Thermal-induced force release in oxyhemoglobin
Oxygen is released to living tissues via conformational changes of hemoglobin from R-state (oxyhemoglobin) to T-state (desoxyhemoglobin). The detailed mechanism of this process is not yet fully understood. We have carried out micromechanical experiments on oxyhemoglobin crystals to determine the beh...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2015-08, Vol.5 (1), p.13064-13064, Article 13064 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13064 |
---|---|
container_issue | 1 |
container_start_page | 13064 |
container_title | Scientific reports |
container_volume | 5 |
creator | Gevorkian, S. G. Allahverdyan, A. E. Gevorgyan, D. S. Hu, Chin-Kun |
description | Oxygen is released to living tissues via conformational changes of hemoglobin from R-state (oxyhemoglobin) to T-state (desoxyhemoglobin). The detailed mechanism of this process is not yet fully understood. We have carried out micromechanical experiments on oxyhemoglobin crystals to determine the behavior of the Young’s modulus and the internal friction for temperatures between 20 °C and 70 °C. We have found that around 49 °C oxyhemoglobin crystal samples undergo a sudden and strong increase of their Young’s modulus, accompanied by a sudden decrease of the internal friction. This sudden mechanical change (and the ensuing force release) takes place in a partially unfolded state and precedes the full denaturation transition at higher temperatures. After this transformation, the hemoglobin crystals have the same mechanical properties as their initial state at room temperatures. We conjecture that it can be relevant for explaining the oxygen-releasing function of native oxyhemoglobin when the temperature is increased, e.g. due to active sport. The effect is specific for the quaternary structure of hemoglobin and is absent for myoglobin with only one peptide sequence. |
doi_str_mv | 10.1038/srep13064 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4538398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1705012074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-aea03de34c1c9f4359dcd2809602e224f296e02341e1ecf04a830d5612d7e8833</originalsourceid><addsrcrecordid>eNplkU1LxDAQhoMoKqsH_4AUvKhQTSZpm1wEEb9gwct6DjGZ7lbaZk224v57I6vLqnOZgXl4550ZQo4YvWCUy8sYcM44LcUW2Qcqihw4wPZGvUcOY3ylKQpQgqldsgclVJWibJ9cTGYYOtPmTe8Giy6rfbCYBWzRRMyaPvMfyxl2ftr6l6Y_IDu1aSMefucReb67ndw85OOn-8eb63FuBZeL3KCh3CEXlllVC14oZx1IqkoKCCBqUCVS4IIhQ1tTYSSnrigZuAql5HxErla68-GlQ2exXwTT6nloOhOW2ptG_-70zUxP_bsWBZdcySRw-i0Q_NuAcaG7JlpsW9OjH6JmFS0oA1qJhJ78QV_9EPq0nmZSqQqKElSizlaUDT6mm9drM4zqr0fo9SMSe7zpfk3-nD0B5ysgplY_xbAx8p_aJ8ObkLw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899725629</pqid></control><display><type>article</type><title>Thermal-induced force release in oxyhemoglobin</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Gevorkian, S. G. ; Allahverdyan, A. E. ; Gevorgyan, D. S. ; Hu, Chin-Kun</creator><creatorcontrib>Gevorkian, S. G. ; Allahverdyan, A. E. ; Gevorgyan, D. S. ; Hu, Chin-Kun</creatorcontrib><description>Oxygen is released to living tissues via conformational changes of hemoglobin from R-state (oxyhemoglobin) to T-state (desoxyhemoglobin). The detailed mechanism of this process is not yet fully understood. We have carried out micromechanical experiments on oxyhemoglobin crystals to determine the behavior of the Young’s modulus and the internal friction for temperatures between 20 °C and 70 °C. We have found that around 49 °C oxyhemoglobin crystal samples undergo a sudden and strong increase of their Young’s modulus, accompanied by a sudden decrease of the internal friction. This sudden mechanical change (and the ensuing force release) takes place in a partially unfolded state and precedes the full denaturation transition at higher temperatures. After this transformation, the hemoglobin crystals have the same mechanical properties as their initial state at room temperatures. We conjecture that it can be relevant for explaining the oxygen-releasing function of native oxyhemoglobin when the temperature is increased, e.g. due to active sport. The effect is specific for the quaternary structure of hemoglobin and is absent for myoglobin with only one peptide sequence.