Circuits for Grasping: Spinal dI3 Interneurons Mediate Cutaneous Control of Motor Behavior

Accurate motor performance depends on the integration in spinal microcircuits of sensory feedback information. Hand grasp is a skilled motor behavior known to require cutaneous sensory feedback, but spinal microcircuits that process and relay this feedback to the motor system have not been defined....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2013-04, Vol.78 (1), p.191-204
Hauptverfasser: Bui, Tuan V., Akay, Turgay, Loubani, Osama, Hnasko, Thomas S., Jessell, Thomas M., Brownstone, Robert M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 204
container_issue 1
container_start_page 191
container_title Neuron (Cambridge, Mass.)
container_volume 78
creator Bui, Tuan V.
Akay, Turgay
Loubani, Osama
Hnasko, Thomas S.
Jessell, Thomas M.
Brownstone, Robert M.
description Accurate motor performance depends on the integration in spinal microcircuits of sensory feedback information. Hand grasp is a skilled motor behavior known to require cutaneous sensory feedback, but spinal microcircuits that process and relay this feedback to the motor system have not been defined. We sought to define classes of spinal interneurons involved in the cutaneous control of hand grasp in mice and to show that dI3 interneurons, a class of dorsal spinal interneurons marked by the expression of Isl1, convey input from low threshold cutaneous afferents to motoneurons. Mice in which the output of dI3 interneurons has been inactivated exhibit deficits in motor tasks that rely on cutaneous afferent input. Most strikingly, the ability to maintain grip strength in response to increasing load is lost following genetic silencing of dI3 interneuron output. Thus, spinal microcircuits that integrate cutaneous feedback crucial for paw grip rely on the intermediary role of dI3 interneurons. ► Spinal dI3 interneurons are glutamatergic and project to motoneurons ► dI3 interneurons receive direct primary afferent inputs from cutaneous afferents ► Silencing the output of dI3 interneurons disrupts a disynaptic cutaneous reflex ► dI3 interneurons mediate cutaneous control of paw grasp Bui et al. identify a microcircuit in the mouse spinal cord involved in cutaneous regulation of motor control. Using genetic strategies, they demonstrate that removing dI3 interneuron function from this circuit impairs the ability of mice to regulate grip strength.
doi_str_mv 10.1016/j.neuron.2013.02.007
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4535710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627313001384</els_id><sourcerecordid>1327727658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-f4a48cc7849c72c0341c393cd929425d8a64fbd1d8e8440fa45b04ac526b3c733</originalsourceid><addsrcrecordid>eNqFUU1v1DAUtBCIbhf-AUKWuPSS4G_HHJAgomWlVhyACxfL6zitV9l4sZ2V-u9xlFI-Du1pDm_ezHszALzCqMYIi7e7enRTDGNNEKY1IjVC8glYYaRkxbBST8EKNUpUgkh6Ak5T2iGEGVf4OTghlDcUY7YCP1of7eRzgn2I8CKadPDj9Tv4tYAZYLehcDNmFxevBK9c5012sJ2yGV2YEmzDmGMYYOjhVchF5KO7MUcf4gvwrDdDci_vcA2-n3_61n6uLr9cbNoPl5XlCuWqZ4Y11sqGKSuJRZRhSxW1nSKKEd41RrB-2-GucQ1jqDeMbxEzlhOxpVZSugbvF93DtN27zrpyjxn0Ifq9ibc6GK__nYz-Rl-Ho2accolRETi7E4jh5-RS1nufrBuG5UONBWdCkQKPUymRkkhR4l2DN_9Rd2GKJdRZcLZGgs4strBsDClF19_fjZGee9Y7vWSv5541Irr0XNZe__3z_dLvYv-E4kryR--iTta70Zb6orNZd8E_7PALM7i7MA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645350638</pqid></control><display><type>article</type><title>Circuits for Grasping: Spinal dI3 Interneurons Mediate Cutaneous Control of Motor Behavior</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bui, Tuan V. ; Akay, Turgay ; Loubani, Osama ; Hnasko, Thomas S. ; Jessell, Thomas M. ; Brownstone, Robert M.</creator><creatorcontrib>Bui, Tuan V. ; Akay, Turgay ; Loubani, Osama ; Hnasko, Thomas S. ; Jessell, Thomas M. ; Brownstone, Robert M.