a0SU1aYf_ejM0xNTcJOQ_nPclB6JLge4JZ8uAdtIQRwk7QkGIuJpRRenp0HqCx92sclqCSE3mOBnRKJWaSDtFy3jfaRBnUdZRDXhUFODBdpbvKmqgyUQMeTFZuGl1HmTU5GK878FFXOtuvyu1d52xdQx7pvrNtqVebC3RW6NrDeL-P0MfL83I2nyzeX99mT4tJJjDvJjRJhMCgucZ5VmCGgcaUxgmjjBE-nWYiJSTlkOQUUsZlWpBCgoiBJzpoBRuhx51v26cN5FkI7nStWlc12m2U1ZX6rZiqVCv7pbjgYYYIBjd7A2c_e_Cdaiq__QttwPZekRiLmEqGZUCv_6Br2zsTnqdIImVMSRLjQN3uqMxZH5opDmEIVtu61KGuwF4dpz-QP-UE4G4H-CCZFbijkf_cvgGR_aAE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899721870</pqid></control><display><type>article</type><title>Human cell dedifferentiation in mesenchymal condensates through controlled autophagy</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Pennock, Rebecca ; Bray, Elen ; Pryor, Paul ; James, Sally ; McKeegan, Paul ; Sturmey, Roger ; Genever, Paul</creator><creatorcontrib>Pennock, Rebecca ; Bray, Elen ; Pryor, Paul ; James, Sally ; McKeegan, Paul ; Sturmey, Roger ; Genever, Paul</creatorcontrib><description>Tissue and whole organ regeneration is a dramatic biological response to injury that occurs across different plant and animal phyla. It frequently requires the dedifferentiation of mature cells to a condensed mesenchymal blastema, from which replacement tissues develop. Human somatic cells cannot regenerate in this way and differentiation is considered irreversible under normal developmental conditions. Here, we sought to establish
in vitro
conditions to mimic blastema formation by generating different three-dimensional (3D) condensates of human mesenchymal stromal cells (MSCs). We identified specific 3D growth environments that were sufficient to dedifferentiate aged human MSCs to an early mesendoderm-like state with reversal of age-associated cell hypertrophy and restoration of organized tissue regenerating capacity
in vivo
. An optimal auophagic response was required to promote cytoplasmic remodeling, mitochondrial regression and a bioenergetic shift from oxidative phosphorylation to anaerobic metabolism. Our evidence suggests that human cell dedifferentiation can be achieved through autonomously controlled autophagic flux.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep13113</identifier><identifier>PMID: 26290392</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/136 ; 631/80 ; Age ; Aged ; Autophagy ; Cartilage ; Cell Culture Techniques ; Cell Dedifferentiation ; Condensates ; Cytoplasm - metabolism ; Endoderm - cytology ; Humanities and Social Sciences ; Humans ; Hypertrophy ; Mammals ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - metabolism ; Mesenchyme ; Mesendoderm ; Metabolism ; Middle Aged ; Mitochondria ; multidisciplinary ; Oxidative metabolism ; Oxidative phosphorylation ; Phagocytosis ; Phosphorylation ; Physiology ; Population ; Regeneration ; Science ; Somatic cells ; Stem cells ; Stromal cells ; Tissue engineering</subject><ispartof>Scientific reports, 2015-08, Vol.5 (1), p.13113-13113, Article 13113</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Aug 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-288550ea4a0dcf030e27227832331466c5b11b4e8d2eb349bf1f9e57e48ac5bf3</citedby><cites>FETCH-LOGICAL-c504t-288550ea4a0dcf030e27227832331466c5b11b4e8d2eb349bf1f9e57e48ac5bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4542335/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4542335/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26290392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pennock, Rebecca</creatorcontrib><creatorcontrib>Bray, Elen</creatorcontrib><creatorcontrib>Pryor, Paul</creatorcontrib><creatorcontrib>James, Sally</creatorcontrib><creatorcontrib>McKeegan, Paul</creatorcontrib><creatorcontrib>Sturmey, Roger</creatorcontrib><creatorcontrib>Genever, Paul</creatorcontrib><title>Human cell dedifferentiation in mesenchymal condensates through controlled autophagy</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Tissue and whole organ regeneration is a dramatic biological response to injury that occurs across different plant and animal phyla. It frequently requires the dedifferentiation of mature cells to a condensed mesenchymal blastema, from which replacement tissues develop. Human somatic cells cannot regenerate in this way and differentiation is considered irreversible under normal developmental conditions. Here, we sought to establish
