Human cell dedifferentiation in mesenchymal condensates through controlled autophagy

Tissue and whole organ regeneration is a dramatic biological response to injury that occurs across different plant and animal phyla. It frequently requires the dedifferentiation of mature cells to a condensed mesenchymal blastema, from which replacement tissues develop. Human somatic cells cannot re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2015-08, Vol.5 (1), p.13113-13113, Article 13113
Hauptverfasser: Pennock, Rebecca, Bray, Elen, Pryor, Paul, James, Sally, McKeegan, Paul, Sturmey, Roger, Genever, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13113
container_issue 1
container_start_page 13113
container_title Scientific reports
container_volume 5
creator Pennock, Rebecca
Bray, Elen
Pryor, Paul
James, Sally
McKeegan, Paul
Sturmey, Roger
Genever, Paul
description Tissue and whole organ regeneration is a dramatic biological response to injury that occurs across different plant and animal phyla. It frequently requires the dedifferentiation of mature cells to a condensed mesenchymal blastema, from which replacement tissues develop. Human somatic cells cannot regenerate in this way and differentiation is considered irreversible under normal developmental conditions. Here, we sought to establish in vitro conditions to mimic blastema formation by generating different three-dimensional (3D) condensates of human mesenchymal stromal cells (MSCs). We identified specific 3D growth environments that were sufficient to dedifferentiate aged human MSCs to an early mesendoderm-like state with reversal of age-associated cell hypertrophy and restoration of organized tissue regenerating capacity in vivo . An optimal auophagic response was required to promote cytoplasmic remodeling, mitochondrial regression and a bioenergetic shift from oxidative phosphorylation to anaerobic metabolism. Our evidence suggests that human cell dedifferentiation can be achieved through autonomously controlled autophagic flux.
doi_str_mv 10.1038/srep13113
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4542335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899721870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-288550ea4a0dcf030e27227832331466c5b11b4e8d2eb349bf1f9e57e48ac5bf3</originalsourceid><addsrcrecordid>eNplkV1LwzAYhYMobsxd-Aek4I0K03yuzY0gQ50w8GZeh7R9u3a0SU1aYf_ejM0xNTcJOQ_nPclB6JLge4JZ8uAdtIQRwk7QkGIuJpRRenp0HqCx92sclqCSE3mOBnRKJWaSDtFy3jfaRBnUdZRDXhUFODBdpbvKmqgyUQMeTFZuGl1HmTU5GK878FFXOtuvyu1d52xdQx7pvrNtqVebC3RW6NrDeL-P0MfL83I2nyzeX99mT4tJJjDvJjRJhMCgucZ5VmCGgcaUxgmjjBE-nWYiJSTlkOQUUsZlWpBCgoiBJzpoBRuhx51v26cN5FkI7nStWlc12m2U1ZX6rZiqVCv7pbjgYYYIBjd7A2c_e_Cdaiq__QttwPZekRiLmEqGZUCv_6Br2zsTnqdIImVMSRLjQN3uqMxZH5opDmEIVtu61KGuwF4dpz-QP-UE4G4H-CCZFbijkf_cvgGR_aAE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899721870</pqid></control><display><type>article</type><title>Human cell dedifferentiation in mesenchymal condensates through controlled autophagy</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Pennock, Rebecca ; Bray, Elen ; Pryor, Paul ; James, Sally ; McKeegan, Paul ; Sturmey, Roger ; Genever, Paul</creator><creatorcontrib>Pennock, Rebecca ; Bray, Elen ; Pryor, Paul ; James, Sally ; McKeegan, Paul ; Sturmey, Roger ; Genever, Paul</creatorcontrib><description>Tissue and whole organ regeneration is a dramatic biological response to injury that occurs across different plant and animal phyla. It frequently requires the dedifferentiation of mature cells to a condensed mesenchymal blastema, from which replacement tissues develop. Human somatic cells cannot regenerate in this way and differentiation is considered irreversible under normal developmental conditions. Here, we sought to establish in vitro conditions to mimic blastema formation by generating different three-dimensional (3D) condensates of human mesenchymal stromal cells (MSCs). We identified specific 3D growth environments that were sufficient to dedifferentiate aged human MSCs to an early mesendoderm-like state with reversal of age-associated cell hypertrophy and restoration of organized tissue regenerating capacity in vivo . An optimal auophagic response was required to promote cytoplasmic remodeling, mitochondrial regression and a bioenergetic shift from oxidative phosphorylation to anaerobic metabolism. Our evidence suggests that human cell dedifferentiation can be achieved through autonomously controlled autophagic flux.