The ERCC1 and ERCC4 (XPF) genes and gene products

The ERCC1 and ERCC4 genes encode the two subunits of the ERCC1–XPF nuclease. This enzyme plays an important role in repair of DNA damage and in maintaining genomic stability. ERCC1–XPF nuclease nicks DNA specifically at junctions between double-stranded and single-stranded DNA, when the single-stran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene 2015-09, Vol.569 (2), p.153-161
Hauptverfasser: Manandhar, Mandira, Boulware, Karen S., Wood, Richard D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 161
container_issue 2
container_start_page 153
container_title Gene
container_volume 569
creator Manandhar, Mandira
Boulware, Karen S.
Wood, Richard D.
description The ERCC1 and ERCC4 genes encode the two subunits of the ERCC1–XPF nuclease. This enzyme plays an important role in repair of DNA damage and in maintaining genomic stability. ERCC1–XPF nuclease nicks DNA specifically at junctions between double-stranded and single-stranded DNA, when the single-strand is oriented 5′ to 3′ away from a junction. ERCC1–XPF is a core component of nucleotide excision repair and also plays a role in interstrand crosslink repair, some pathways of double-strand break repair by homologous recombination and end-joining, as a backup enzyme in base excision repair, and in telomere length regulation. In many of these activities, ERCC1–XPF complex cleaves the 3′ tails of DNA intermediates in preparation for further processing. ERCC1–XPF interacts with other proteins including XPA, RPA, SLX4 and TRF2 to perform its functions. Disruption of these interactions or direct targeting of ERCC1–XPF to decrease its DNA repair function might be a useful strategy to increase the sensitivity of cancer cells to some DNA damaging agents. Complete deletion of either ERCC1 or ERCC4 is not compatible with viability in mice or humans. However, mutations in the ERCC1 or ERCC4 genes cause a remarkable array of rare inherited human disorders. These include specific forms of xeroderma pigmentosum, Cockayne syndrome, Fanconi anemia, XFE progeria and cerebro-oculo-facio-skeletal syndrome. •ERCC1–XPF is a structure-specific nuclease in several DNA repair pathways.•ERCC4 encodes the XPF protein which is mutated in xeroderma pigmentosum group F.•Mutations in ERCC1 and ERCC4 cause several other inherited human syndromes.•Inhibition of ERCC1–XPF may be valuable in cancer treatment.
doi_str_mv 10.1016/j.gene.2015.06.026
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4536074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378111915007349</els_id><sourcerecordid>2000147142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c657t-1917f77ea76eae8c230eb5aa736e0ce2a4df7f96a9b6495027654623c3d777e53</originalsourceid><addsrcrecordid>eNqFUcFKw0AQXUSxtfoDHiTHekic3WR3ExBBQqtCQZEK3pbtZtKmtEndTQv-vUlbi150LjPsvveYeY-QSwoBBSpu5sEUSwwYUB6ACICJI9KlsUx8gDA-Jl0IZexTSpMOOXNuDk1xzk5JhwmQEcSyS-h4ht7gNU2pp8tsO0Ve__1leO214m772k7eylbZ2tTunJzkeuHwYt975G04GKeP_uj54Sm9H_lGcFn7NKEylxK1FKgxNiwEnHCtZSgQDDIdZbnME6GTiYgSDkwKHgkWmjCTDY2HPXK3012tJ0vMDJa11Qu1ssVS209V6UL9_imLmZpWGxXxsD2vEejvBWz1sUZXq2XhDC4WusRq7RRr7KCRpBH7F0olcIghgRbKdlBjK-cs5oeNKKg2FjVXrV-qjUWBUE0sDenq5y0HyncODeB2B8DG0U2BVjlTYGkwKyyaWmVV8Zf-F5aYmtk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705080902</pqid></control><display><type>article</type><title>The ERCC1 and ERCC4 (XPF) genes and gene products</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Manandhar, Mandira ; Boulware, Karen S. ; Wood, Richard D.</creator><creatorcontrib>Manandhar, Mandira ; Boulware, Karen S. ; Wood, Richard D.