Enhanced light trapping in solar cells using snow globe coating

ABSTRACT A novel method, snow globe coating, is found to show significant enhancement of the short circuit current JSC (35%) when applied as a scattering back reflector for polycrystalline silicon thin‐film solar cells. The coating is formed from high refractive index titania particles without conta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in photovoltaics 2012-11, Vol.20 (7), p.837-842
Hauptverfasser: Basch, Angelika, Beck, Fiona, Söderström, Thomas, Varlamov, Sergey, Catchpole, Kylie R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 842
container_issue 7
container_start_page 837
container_title Progress in photovoltaics
container_volume 20
creator Basch, Angelika
Beck, Fiona
Söderström, Thomas
Varlamov, Sergey
Catchpole, Kylie R.
description ABSTRACT A novel method, snow globe coating, is found to show significant enhancement of the short circuit current JSC (35%) when applied as a scattering back reflector for polycrystalline silicon thin‐film solar cells. The coating is formed from high refractive index titania particles without containing binder and gives close to 100% reflectance for wavelengths above 400 nm. Snow globe coating is a physicochemical coating method executable in pH neutral media. The mild conditions of this process make this method applicable to many different types of solar cells. Copyright © 2012 John Wiley & Sons, Ltd. A novel method, snow globe coating, is found to show significant enhancement of the short circuit current JSC (35%) when applied as a scattering back reflector for polycrystalline silicon thin‐film solar cells. The coating is formed from high refractive index titania particles without containing binder and gives close to 100% reflectance for wavelengths above 400 nm. Snow globe coating is a physicochemical coating method executable in pH neutral media, which make this method applicable to many different types of solar cells.
doi_str_mv 10.1002/pip.2240
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4538979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859701664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5470-b1076cab6e5762ed4a52f3ac119d612b89fd2fda26a0dbcdfde74a47da32f9133</originalsourceid><addsrcrecordid>eNp1kV9rFDEUxYMotlbBTyADIvgybf5n8qJorWuhaEGlvoVMktlNnU3GZMbab2-GTtcq-JRw749zz-EA8BTBQwQhPhr8cIgxhffAPoJS1ojJb_fnP8e1kJLtgUc5X0KIRCP5Q7CHOYGQo2YfvD4JGx2Ms1Xv15uxGpMeBh_WlQ9Vjr1OlXF9n6spz8Mc4lW17mPrKhP1WEaPwYNO99k9Wd4D8PX9yZfjD_XZp9Xp8Zuz2jAqYN0iKLjRLXdMcOws1Qx3RBuEpOUIt43sLO6sxlxD2xrbWSeopsJqgjuJCDkAr250h6ndOmtcKE57NSS_1elaRe3V35vgN2odfyrKSCOFLAIvF4EUf0wuj2rr85xNBxenrFDDpICIc1rQ5_-gl3FKocRTiGAMCScU_xE0KeacXLczg6CaW1GlFTW3UtBnd83vwNsaCvBiAXQ2uu9SqcTnOxwrGZo5RH3DXfneXf_3oDo_PV8OL7zPo_u143X6rrgggqmLjyv1Dn2mFysi1FvyG2_9spU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1322036342</pqid></control><display><type>article</type><title>Enhanced light trapping in solar cells using snow globe coating</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Basch, Angelika ; Beck, Fiona ; Söderström, Thomas ; Varlamov, Sergey ; Catchpole, Kylie R.</creator><creatorcontrib>Basch, Angelika ; Beck, Fiona ; Söderström, Thomas ; Varlamov, Sergey ; Catchpole, Kylie R.</creatorcontrib><description>ABSTRACT A novel method, snow globe coating, is found to show significant enhancement of the short circuit current JSC (35%) when applied as a scattering back reflector for polycrystalline silicon thin‐film solar cells. The coating is formed from high refractive index titania particles without containing binder and gives close to 100% reflectance for wavelengths above 400 nm. Snow globe coating is a physicochemical coating method executable in pH neutral media. The mild conditions of this process make this method applicable to many different types of solar cells. Copyright © 2012 John Wiley &amp; Sons, Ltd. A novel method, snow globe coating, is found to show significant enhancement of the short circuit current JSC (35%) when applied as a scattering back reflector for polycrystalline silicon thin‐film solar cells. The coating is formed from high refractive index titania particles without containing binder and gives close to 100% reflectance for wavelengths above 400 nm. Snow globe coating is a physicochemical coating method executable in pH neutral media, which make this method applicable to many different types of solar cells.