in vitro
conditions to mimic blastema formation by generating different three-dimensional (3D) condensates of human mesenchymal stromal cells (MSCs). We identified specific 3D growth environments that were sufficient to dedifferentiate aged human MSCs to an early mesendoderm-like state with reversal of age-associated cell hypertrophy and restoration of organized tissue regenerating capacity
in vivo
. An optimal auophagic response was required to promote cytoplasmic remodeling, mitochondrial regression and a bioenergetic shift from oxidative phosphorylation to anaerobic metabolism. Our evidence suggests that human cell dedifferentiation can be achieved through autonomously controlled autophagic flux.</description><subject>631/136</subject><subject>631/80</subject><subject>Age</subject><subject>Aged</subject><subject>Autophagy</subject><subject>Cartilage</subject><subject>Cell Culture Techniques</subject><subject>Cell Dedifferentiation</subject><subject>Condensates</subject><subject>Cytoplasm - metabolism</subject><subject>Endoderm - cytology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hypertrophy</subject><subject>Mammals</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Mesenchyme</subject><subject>Mesendoderm</subject><subject>Metabolism</subject><subject>Middle Aged</subject><subject>Mitochondria</subject><subject>multidisciplinary</subject><subject>Oxidative metabolism</subject><subject>Oxidative phosphorylation</subject><subject>Phagocytosis</subject><subject>Phosphorylation</subject><subject>Physiology</subject><subject>Population</subject><subject>Regeneration</subject><subject>Science</subject><subject>Somatic cells</subject><subject>Stem cells</subject><subject>Stromal cells</subject><subject>Tissue engineering</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkV1LwzAYhYMobsxd-Aek4I0K03yuzY0gQ50w8GZeh7R9u3a0SU1aYf_ejM0xNTcJOQ_nPclB6JLge4JZ8uAdtIQRwk7QkGIuJpRRenp0HqCx92sclqCSE3mOBnRKJWaSDtFy3jfaRBnUdZRDXhUFODBdpbvKmqgyUQMeTFZuGl1HmTU5GK878FFXOtuvyu1d52xdQx7pvrNtqVebC3RW6NrDeL-P0MfL83I2nyzeX99mT4tJJjDvJjRJhMCgucZ5VmCGgcaUxgmjjBE-nWYiJSTlkOQUUsZlWpBCgoiBJzpoBRuhx51v26cN5FkI7nStWlc12m2U1ZX6rZiqVCv7pbjgYYYIBjd7A2c_e_Cdaiq__QttwPZekRiLmEqGZUCv_6Br2zsTnqdIImVMSRLjQN3uqMxZH5opDmEIVtu61KGuwF4dpz-QP-UE4G4H-CCZFbijkf_cvgGR_aAE</recordid><startdate>20150820</startdate><enddate>20150820</enddate><creator>Pennock, Rebecca</creator><creator>Bray, Elen</creator><creator>Pryor, Paul</creator><creator>James, Sally</creator><creator>McKeegan, Paul</creator><creator>Sturmey, Roger</creator><creator>Genever, Paul</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150820</creationdate><title>Human cell dedifferentiation in mesenchymal condensates through controlled autophagy</title><author>Pennock, Rebecca ; Bray, Elen ; Pryor, Paul ; James, Sally ; McKeegan, Paul ; Sturmey, Roger ; Genever, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-288550ea4a0dcf030e27227832331466c5b11b4e8d2eb349bf1f9e57e48ac5bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>631/136</topic><topic>631/80</topic><topic>Age</topic><topic>Aged</topic><topic>Autophagy</topic><topic>Cartilage</topic><topic>Cell Culture Techniques</topic><topic>Cell Dedifferentiation</topic><topic>Condensates</topic><topic>Cytoplasm - metabolism</topic><topic>Endoderm - cytology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hypertrophy</topic><topic>Mammals</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Mesenchyme</topic><topic>Mesendoderm</topic><topic>Metabolism</topic><topic>Middle