</creatorcontrib><description>The ERCC1 and ERCC4 genes encode the two subunits of the ERCC1–XPF nuclease. This enzyme plays an important role in repair of DNA damage and in maintaining genomic stability. ERCC1–XPF nuclease nicks DNA specifically at junctions between double-stranded and single-stranded DNA, when the single-strand is oriented 5′ to 3′ away from a junction. ERCC1–XPF is a core component of nucleotide excision repair and also plays a role in interstrand crosslink repair, some pathways of double-strand break repair by homologous recombination and end-joining, as a backup enzyme in base excision repair, and in telomere length regulation. In many of these activities, ERCC1–XPF complex cleaves the 3′ tails of DNA intermediates in preparation for further processing. ERCC1–XPF interacts with other proteins including XPA, RPA, SLX4 and TRF2 to perform its functions. Disruption of these interactions or direct targeting of ERCC1–XPF to decrease its DNA repair function might be a useful strategy to increase the sensitivity of cancer cells to some DNA damaging agents. Complete deletion of either ERCC1 or ERCC4 is not compatible with viability in mice or humans. However, mutations in the ERCC1 or ERCC4 genes cause a remarkable array of rare inherited human disorders. These include specific forms of xeroderma pigmentosum, Cockayne syndrome, Fanconi anemia, XFE progeria and cerebro-oculo-facio-skeletal syndrome. •ERCC1–XPF is a structure-specific nuclease in several DNA repair pathways.•ERCC4 encodes the XPF protein which is mutated in xeroderma pigmentosum group F.•Mutations in ERCC1 and ERCC4 cause several other inherited human syndromes.•Inhibition of ERCC1–XPF may be valuable in cancer treatment.</description><identifier>ISSN: 0378-1119</identifier><identifier>EISSN: 1879-0038</identifier><identifier>DOI: 10.1016/j.gene.2015.06.026</identifier><identifier>PMID: 26074087</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Disease Models, Animal ; DNA Repair ; DNA repair genes ; DNA Repair-Deficiency Disorders - genetics ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Endonucleases - genetics ; Endonucleases - metabolism ; Fanconi anemia ; Fungi - genetics ; Fungi - metabolism ; genes ; Human ; Humans ; inheritance (genetics) ; mice ; mutation ; neoplasm cells ; neoplasms ; Neoplasms - genetics ; Nucleases ; Nucleotide excision repair ; photosensitivity disorders ; proteins ; single-stranded DNA ; telomeres ; Ultraviolet light ; viability</subject><ispartof>Gene, 2015-09, Vol.569 (2), p.153-161</ispartof><rights>2015 Elsevier B.V.</rights><rights>Copyright © 2015 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c657t-1917f77ea76eae8c230eb5aa736e0ce2a4df7f96a9b6495027654623c3d777e53</citedby><cites>FETCH-LOGICAL-c657t-1917f77ea76eae8c230eb5aa736e0ce2a4df7f96a9b6495027654623c3d777e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378111915007349$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26074087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Manandhar, Mandira</creatorcontrib><creatorcontrib>Boulware, Karen S.</creatorcontrib><creatorcontrib>Wood, Richard D.</creatorcontrib><title>The ERCC1 and ERCC4 (XPF) genes and gene products</title><title>Gene</title><addtitle>Gene</addtitle><description>The ERCC1 and ERCC4 genes encode the two subunits of the ERCC1–XPF nuclease. This enzyme plays an important role in repair of DNA damage and in maintaining genomic stability. ERCC1–XPF nuclease nicks DNA specifically at junctions between double-stranded and single-stranded DNA, when the single-strand is oriented 5′ to 3′ away from a junction. ERCC1–XPF is a core component of nucleotide excision repair and also plays a role in interstrand crosslink repair, some pathways of double-strand break repair by homologous recombination and end-joining, as a backup enzyme in base excision repair, and in telomere length regulation. In many of these activities, ERCC1–XPF complex cleaves the 3′ tails of DNA intermediates in preparation for further