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep13113</identifier><identifier>PMID: 26290392</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/136 ; 631/80 ; Age ; Aged ; Autophagy ; Cartilage ; Cell Culture Techniques ; Cell Dedifferentiation ; Condensates ; Cytoplasm - metabolism ; Endoderm - cytology ; Humanities and Social Sciences ; Humans ; Hypertrophy ; Mammals ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - metabolism ; Mesenchyme ; Mesendoderm ; Metabolism ; Middle Aged ; Mitochondria ; multidisciplinary ; Oxidative metabolism ; Oxidative phosphorylation ; Phagocytosis ; Phosphorylation ; Physiology ; Population ; Regeneration ; Science ; Somatic cells ; Stem cells ; Stromal cells ; Tissue engineering</subject><ispartof>Scientific reports, 2015-08, Vol.5 (1), p.13113-13113, Article 13113</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Aug 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-288550ea4a0dcf030e27227832331466c5b11b4e8d2eb349bf1f9e57e48ac5bf3</citedby><cites>FETCH-LOGICAL-c504t-288550ea4a0dcf030e27227832331466c5b11b4e8d2eb349bf1f9e57e48ac5bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4542335/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4542335/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26290392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pennock, Rebecca</creatorcontrib><creatorcontrib>Bray, Elen</creatorcontrib><creatorcontrib>Pryor, Paul</creatorcontrib><creatorcontrib>James, Sally</creatorcontrib><creatorcontrib>McKeegan, Paul</creatorcontrib><creatorcontrib>Sturmey, Roger</creatorcontrib><creatorcontrib>Genever, Paul</creatorcontrib><title>Human cell dedifferentiation in mesenchymal condensates through controlled autophagy</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Tissue and whole organ regeneration is a dramatic biological response to injury that occurs across different plant and animal phyla. It frequently requires the dedifferentiation of mature cells to a condensed mesenchymal blastema, from which replacement tissues develop. Human somatic cells cannot regenerate in this way and differentiation is considered irreversible under normal developmental conditions. Here, we sought to establish in vitro conditions to mimic blastema formation by generating different three-dimensional (3D) condensates of human mesenchymal stromal cells (MSCs). We identified specific 3D growth environments that were sufficient to dedifferentiate aged human MSCs to an early mesendoderm-like state with reversal of age-associated cell hypertrophy and restoration of organized tissue regenerating capacity in vivo . An optimal auophagic response was required to promote cytoplasmic remodeling, mitochondrial regression and a bioenergetic shift from oxidative phosphorylation to anaerobic metabolism. Our evidence suggests that human cell dedifferentiation can be achieved through autonomously controlled autophagic flux.</description><subject>631/136</subject><subject>631/80</subject><subject>Age</subject><subject>Aged</subject><subject>Autophagy</subject><subject>Cartilage</subject><subject>Cell Culture Techniques</subject><subject>Cell Dedifferentiation</subject><subject>Condensates</subject><subject>Cytoplasm - metabolism</subject><subject>Endoderm - cytology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hypertrophy</subject><subject>Mammals</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Mesenchyme</subject><subject>Mesendoderm</subject><subject>Metabolism</subject><subject>Middle Aged</subject><subject>Mitochondria</subject><subject>multidisciplinary</subject><subject>Oxidative metabolism</subject><subject>Oxidative phosphorylation</subject><subject>Phagocytosis</subject><subject>Phosphorylation</subject><subject>Physiology</subject><subject>Population</subject><subject>Regeneration</subject><subject>Science</subject><subject>Somatic cells</subject><subject>Stem cells</subject><subject>Stromal cells</subject><subject>Tissue engineering</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkV1LwzAYhYMobsxd-Aek4I0K03yuzY0gQ50w8GZeh7R9u3a0SU1aYf_ejM0xNTcJOQ_nPclB6JLge4JZ8uAdtIQRwk7QkGIuJpRRenp0HqCx92sclqCSE3mOBnRKJWaSDtFy3jfaRBnUdZRDXhUFODBdpbvKmqgyUQMeTFZuGl1HmTU5GK878FFXOtuvyu1d52xdQx7pvrNtqVebC3RW6NrDeL-P0MfL83I2nyzeX99mT4tJJjDvJjRJhMCgucZ5VmCGgcaUxgmjjBE-nWYiJSTlkOQUUsZlWpBCgoiBJzpoBRuhx51v26cN5FkI7nStWlc12m2U1ZX6rZiqVCv7pbjgYYYIBjd7A2c_e_Cdaiq__QttwPZekRiLmEqGZUCv_6Br2zsTnqdIImVMSRLjQN3uqMxZH5opDmEIVtu61KGuwF4dpz-QP-UE4G4H-CCZFbijkf_cvgGR_aAE</recordid><startdate>20150820</startdate><enddate>20150820</enddate><creator>Pennock, Rebecca</creator><creator>Bray, Elen</creator><creator>Pryor, Paul</creator><creator>James, Sally</creator><creator>McKeegan, Paul</creator><creator>Sturmey, Roger</creator><creator>Genever, Paul</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150820</creationdate><title>Human cell dedifferentiation in mesenchymal condensates through controlled autophagy</title><author>Pennock, Rebecca ; Bray, Elen ; Pryor, Paul ; James, Sally ; McKeegan, Paul ; Sturmey, Roger ; Genever, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-288550ea4a0dcf030e27227832331466c5b11b4e8d2eb349bf1f9e57e48ac5bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>631/136</topic><topic>631/80</topic><topic>Age</topic><topic>Aged</topic><topic>Autophagy</topic><topic>Cartilage</topic><topic>Cell Culture Techniques</topic><topic>Cell Dedifferentiation</topic><topic>Condensates</topic><topic>Cytoplasm - metabolism</topic><topic>Endoderm - cytology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hypertrophy</topic><topic>Mammals</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Mesenchyme</topic><topic>Mesendoderm</topic><topic>Metabolism</topic><topic>Middle Aged</topic><topic>Mitochondria</topic><topic>multidisciplinary</topic><topic>Oxidative metabolism</topic><topic>Oxidative phosphorylation</topic><topic>Phagocytosis</topic><topic>Phosphorylation</topic><topic>Physiology</topic><topic>Population</topic><topic>Regeneration</topic><topic>Science</topic><topic>Somatic cells</topic><topic>Stem cells</topic><topic>Stromal cells</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pennock, Rebecca</creatorcontrib><creatorcontrib>Bray, Elen</creatorcontrib><creatorcontrib>Pryor, Paul</creatorcontrib><creatorcontrib>James, Sally</creatorcontrib><creatorcontrib>McKeegan, Paul</creatorcontrib><creatorcontrib>Sturmey, Roger</creatorcontrib><creatorcontrib>Genever, Paul</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pennock, Rebecca</au><au>Bray, Elen</au><au>Pryor, Paul</au><au>James, Sally</au><au>McKeegan, Paul</au><au>Sturmey, Roger</au><au>Genever, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human cell dedifferentiation in mesenchymal condensates through controlled autophagy</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-08-20</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>13113</spage><epage>13113</epage><pages>13113-13113</pages><artnum>13113</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Tissue and whole organ regeneration is a dramatic biological response to injury that occurs across different plant and animal phyla. It frequently requires the dedifferentiation of mature cells to a condensed mesenchymal blastema, from which replacement tissues develop. Human somatic cells cannot regenerate in this way and differentiation is considered irreversible under normal developmental conditions. Here, we sought to establish in vitro conditions to mimic blastema formation by generating different three-dimensional (3D) condensates of human mesenchymal stromal cells (MSCs). We identified specific 3D growth environments that were sufficient to dedifferentiate aged human MSCs to an early mesendoderm-like state with reversal of age-associated cell hypertrophy and restoration of organized tissue regenerating capacity in vivo . An optimal auophagic response was required to promote cytoplasmic remodeling, mitochondrial regression and a bioenergetic shift from oxidative phosphorylation to anaerobic metabolism. Our evidence suggests that human cell dedifferentiation can be achieved through autonomously controlled autophagic flux.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26290392</pmid><doi>10.1038/srep13113</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2015-08, Vol.5 (1), p.13113-13113, Article 13113
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4542335
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 631/136
631/80
Age
Aged
Autophagy
Cartilage
Cell Culture Techniques
Cell Dedifferentiation
Condensates
Cytoplasm - metabolism
Endoderm - cytology
Humanities and Social Sciences
Humans
Hypertrophy
Mammals
Mesenchymal Stem Cells - cytology
Mesenchymal Stem Cells - metabolism
Mesenchyme
Mesendoderm
Metabolism
Middle Aged
Mitochondria
multidisciplinary
Oxidative metabolism
Oxidative phosphorylation
Phagocytosis
Phosphorylation
Physiology
Population
Regeneration
Science
Somatic cells
Stem cells
Stromal cells
Tissue engineering
title Human cell dedifferentiation in mesenchymal condensates through controlled autophagy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A43%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20cell%20dedifferentiation%20in%20mesenchymal%20condensates%20through%20controlled%20autophagy&rft.jtitle=Scientific%20reports&rft.au=Pennock,%20Rebecca&rft.date=2015-08-20&rft.volume=5&rft.issue=1&rft.spage=13113&rft.epage=13113&rft.pages=13113-13113&rft.artnum=13113&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep13113&rft_dat=%3Cproquest_pubme%3E1899721870%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899721870&rft_id=info:pmid/26290392&rfr_iscdi=true