Enhanced light trapping in solar cells using snow globe coating
ABSTRACT A novel method, snow globe coating, is found to show significant enhancement of the short circuit current JSC (35%) when applied as a scattering back reflector for polycrystalline silicon thin‐film solar cells. The coating is formed from high refractive index titania particles without conta...
Gespeichert in:
Veröffentlicht in: | Progress in photovoltaics 2012-11, Vol.20 (7), p.837-842 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 842 |
---|---|
container_issue | 7 |
container_start_page | 837 |
container_title | Progress in photovoltaics |
container_volume | 20 |
creator | Basch, Angelika Beck, Fiona Söderström, Thomas Varlamov, Sergey Catchpole, Kylie R. |
description | ABSTRACT
A novel method, snow globe coating, is found to show significant enhancement of the short circuit current JSC (35%) when applied as a scattering back reflector for polycrystalline silicon thin‐film solar cells. The coating is formed from high refractive index titania particles without containing binder and gives close to 100% reflectance for wavelengths above 400 nm. Snow globe coating is a physicochemical coating method executable in pH neutral media. The mild conditions of this process make this method applicable to many different types of solar cells. Copyright © 2012 John Wiley & Sons, Ltd.
A novel method, snow globe coating, is found to show significant enhancement of the short circuit current JSC (35%) when applied as a scattering back reflector for polycrystalline silicon thin‐film solar cells. The coating is formed from high refractive index titania particles without containing binder and gives close to 100% reflectance for wavelengths above 400 nm. Snow globe coating is a physicochemical coating method executable in pH neutral media, which make this method applicable to many different types of solar cells. |
doi_str_mv | 10.1002/pip.2240 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4538979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859701664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5470-b1076cab6e5762ed4a52f3ac119d612b89fd2fda26a0dbcdfde74a47da32f9133</originalsourceid><addsrcrecordid>eNp1kV9rFDEUxYMotlbBTyADIvgybf5n8qJorWuhaEGlvoVMktlNnU3GZMbab2-GTtcq-JRw749zz-EA8BTBQwQhPhr8cIgxhffAPoJS1ojJb_fnP8e1kJLtgUc5X0KIRCP5Q7CHOYGQo2YfvD4JGx2Ms1Xv15uxGpMeBh_WlQ9Vjr1OlXF9n6spz8Mc4lW17mPrKhP1WEaPwYNO99k9Wd4D8PX9yZfjD_XZp9Xp8Zuz2jAqYN0iKLjRLXdMcOws1Qx3RBuEpOUIt43sLO6sxlxD2xrbWSeopsJqgjuJCDkAr250h6ndOmtcKE57NSS_1elaRe3V35vgN2odfyrKSCOFLAIvF4EUf0wuj2rr85xNBxenrFDDpICIc1rQ5_-gl3FKocRTiGAMCScU_xE0KeacXLczg6CaW1GlFTW3UtBnd83vwNsaCvBiAXQ2uu9SqcTnOxwrGZo5RH3DXfneXf_3oDo_PV8OL7zPo_u143X6rrgggqmLjyv1Dn2mFysi1FvyG2_9spU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1322036342</pqid></control><display><type>article</type><title>Enhanced light trapping in solar cells using snow globe coating</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Basch, Angelika ; Beck, Fiona ; Söderström, Thomas ; Varlamov, Sergey ; Catchpole, Kylie R.</creator><creatorcontrib>Basch, Angelika ; Beck, Fiona ; Söderström, Thomas ; Varlamov, Sergey ; Catchpole, Kylie R.</creatorcontrib><description>ABSTRACT
A novel method, snow globe coating, is found to show significant enhancement of the short circuit current JSC (35%) when applied as a scattering back reflector for polycrystalline silicon thin‐film solar cells. The coating is formed from high refractive index titania particles without containing binder and gives close to 100% reflectance for wavelengths above 400 nm. Snow globe coating is a physicochemical coating method executable in pH neutral media. The mild conditions of this process make this method applicable to many different types of solar cells. Copyright © 2012 John Wiley & Sons, Ltd.