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep13064</identifier><identifier>PMID: 26277901</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/337/470/2284 ; 631/57 ; 692/700/784 ; Algorithms ; Animals ; Crystallography, X-Ray ; Crystals ; Denaturation ; Elastic Modulus ; Hemoglobin ; Horses ; Humanities and Social Sciences ; Humans ; Mechanical properties ; multidisciplinary ; Myoglobins ; Oxygen ; Oxyhemoglobins - chemistry ; Oxyhemoglobins - metabolism ; Protein structure ; Protein Structure, Tertiary ; Quaternary structure ; Science ; Temperature ; Temperature effects</subject><ispartof>Scientific reports, 2015-08, Vol.5 (1), p.13064-13064, Article 13064</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Aug 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-aea03de34c1c9f4359dcd2809602e224f296e02341e1ecf04a830d5612d7e8833</citedby><cites>FETCH-LOGICAL-c438t-aea03de34c1c9f4359dcd2809602e224f296e02341e1ecf04a830d5612d7e8833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538398/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538398/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26277901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gevorkian, S. G.</creatorcontrib><creatorcontrib>Allahverdyan, A. E.</creatorcontrib><creatorcontrib>Gevorgyan, D. S.</creatorcontrib><creatorcontrib>Hu, Chin-Kun</creatorcontrib><title>Thermal-induced force release in oxyhemoglobin</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Oxygen is released to living tissues via conformational changes of hemoglobin from R-state (oxyhemoglobin) to T-state (desoxyhemoglobin). The detailed mechanism of this process is not yet fully understood. We have carried out micromechanical experiments on oxyhemoglobin crystals to determine the behavior of the Young’s modulus and the internal friction for temperatures between 20 °C and 70 °C. We have found that around 49 °C oxyhemoglobin crystal samples undergo a sudden and strong increase of their Young’s modulus, accompanied by a sudden decrease of the internal friction. This sudden mechanical change (and the ensuing force release) takes place in a partially unfolded state and precedes the full denaturation transition at higher temperatures. After this transformation, the hemoglobin crystals have the same mechanical properties as their initial state at room temperatures. We conjecture that it can be relevant for explaining the oxygen-releasing function of native oxyhemoglobin when the temperature is increased, e.g. due to active sport. The effect is specific for the quaternary structure of hemoglobin and is absent for myoglobin with only one peptide sequence.</description><subject>631/337/470/2284</subject><subject>631/57</subject><subject>692/700/784</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Crystallography, X-Ray</subject><subject>Crystals</subject><subject>Denaturation</subject><subject>Elastic Modulus</subject><subject>Hemoglobin</subject><subject>Horses</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Mechanical properties</subject><subject>multidisciplinary</subject><subject>Myoglobins</subject><subject>Oxygen</subject><subject>Oxyhemoglobins - chemistry</subject><subject>Oxyhemoglobins - metabolism</subject><subject>Protein structure</subject><subject>Protein Structure, Tertiary</subject><subject>Quaternary structure</subject><subject>Science</subject><subject>Temperature</subject><subject>Temperature effects</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkU1LxDAQhoMoKqsH_4AUvKhQTSZpm1wEEb9gwct6DjGZ7lbaZk224v57I6vLqnOZgXl4550ZQo4YvWCUy8sYcM44LcUW2Qcqihw4wPZGvUcOY3ylKQpQgqldsgclVJWibJ9cTGYYOtPmTe8Giy6rfbCYBWzRRMyaPvMfyxl2ftr6l6Y_IDu1aSMefucReb67ndw85OOn-8eb63FuBZeL3KCh3CEXlllVC14oZx1IqkoKCCBqUCVS4IIhQ1tTYSSnrigZuAql5HxErla68-GlQ2exXwTT6nloOhOW2ptG_-70zUxP_bsWBZdcySRw-i0Q_NuAcaG7JlpsW9OjH6JmFS0oA1qJhJ78QV_9EPq0nmZSqQqKElSizlaUDT6mm9drM4zqr0fo9SMSe7zpfk3-nD0B5ysgplY_xbAx8p_aJ8ObkLw</recordid><startdate>20150817</startdate><enddate>20150817</enddate><creator>Gevorkian, S. G.</creator><creator>Allahverdyan, A. E.</creator><creator>Gevorgyan, D. S.