</description><identifier>ISSN: 1062-7995</identifier><identifier>EISSN: 1099-159X</identifier><identifier>DOI: 10.1002/pip.2240</identifier><identifier>PMID: 26300618</identifier><identifier>CODEN: PPHOED</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Accelerated Publications ; Applied sciences ; dielectric materials ; Energy ; Exact sciences and technology ; light trapping ; Natural energy ; Photovoltaic conversion ; refractive index ; semiconductors ; Solar cells. Photoelectrochemical cells ; Solar energy ; thin films ; zeta-potential</subject><ispartof>Progress in photovoltaics, 2012-11, Vol.20 (7), p.837-842</ispartof><rights>Copyright © 2012 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 John Wiley &amp; Sons, Ltd. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5470-b1076cab6e5762ed4a52f3ac119d612b89fd2fda26a0dbcdfde74a47da32f9133</citedby><cites>FETCH-LOGICAL-c5470-b1076cab6e5762ed4a52f3ac119d612b89fd2fda26a0dbcdfde74a47da32f9133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpip.2240$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpip.2240$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26589789$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26300618$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Basch, Angelika</creatorcontrib><creatorcontrib>Beck, Fiona</creatorcontrib><creatorcontrib>Söderström, Thomas</creatorcontrib><creatorcontrib>Varlamov, Sergey</creatorcontrib><creatorcontrib>Catchpole, Kylie R.</creatorcontrib><title>Enhanced light trapping in solar cells using snow globe coating</title><title>Progress in photovoltaics</title><addtitle>Prog. Photovolt: Res. Appl</addtitle><description>ABSTRACT A novel method, snow globe coating, is found to show significant enhancement of the short circuit current JSC (35%) when applied as a scattering back reflector for polycrystalline silicon thin‐film solar cells. The coating is formed from high refractive index titania particles without containing binder and gives close to 100% reflectance for wavelengths above 400 nm. Snow globe coating is a physicochemical coating method executable in pH neutral media. The mild conditions of this process make this method applicable to many different types of solar cells. Copyright © 2012 John Wiley &amp; Sons, Ltd. A novel method, snow globe coating, is found to show significant enhancement of the short circuit current JSC (35%) when applied as a scattering back reflector for polycrystalline silicon thin‐film solar cells. The coating is formed from high refractive index titania particles without containing binder and gives close to 100% reflectance for wavelengths above 400 nm. Snow globe coating is a physicochemical coating method executable in pH neutral media, which make this method applicable to many different types of solar cells.</description><subject>Accelerated Publications</subject><subject>Applied sciences</subject><subject>dielectric materials</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>light trapping</subject><subject>Natural energy</subject><subject>Photovoltaic conversion</subject><subject>refractive index</subject><subject>semiconductors</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>thin films</subject><subject>zeta-potential</subject><issn>1062-7995</issn><issn>1099-159X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kV9rFDEUxYMotlbBTyADIvgybf5n8qJorWuhaEGlvoVMktlNnU3GZMbab2-GTtcq-JRw749zz-EA8BTBQwQhPhr8cIgxhffAPoJS1ojJb_fnP8e1kJLtgUc5X0KIRCP5Q7CHOYGQo2YfvD4JGx2Ms1Xv15uxGpMeBh_WlQ9Vjr1OlXF9n6spz8Mc4lW17mPrKhP1WEaPwYNO99k9Wd4D8PX9yZfjD_XZp9Xp8Zuz2jAqYN0iKLjRLXdMcOws1Qx3RBuEpOUIt43sLO6sxlxD2xrbWSeopsJqgjuJCDkAr250h6ndOmtcKE57NSS_1elaRe3V35vgN2odfyrKSCOFLAIvF4EUf0wuj2rr85xNBxenrFDDpICIc1rQ5_-gl3FKocRTiGAMCScU_xE0KeacXLczg6CaW1GlFTW3UtBnd83vwNsaCvBiAXQ2uu9SqcTnOxwrGZo5RH3DXfneXf_3oDo_PV8OL7zPo_u143X6rrgggqmLjyv1Dn2mFysi1FvyG2_9spU</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Basch, Angelika</creator><creator>Beck, Fiona</creator><creator>Söderström, Thomas</creator><creator>Varlamov, Sergey</creator><creator>Catchpole, Kylie R.