Aged</topic><topic>Mitochondria</topic><topic>multidisciplinary</topic><topic>Oxidative metabolism</topic><topic>Oxidative phosphorylation</topic><topic>Phagocytosis</topic><topic>Phosphorylation</topic><topic>Physiology</topic><topic>Population</topic><topic>Regeneration</topic><topic>Science</topic><topic>Somatic cells</topic><topic>Stem cells</topic><topic>Stromal cells</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pennock, Rebecca</creatorcontrib><creatorcontrib>Bray, Elen</creatorcontrib><creatorcontrib>Pryor, Paul</creatorcontrib><creatorcontrib>James, Sally</creatorcontrib><creatorcontrib>McKeegan, Paul</creatorcontrib><creatorcontrib>Sturmey, Roger</creatorcontrib><creatorcontrib>Genever, Paul</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pennock, Rebecca</au><au>Bray, Elen</au><au>Pryor, Paul</au><au>James, Sally</au><au>McKeegan, Paul</au><au>Sturmey, Roger</au><au>Genever, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human cell dedifferentiation in mesenchymal condensates through controlled autophagy</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-08-20</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>13113</spage><epage>13113</epage><pages>13113-13113</pages><artnum>13113</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Tissue and whole organ regeneration is a dramatic biological response to injury that occurs across different plant and animal phyla. It frequently requires the dedifferentiation of mature cells to a condensed mesenchymal blastema, from which replacement tissues develop. Human somatic cells cannot regenerate in this way and differentiation is considered irreversible under normal developmental conditions. Here, we sought to establish
in vitro
conditions to mimic blastema formation by generating different three-dimensional (3D) condensates of human mesenchymal stromal cells (MSCs). We identified specific 3D growth environments that were sufficient to dedifferentiate aged human MSCs to an early mesendoderm-like state with reversal of age-associated cell hypertrophy and restoration of organized tissue regenerating capacity
in vivo
. An optimal auophagic response was required to promote cytoplasmic remodeling, mitochondrial regression and a bioenergetic shift from oxidative phosphorylation to anaerobic metabolism. Our evidence suggests that human cell dedifferentiation can be achieved through autonomously controlled autophagic flux.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26290392</pmid><doi>10.1038/srep13113</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2015-08, Vol.5 (1), p.13113-13113, Article 13113 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4542335 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 631/136 631/80 Age Aged Autophagy Cartilage Cell Culture Techniques Cell Dedifferentiation Condensates Cytoplasm - metabolism Endoderm - cytology Humanities and Social Sciences Humans Hypertrophy Mammals Mesenchymal Stem Cells - cytology Mesenchymal Stem Cells - metabolism Mesenchyme Mesendoderm Metabolism Middle Aged Mitochondria multidisciplinary Oxidative metabolism Oxidative phosphorylation Phagocytosis Phosphorylation Physiology Population Regeneration Science Somatic cells Stem cells Stromal cells Tissue engineering |
title | Human cell dedifferentiation in mesenchymal condensates through controlled autophagy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A43%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20cell%20dedifferentiation%20in%20mesenchymal%20condensates%20through%20controlled%20autophagy&rft.jtitle=Scientific%20reports&rft.au=Pennock,%20Rebecca&rft.date=2015-08-20&rft.volume=5&rft.issue=1&rft.spage=13113&rft.epage=13113&rft.pages=13113-13113&rft.artnum=13113&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep13113&rft_dat=%3Cproquest_pubme%3E1899721870%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899721870&rft_id=info:pmid/26290392&rfr_iscdi=true |