processing. ERCC1–XPF interacts with other proteins including XPA, RPA, SLX4 and TRF2 to perform its functions. Disruption of these interactions or direct targeting of ERCC1–XPF to decrease its DNA repair function might be a useful strategy to increase the sensitivity of cancer cells to some DNA damaging agents. Complete deletion of either ERCC1 or ERCC4 is not compatible with viability in mice or humans. However, mutations in the ERCC1 or ERCC4 genes cause a remarkable array of rare inherited human disorders. These include specific forms of xeroderma pigmentosum, Cockayne syndrome, Fanconi anemia, XFE progeria and cerebro-oculo-facio-skeletal syndrome. •ERCC1–XPF is a structure-specific nuclease in several DNA repair pathways.•ERCC4 encodes the XPF protein which is mutated in xeroderma pigmentosum group F.•Mutations in ERCC1 and ERCC4 cause several other inherited human syndromes.•Inhibition of ERCC1–XPF may be valuable in cancer treatment.</description><subject>Animals</subject><subject>Disease Models, Animal</subject><subject>DNA Repair</subject><subject>DNA repair genes</subject><subject>DNA Repair-Deficiency Disorders - genetics</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Endonucleases - genetics</subject><subject>Endonucleases - metabolism</subject><subject>Fanconi anemia</subject><subject>Fungi - genetics</subject><subject>Fungi - metabolism</subject><subject>genes</subject><subject>Human</subject><subject>Humans</subject><subject>inheritance (genetics)</subject><subject>mice</subject><subject>mutation</subject><subject>neoplasm cells</subject><subject>neoplasms</subject><subject>Neoplasms - genetics</subject><subject>Nucleases</subject><subject>Nucleotide excision repair</subject><subject>photosensitivity disorders</subject><subject>proteins</subject><subject>single-stranded DNA</subject><subject>telomeres</subject><subject>Ultraviolet light</subject><subject>viability</subject><issn>0378-1119</issn><issn>1879-0038</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUcFKw0AQXUSxtfoDHiTHekic3WR3ExBBQqtCQZEK3pbtZtKmtEndTQv-vUlbi150LjPsvveYeY-QSwoBBSpu5sEUSwwYUB6ACICJI9KlsUx8gDA-Jl0IZexTSpMOOXNuDk1xzk5JhwmQEcSyS-h4ht7gNU2pp8tsO0Ve__1leO214m772k7eylbZ2tTunJzkeuHwYt975G04GKeP_uj54Sm9H_lGcFn7NKEylxK1FKgxNiwEnHCtZSgQDDIdZbnME6GTiYgSDkwKHgkWmjCTDY2HPXK3012tJ0vMDJa11Qu1ssVS209V6UL9_imLmZpWGxXxsD2vEejvBWz1sUZXq2XhDC4WusRq7RRr7KCRpBH7F0olcIghgRbKdlBjK-cs5oeNKKg2FjVXrV-qjUWBUE0sDenq5y0HyncODeB2B8DG0U2BVjlTYGkwKyyaWmVV8Zf-F5aYmtk</recordid><startdate>20150915</startdate><enddate>20150915</enddate><creator>Manandhar, Mandira</creator><creator>Boulware, Karen S.</creator><creator>Wood, Richard D.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20150915</creationdate><title>The ERCC1 and ERCC4 (XPF) genes and gene products</title><author>Manandhar, Mandira ; Boulware, Karen S. ; Wood, Richard D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c657t-1917f77ea76eae8c230eb5aa736e0ce2a4df7f96a9b6495027654623c3d777e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Disease Models, Animal</topic><topic>DNA Repair</topic><topic>DNA repair genes</topic><topic>DNA Repair-Deficiency Disorders - genetics</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Endonucleases - genetics</topic><topic>Endonucleases - metabolism</topic><topic>Fanconi anemia</topic><topic>Fungi - genetics</topic><topic>Fungi - metabolism</topic><topic>genes</topic><topic>Human</topic><topic>Humans</topic><topic>inheritance (genetics)</topic><topic>mice</topic><topic>mutation</topic><topic>neoplasm cells</topic><topic>neoplasms</topic><topic>Neoplasms - genetics</topic><topic>Nucleases</topic><topic>Nucleotide excision repair</topic><topic>photosensitivity disorders</topic><topic>proteins</topic><topic>single-stranded DNA</topic><topic>telomeres</topic><topic>Ultraviolet light</topic><topic>viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manandhar, Mandira</creatorcontrib><creatorcontrib>Boulware, Karen S.