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201211</creationdate><title>Enhanced light trapping in solar cells using snow globe coating</title><author>Basch, Angelika ; Beck, Fiona ; Söderström, Thomas ; Varlamov, Sergey ; Catchpole, Kylie R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5470-b1076cab6e5762ed4a52f3ac119d612b89fd2fda26a0dbcdfde74a47da32f9133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accelerated Publications</topic><topic>Applied sciences</topic><topic>dielectric materials</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>light trapping</topic><topic>Natural energy</topic><topic>Photovoltaic conversion</topic><topic>refractive index</topic><topic>semiconductors</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>thin films</topic><topic>zeta-potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basch, Angelika</creatorcontrib><creatorcontrib>Beck, Fiona</creatorcontrib><creatorcontrib>Söderström, Thomas</creatorcontrib><creatorcontrib>Varlamov, Sergey</creatorcontrib><creatorcontrib>Catchpole, Kylie R.</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Progress in photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basch, Angelika</au><au>Beck, Fiona</au><au>Söderström, Thomas</au><au>Varlamov, Sergey</au><au>Catchpole, Kylie R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced light trapping in solar cells using snow globe coating</atitle><jtitle>Progress in photovoltaics</jtitle><addtitle>Prog. Photovolt: Res. Appl</addtitle><date>2012-11</date><risdate>2012</risdate><volume>20</volume><issue>7</issue><spage>837</spage><epage>842</epage><pages>837-842</pages><issn>1062-7995</issn><eissn>1099-159X</eissn><coden>PPHOED</coden><abstract>ABSTRACT A novel method, snow globe coating, is found to show significant enhancement of the short circuit current JSC (35%) when applied as a scattering back reflector for polycrystalline silicon thin‐film solar cells. The coating is formed from high refractive index titania particles without containing binder and gives close to 100% reflectance for wavelengths above 400 nm. Snow globe coating is a physicochemical coating method executable in pH neutral media. The mild conditions of this process make this method applicable to many different types of solar cells. Copyright © 2012 John Wiley &amp; Sons, Ltd. A novel method, snow globe coating, is found to show significant enhancement of the short circuit current JSC (35%) when applied as a scattering back reflector for polycrystalline silicon thin‐film solar cells. The coating is formed from high refractive index titania particles without containing binder and gives close to 100% reflectance for wavelengths above 400 nm. Snow globe coating is a physicochemical coating method executable in pH neutral media, which make this method applicable to many different types of solar cells.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>26300618</pmid><doi>10.1002/pip.2240</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1062-7995
ispartof Progress in photovoltaics, 2012-11, Vol.20 (7), p.837-842
issn 1062-7995
1099-159X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4538979
source Wiley Online Library Journals Frontfile Complete
subjects Accelerated Publications
Applied sciences
dielectric materials
Energy
Exact sciences and technology
light trapping
Natural energy
Photovoltaic conversion
refractive index
semiconductors
Solar cells. Photoelectrochemical cells
Solar energy
thin films
zeta-potential
title Enhanced light trapping in solar cells using snow globe coating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20light%20trapping%20in%20solar%20cells%20using%20snow%20globe%20coating&rft.jtitle=Progress%20in%20photovoltaics&rft.au=Basch,%20Angelika&rft.date=2012-11&rft.volume=20&rft.issue=7&rft.spage=837&rft.epage=842&rft.pages=837-842&rft.issn=1062-7995&rft.eissn=1099-159X&rft.coden=PPHOED&rft_id=info:doi/10.1002/pip.2240&rft_dat=%3Cproquest_pubme%3E1859701664%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1322036342&rft_id=info:pmid/26300618&rfr_iscdi=true