</creatorcontrib><description>Accurate motor performance depends on the integration in spinal microcircuits of sensory feedback information. Hand grasp is a skilled motor behavior known to require cutaneous sensory feedback, but spinal microcircuits that process and relay this feedback to the motor system have not been defined. We sought to define classes of spinal interneurons involved in the cutaneous control of hand grasp in mice and to show that dI3 interneurons, a class of dorsal spinal interneurons marked by the expression of Isl1, convey input from low threshold cutaneous afferents to motoneurons. Mice in which the output of dI3 interneurons has been inactivated exhibit deficits in motor tasks that rely on cutaneous afferent input. Most strikingly, the ability to maintain grip strength in response to increasing load is lost following genetic silencing of dI3 interneuron output. Thus, spinal microcircuits that integrate cutaneous feedback crucial for paw grip rely on the intermediary role of dI3 interneurons. ► Spinal dI3 interneurons are glutamatergic and project to motoneurons ► dI3 interneurons receive direct primary afferent inputs from cutaneous afferents ► Silencing the output of dI3 interneurons disrupts a disynaptic cutaneous reflex ► dI3 interneurons mediate cutaneous control of paw grasp Bui et al. identify a microcircuit in the mouse spinal cord involved in cutaneous regulation of motor control. Using genetic strategies, they demonstrate that removing dI3 interneuron function from this circuit impairs the ability of mice to regulate grip strength.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2013.02.007</identifier><identifier>PMID: 23583114</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Animals, Newborn ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Behavior ; Biotin - analogs &amp; derivatives ; Biotin - metabolism ; Choline O-Acetyltransferase - metabolism ; Electric Stimulation ; Feedback, Sensory - physiology ; Green Fluorescent Proteins - genetics ; Hand Strength - physiology ; Interneurons - physiology ; LIM-Homeodomain Proteins - genetics ; LIM-Homeodomain Proteins - metabolism ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Medical research ; Membrane Potentials - genetics ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Movement - physiology ; Nerve Net - physiology ; Neurons ; Parvalbumins - metabolism ; Patch-Clamp Techniques ; Reflex - physiology ; RNA, Messenger - metabolism ; Rodents ; Skin - innervation ; Spinal Cord - cytology ; Thy-1 Antigens - genetics ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Vesicular Glutamate Transport Protein 2 - genetics ; Vesicular Glutamate Transport Protein 2 - metabolism</subject><ispartof>Neuron (Cambridge, Mass.), 2013-04, Vol.78 (1), p.191-204</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Apr 10, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-f4a48cc7849c72c0341c393cd929425d8a64fbd1d8e8440fa45b04ac526b3c733</citedby><cites>FETCH-LOGICAL-c590t-f4a48cc7849c72c0341c393cd929425d8a64fbd1d8e8440fa45b04ac526b3c733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2013.02.007$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23583114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bui, Tuan V.</creatorcontrib><creatorcontrib>Akay, Turgay</creatorcontrib><creatorcontrib>Loubani, Osama</creatorcontrib><creatorcontrib>Hnasko, Thomas S.</creatorcontrib><creatorcontrib>Jessell, Thomas M.</creatorcontrib><creatorcontrib>Brownstone, Robert M.</creatorcontrib><title>Circuits for Grasping: Spinal dI3 Interneurons Mediate Cutaneous Control of Motor Behavior</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Accurate motor performance depends on the integration in spinal microcircuits of sensory feedback information. Hand grasp is a skilled motor behavior known to require cutaneous sensory feedback, but spinal microcircuits that process and relay this feedback to the motor system have not been defined. We sought to define classes of spinal interneurons involved in the cutaneous control of hand grasp in mice and to show that dI3 interneurons, a class of dorsal spinal interneurons marked by the expression of Isl1, convey input from low threshold cutaneous afferents to motoneurons. Mice in which the output of dI3 interneurons has been inactivated exhibit deficits in motor tasks that rely on cutaneous afferent input. Most strikingly, the ability to maintain grip strength in response to increasing load is lost following genetic silencing of dI3 interneuron output. Thus, spinal microcircuits that integrate cutaneous feedback crucial for paw grip rely on the intermediary role of dI3 interneurons. ► Spinal dI3 interneurons are glutamatergic and project to motoneurons ► dI3 interneurons receive direct primary afferent inputs from cutaneous afferents ► Silencing the output of dI3 interneurons disrupts a disynaptic cutaneous reflex ► dI3 interneurons mediate cutaneous control of paw grasp Bui et al. identify a microcircuit in the mouse spinal cord involved in cutaneous regulation of motor control. Using genetic strategies, they demonstrate that removing dI3 interneuron function from this circuit impairs the ability of mice to regulate grip strength.