A novel method, snow globe coating, is found to show significant enhancement of the short circuit current JSC (35%) when applied as a scattering back reflector for polycrystalline silicon thin‐film solar cells. The coating is formed from high refractive index titania particles without containing binder and gives close to 100% reflectance for wavelengths above 400 nm. Snow globe coating is a physicochemical coating method executable in pH neutral media, which make this method applicable to many different types of solar cells.</description><identifier>ISSN: 1062-7995</identifier><identifier>EISSN: 1099-159X</identifier><identifier>DOI: 10.1002/pip.2240</identifier><identifier>PMID: 26300618</identifier><identifier>CODEN: PPHOED</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Accelerated Publications ; Applied sciences ; dielectric materials ; Energy ; Exact sciences and technology ; light trapping ; Natural energy ; Photovoltaic conversion ; refractive index ; semiconductors ; Solar cells. Photoelectrochemical cells ; Solar energy ; thin films ; zeta-potential</subject><ispartof>Progress in photovoltaics, 2012-11, Vol.20 (7), p.837-842</ispartof><rights>Copyright © 2012 John Wiley & Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 John Wiley & Sons, Ltd. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5470-b1076cab6e5762ed4a52f3ac119d612b89fd2fda26a0dbcdfde74a47da32f9133</citedby><cites>FETCH-LOGICAL-c5470-b1076cab6e5762ed4a52f3ac119d612b89fd2fda26a0dbcdfde74a47da32f9133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpip.2240$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpip.2240$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26589789$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26300618$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Basch, Angelika</creatorcontrib><creatorcontrib>Beck, Fiona</creatorcontrib><creatorcontrib>Söderström, Thomas</creatorcontrib><creatorcontrib>Varlamov, Sergey</creatorcontrib><creatorcontrib>Catchpole, Kylie R.</creatorcontrib><title>Enhanced light trapping in solar cells using snow globe coating</title><title>Progress in photovoltaics</title><addtitle>Prog. Photovolt: Res. Appl</addtitle><description>ABSTRACT
A novel method, snow globe coating, is found to show significant enhancement of the short circuit current JSC (35%) when applied as a scattering back reflector for polycrystalline silicon thin‐film solar cells. The coating is formed from high refractive index titania particles without containing binder and gives close to 100% reflectance for wavelengths above 400 nm. Snow globe coating is a physicochemical coating method executable in pH neutral media. The mild conditions of this process make this method applicable to many different types of solar cells. Copyright © 2012 John Wiley & Sons, Ltd.
A novel method, snow globe coating, is found to show significant enhancement of the short circuit current JSC (35%) when applied as a scattering back reflector for polycrystalline silicon thin‐film solar cells. The coating is formed from high refractive index titania particles without containing binder and gives close to 100% reflectance for wavelengths above 400 nm. Snow globe coating is a physicochemical coating method executable in pH neutral media, which make this method applicable to many different types of solar cells.</description><subject>Accelerated Publications</subject><subject>Applied sciences</subject><subject>dielectric materials</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>light trapping</subject><subject>Natural energy</subject><subject>Photovoltaic conversion</subject><subject>refractive index</subject><subject>semiconductors</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>thin films</subject><subject>zeta-potential</subject><issn>1062-7995</issn><issn>1099-159X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kV9rFDEUxYMotlbBTyADIvgybf5n8qJorWuhaEGlvoVMktlNnU3GZMbab2-GTtcq-JRw749zz-EA8BTBQwQhPhr8cIgxhffAPoJS1ojJb_fnP8e1kJLtgUc5X0KIRCP5Q7CHOYGQo2YfvD4JGx2Ms1Xv15uxGpMeBh_WlQ9Vjr1OlXF9n6spz8Mc4lW17mPrKhP1WEaPwYNO99k9Wd4D8PX9yZfjD_XZp9Xp8Zuz2jAqYN0iKLjRLXdMcOws1Qx3RBuEpOUIt43sLO6sxlxD2xrbWSeopsJqgjuJCDkAr250h6ndOmtcKE57NSS_1elaRe3V35vgN2odfyrKSCOFLAIvF4EUf0wuj2rr85xNBxenrFDDpICIc1rQ5_-gl3FKocRTiGAMCScU_xE0KeacXLczg6CaW1GlFTW3UtBnd83vwNsaCvBiAXQ2uu9SqcTnOxwrGZo5RH3DXfneXf_3oDo_PV8OL7zPo_u143X6rrgggqmLjyv1Dn2mFysi1FvyG2_9spU</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Basch, Angelika</creator><creator>Beck, Fiona</creator><creator>Söderström, Thomas</creator><creator>Varlamov, Sergey</creator><creator>Catchpole, Kylie R.