</creatorcontrib><creatorcontrib>Wood, Richard D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manandhar, Mandira</au><au>Boulware, Karen S.</au><au>Wood, Richard D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The ERCC1 and ERCC4 (XPF) genes and gene products</atitle><jtitle>Gene</jtitle><addtitle>Gene</addtitle><date>2015-09-15</date><risdate>2015</risdate><volume>569</volume><issue>2</issue><spage>153</spage><epage>161</epage><pages>153-161</pages><issn>0378-1119</issn><eissn>1879-0038</eissn><abstract>The ERCC1 and ERCC4 genes encode the two subunits of the ERCC1–XPF nuclease. This enzyme plays an important role in repair of DNA damage and in maintaining genomic stability. ERCC1–XPF nuclease nicks DNA specifically at junctions between double-stranded and single-stranded DNA, when the single-strand is oriented 5′ to 3′ away from a junction. ERCC1–XPF is a core component of nucleotide excision repair and also plays a role in interstrand crosslink repair, some pathways of double-strand break repair by homologous recombination and end-joining, as a backup enzyme in base excision repair, and in telomere length regulation. In many of these activities, ERCC1–XPF complex cleaves the 3′ tails of DNA intermediates in preparation for further processing. ERCC1–XPF interacts with other proteins including XPA, RPA, SLX4 and TRF2 to perform its functions. Disruption of these interactions or direct targeting of ERCC1–XPF to decrease its DNA repair function might be a useful strategy to increase the sensitivity of cancer cells to some DNA damaging agents. Complete deletion of either ERCC1 or ERCC4 is not compatible with viability in mice or humans. However, mutations in the ERCC1 or ERCC4 genes cause a remarkable array of rare inherited human disorders. These include specific forms of xeroderma pigmentosum, Cockayne syndrome, Fanconi anemia, XFE progeria and cerebro-oculo-facio-skeletal syndrome. •ERCC1–XPF is a structure-specific nuclease in several DNA repair pathways.•ERCC4 encodes the XPF protein which is mutated in xeroderma pigmentosum group F.•Mutations in ERCC1 and ERCC4 cause several other inherited human syndromes.•Inhibition of ERCC1–XPF may be valuable in cancer treatment.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>26074087</pmid><doi>10.1016/j.gene.2015.06.026</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-1119
ispartof Gene, 2015-09, Vol.569 (2), p.153-161
issn 0378-1119
1879-0038
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4536074
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Disease Models, Animal
DNA Repair
DNA repair genes
DNA Repair-Deficiency Disorders - genetics
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Endonucleases - genetics
Endonucleases - metabolism
Fanconi anemia
Fungi - genetics
Fungi - metabolism
genes
Human
Humans
inheritance (genetics)
mice
mutation
neoplasm cells
neoplasms
Neoplasms - genetics
Nucleases
Nucleotide excision repair
photosensitivity disorders
proteins
single-stranded DNA
telomeres
Ultraviolet light
viability
title The ERCC1 and ERCC4 (XPF) genes and gene products
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A56%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20ERCC1%20and%20ERCC4%20(XPF)%20genes%20and%20gene%20products&rft.jtitle=Gene&rft.au=Manandhar,%20Mandira&rft.date=2015-09-15&rft.volume=569&rft.issue=2&rft.spage=153&rft.epage=161&rft.pages=153-161&rft.issn=0378-1119&rft.eissn=1879-0038&rft_id=info:doi/10.1016/j.gene.2015.06.026&rft_dat=%3Cproquest_pubme%3E2000147142%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705080902&rft_id=info:pmid/26074087&rft_els_id=S0378111915007349&rfr_iscdi=true