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Behavior</subject><subject>Biotin - analogs &amp; derivatives</subject><subject>Biotin - metabolism</subject><subject>Choline O-Acetyltransferase - metabolism</subject><subject>Electric Stimulation</subject><subject>Feedback, Sensory - physiology</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Hand Strength - physiology</subject><subject>Interneurons - physiology</subject><subject>LIM-Homeodomain Proteins - genetics</subject><subject>LIM-Homeodomain Proteins - metabolism</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Medical research</subject><subject>Membrane Potentials - genetics</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Movement - physiology</subject><subject>Nerve Net - physiology</subject><subject>Neurons</subject><subject>Parvalbumins - metabolism</subject><subject>Patch-Clamp Techniques</subject><subject>Reflex - physiology</subject><subject>RNA, Messenger - metabolism</subject><subject>Rodents</subject><subject>Skin - innervation</subject><subject>Spinal Cord - cytology</subject><subject>Thy-1 Antigens - genetics</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Vesicular Glutamate Transport Protein 2 - genetics</subject><subject>Vesicular Glutamate Transport Protein 2 - metabolism</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1v1DAUtBCIbhf-AUKWuPSS4G_HHJAgomWlVhyACxfL6zitV9l4sZ2V-u9xlFI-Du1pDm_ezHszALzCqMYIi7e7enRTDGNNEKY1IjVC8glYYaRkxbBST8EKNUpUgkh6Ak5T2iGEGVf4OTghlDcUY7YCP1of7eRzgn2I8CKadPDj9Tv4tYAZYLehcDNmFxevBK9c5012sJ2yGV2YEmzDmGMYYOjhVchF5KO7MUcf4gvwrDdDci_vcA2-n3_61n6uLr9cbNoPl5XlCuWqZ4Y11sqGKSuJRZRhSxW1nSKKEd41RrB-2-GucQ1jqDeMbxEzlhOxpVZSugbvF93DtN27zrpyjxn0Ifq9ibc6GK__nYz-Rl-Ho2accolRETi7E4jh5-RS1nufrBuG5UONBWdCkQKPUymRkkhR4l2DN_9Rd2GKJdRZcLZGgs4strBsDClF19_fjZGee9Y7vWSv5541Irr0XNZe__3z_dLvYv-E4kryR--iTta70Zb6orNZd8E_7PALM7i7MA</recordid><startdate>20130410</startdate><enddate>20130410</enddate><creator>Bui, Tuan V.</creator><creator>Akay, Turgay</creator><creator>Loubani, Osama</creator><creator>Hnasko, Thomas S.</creator><creator>Jessell, Thomas M.</creator><creator>Brownstone, Robert M.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130410</creationdate><title>Circuits for Grasping: Spinal dI3 Interneurons Mediate Cutaneous Control of Motor Behavior</title><author>Bui, Tuan V. ; Akay, Turgay ; Loubani, Osama ; Hnasko, Thomas S. ; Jessell, Thomas M. ; Brownstone, Robert M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-f4a48cc7849c72c0341c393cd929425d8a64fbd1d8e8440fa45b04ac526b3c733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Behavior</topic><topic>Biotin - analogs &amp; derivatives</topic><topic>Biotin - metabolism</topic><topic>Choline O-Acetyltransferase - metabolism</topic><topic>Electric Stimulation</topic><topic>Feedback, Sensory - physiology</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Hand Strength - physiology</topic><topic>Interneurons - physiology</topic><topic>LIM-Homeodomain Proteins - genetics</topic><topic>LIM-Homeodomain Proteins - metabolism</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Medical research</topic><topic>Membrane Potentials - genetics</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Movement - physiology</topic><topic>Nerve Net - physiology</topic><topic>Neurons</topic><topic>Parvalbumins - metabolism</topic><topic>Patch-Clamp Techniques</topic><topic>Reflex - physiology</topic><topic>RNA, Messenger - metabolism</topic><topic>Rodents</topic><topic>Skin - innervation</topic><topic>Spinal Cord - cytology</topic><topic>Thy-1 Antigens - genetics</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Vesicular Glutamate Transport Protein 2 - genetics</topic><topic>Vesicular Glutamate Transport Protein 2 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bui, Tuan V.