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201211</creationdate><title>Enhanced light trapping in solar cells using snow globe coating</title><author>Basch, Angelika ; Beck, Fiona ; Söderström, Thomas ; Varlamov, Sergey ; Catchpole, Kylie R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5470-b1076cab6e5762ed4a52f3ac119d612b89fd2fda26a0dbcdfde74a47da32f9133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accelerated Publications</topic><topic>Applied sciences</topic><topic>dielectric materials</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>light trapping</topic><topic>Natural energy</topic><topic>Photovoltaic conversion</topic><topic>refractive index</topic><topic>semiconductors</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>thin films</topic><topic>zeta-potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basch, Angelika</creatorcontrib><creatorcontrib>Beck, Fiona</creatorcontrib><creatorcontrib>Söderström, Thomas</creatorcontrib><creatorcontrib>Varlamov, Sergey</creatorcontrib><creatorcontrib>Catchpole, Kylie R.</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Progress in photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basch, Angelika</au><au>Beck, Fiona</au><au>Söderström, Thomas</au><au>Varlamov, Sergey</au><au>Catchpole, Kylie R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced light trapping in solar cells using snow globe coating</atitle><jtitle>Progress in photovoltaics</jtitle><addtitle>Prog. Photovolt: Res. Appl</addtitle><date>2012-11</date><risdate>2012</risdate><volume>20</volume><issue>7</issue><spage>837</spage><epage>842</epage><pages>837-842</pages><issn>1062-7995</issn><eissn>1099-159X</eissn><coden>PPHOED</coden><abstract>ABSTRACT
A novel method, snow globe coating, is found to show significant enhancement of the short circuit current JSC (35%) when applied as a scattering back reflector for polycrystalline silicon thin‐film solar cells. The coating is formed from high refractive index titania particles without containing binder and gives close to 100% reflectance for wavelengths above 400 nm. Snow globe coating is a physicochemical coating method executable in pH neutral media. The mild conditions of this process make this method applicable to many different types of solar cells. Copyright © 2012 John Wiley & Sons, Ltd.
A novel method, snow globe coating, is found to show significant enhancement of the short circuit current JSC (35%) when applied as a scattering back reflector for polycrystalline silicon thin‐film solar cells. The coating is formed from high refractive index titania particles without containing binder and gives close to 100% reflectance for wavelengths above 400 nm. Snow globe coating is a physicochemical coating method executable in pH neutral media, which make this method applicable to many different types of solar cells.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>26300618</pmid><doi>10.1002/pip.2240</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1062-7995 |
ispartof | Progress in photovoltaics, 2012-11, Vol.20 (7), p.837-842 |
issn | 1062-7995 1099-159X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4538979 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Accelerated Publications Applied sciences dielectric materials Energy Exact sciences and technology light trapping Natural energy Photovoltaic conversion refractive index semiconductors Solar cells. Photoelectrochemical cells Solar energy thin films zeta-potential |
title | Enhanced light trapping in solar cells using snow globe coating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20light%20trapping%20in%20solar%20cells%20using%20snow%20globe%20coating&rft.jtitle=Progress%20in%20photovoltaics&rft.au=Basch,%20Angelika&rft.date=2012-11&rft.volume=20&rft.issue=7&rft.spage=837&rft.epage=842&rft.pages=837-842&rft.issn=1062-7995&rft.eissn=1099-159X&rft.coden=PPHOED&rft_id=info:doi/10.1002/pip.2240&rft_dat=%3Cproquest_pubme%3E1859701664%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1322036342&rft_id=info:pmid/26300618&rfr_iscdi=true |