</creator><creator>Hu, Chin-Kun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150817</creationdate><title>Thermal-induced force release in oxyhemoglobin</title><author>Gevorkian, S. G. ; Allahverdyan, A. E. ; Gevorgyan, D. S. ; Hu, Chin-Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-aea03de34c1c9f4359dcd2809602e224f296e02341e1ecf04a830d5612d7e8833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>631/337/470/2284</topic><topic>631/57</topic><topic>692/700/784</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Crystallography, X-Ray</topic><topic>Crystals</topic><topic>Denaturation</topic><topic>Elastic Modulus</topic><topic>Hemoglobin</topic><topic>Horses</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Mechanical properties</topic><topic>multidisciplinary</topic><topic>Myoglobins</topic><topic>Oxygen</topic><topic>Oxyhemoglobins - chemistry</topic><topic>Oxyhemoglobins - metabolism</topic><topic>Protein structure</topic><topic>Protein Structure, Tertiary</topic><topic>Quaternary structure</topic><topic>Science</topic><topic>Temperature</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gevorkian, S. G.</creatorcontrib><creatorcontrib>Allahverdyan, A. E.</creatorcontrib><creatorcontrib>Gevorgyan, D. S.</creatorcontrib><creatorcontrib>Hu, Chin-Kun</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gevorkian, S. G.</au><au>Allahverdyan, A. E.</au><au>Gevorgyan, D. S.</au><au>Hu, Chin-Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal-induced force release in oxyhemoglobin</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-08-17</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>13064</spage><epage>13064</epage><pages>13064-13064</pages><artnum>13064</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Oxygen is released to living tissues via conformational changes of hemoglobin from R-state (oxyhemoglobin) to T-state (desoxyhemoglobin). The detailed mechanism of this process is not yet fully understood. We have carried out micromechanical experiments on oxyhemoglobin crystals to determine the behavior of the Young’s modulus and the internal friction for temperatures between 20 °C and 70 °C. We have found that around 49 °C oxyhemoglobin crystal samples undergo a sudden and strong increase of their Young’s modulus, accompanied by a sudden decrease of the internal friction. This sudden mechanical change (and the ensuing force release) takes place in a partially unfolded state and precedes the full denaturation transition at higher temperatures. After this transformation, the hemoglobin crystals have the same mechanical properties as their initial state at room temperatures. We conjecture that it can be relevant for explaining the oxygen-releasing function of native oxyhemoglobin when the temperature is increased, e.g. due to active sport. The effect is specific for the quaternary structure of hemoglobin and is absent for myoglobin with only one peptide sequence.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26277901</pmid><doi>10.1038/srep13064</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2015-08, Vol.5 (1), p.13064-13064, Article 13064 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4538398 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 631/337/470/2284 631/57 692/700/784 Algorithms Animals Crystallography, X-Ray Crystals Denaturation Elastic Modulus Hemoglobin Horses Humanities and Social Sciences Humans Mechanical properties multidisciplinary Myoglobins Oxygen Oxyhemoglobins - chemistry Oxyhemoglobins - metabolism Protein structure Protein Structure, Tertiary Quaternary structure Science Temperature Temperature effects |
title | Thermal-induced force release in oxyhemoglobin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A02%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal-induced%20force%20release%20in%20oxyhemoglobin&rft.jtitle=Scientific%20reports&rft.au=Gevorkian,%20S.%20G.&rft.date=2015-08-17&rft.volume=5&rft.issue=1&rft.spage=13064&rft.epage=13064&rft.pages=13064-13064&rft.artnum=13064&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep13064&rft_dat=%3Cproquest_pubme%3E1705012074%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899725629&rft_id=info:pmid/26277901&rfr_iscdi=true |