</creatorcontrib><creatorcontrib>Akay, Turgay</creatorcontrib><creatorcontrib>Loubani, Osama</creatorcontrib><creatorcontrib>Hnasko, Thomas S.</creatorcontrib><creatorcontrib>Jessell, Thomas M.</creatorcontrib><creatorcontrib>Brownstone, Robert M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bui, Tuan V.</au><au>Akay, Turgay</au><au>Loubani, Osama</au><au>Hnasko, Thomas S.</au><au>Jessell, Thomas M.</au><au>Brownstone, Robert M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circuits for Grasping: Spinal dI3 Interneurons Mediate Cutaneous Control of Motor Behavior</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2013-04-10</date><risdate>2013</risdate><volume>78</volume><issue>1</issue><spage>191</spage><epage>204</epage><pages>191-204</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Accurate motor performance depends on the integration in spinal microcircuits of sensory feedback information. Hand grasp is a skilled motor behavior known to require cutaneous sensory feedback, but spinal microcircuits that process and relay this feedback to the motor system have not been defined. We sought to define classes of spinal interneurons involved in the cutaneous control of hand grasp in mice and to show that dI3 interneurons, a class of dorsal spinal interneurons marked by the expression of Isl1, convey input from low threshold cutaneous afferents to motoneurons. Mice in which the output of dI3 interneurons has been inactivated exhibit deficits in motor tasks that rely on cutaneous afferent input. Most strikingly, the ability to maintain grip strength in response to increasing load is lost following genetic silencing of dI3 interneuron output. Thus, spinal microcircuits that integrate cutaneous feedback crucial for paw grip rely on the intermediary role of dI3 interneurons. ► Spinal dI3 interneurons are glutamatergic and project to motoneurons ► dI3 interneurons receive direct primary afferent inputs from cutaneous afferents ► Silencing the output of dI3 interneurons disrupts a disynaptic cutaneous reflex ► dI3 interneurons mediate cutaneous control of paw grasp Bui et al. identify a microcircuit in the mouse spinal cord involved in cutaneous regulation of motor control. Using genetic strategies, they demonstrate that removing dI3 interneuron function from this circuit impairs the ability of mice to regulate grip strength.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23583114</pmid><doi>10.1016/j.neuron.2013.02.007</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2013-04, Vol.78 (1), p.191-204
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4535710
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Animals, Newborn
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Behavior
Biotin - analogs & derivatives
Biotin - metabolism
Choline O-Acetyltransferase - metabolism
Electric Stimulation
Feedback, Sensory - physiology
Green Fluorescent Proteins - genetics
Hand Strength - physiology
Interneurons - physiology
LIM-Homeodomain Proteins - genetics
LIM-Homeodomain Proteins - metabolism
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
Medical research
Membrane Potentials - genetics
Mice
Mice, Inbred C57BL
Mice, Transgenic
Movement - physiology
Nerve Net - physiology
Neurons
Parvalbumins - metabolism
Patch-Clamp Techniques
Reflex - physiology
RNA, Messenger - metabolism
Rodents
Skin - innervation
Spinal Cord - cytology
Thy-1 Antigens - genetics
Transcription Factors - genetics
Transcription Factors - metabolism
Vesicular Glutamate Transport Protein 2 - genetics
Vesicular Glutamate Transport Protein 2 - metabolism
title Circuits for Grasping: Spinal dI3 Interneurons Mediate Cutaneous Control of Motor Behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circuits%20for%20Grasping:%20Spinal%20dI3%20Interneurons%20Mediate%20Cutaneous%20Control%20of%20Motor%20Behavior&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Bui,%20Tuan%C2%A0V.&rft.date=2013-04-10&rft.volume=78&rft.issue=1&rft.spage=191&rft.epage=204&rft.pages=191-204&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2013.02.007&rft_dat=%3Cproquest_pubme%3E1327727658%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645350638&rft_id=info:pmid/23583114&rft_els_id=S0896627313001384&rfr_iscdi=true