Runx2 Regulates Endochondral Ossification Through Control of Chondrocyte Proliferation and Differentiation
ABSTRACT Synthesis of cartilage by chondrocytes is an obligatory step for endochondral ossification. Global deletion of the Runx2 gene results in complete failure of the ossification process, but the underlying cellular and molecular mechanisms are not fully known. Here, we elucidated Runx2 regulato...
Gespeichert in:
Veröffentlicht in: | Journal of bone and mineral research 2014-12, Vol.29 (12), p.2653-2665 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2665 |
---|---|
container_issue | 12 |
container_start_page | 2653 |
container_title | Journal of bone and mineral research |
container_volume | 29 |
creator | Chen, Haiyan Ghori‐Javed, Farah Y Rashid, Harunur Adhami, Mitra D Serra, Rosa Gutierrez, Soraya E Javed, Amjad |
description | ABSTRACT
Synthesis of cartilage by chondrocytes is an obligatory step for endochondral ossification. Global deletion of the Runx2 gene results in complete failure of the ossification process, but the underlying cellular and molecular mechanisms are not fully known. Here, we elucidated Runx2 regulatory control distinctive to chondrocyte and cartilage tissue by generating Runx2 exon 8 floxed mice. Deletion of Runx2 gene in chondrocytes caused failure of endochondral ossification and lethality at birth. The limbs of Runx2ΔE8/ΔE8 mice were devoid of mature chondrocytes, vasculature, and marrow. We demonstrate that the C‐terminus of Runx2 drives its biological activity. Importantly, nuclear import and DNA binding functions of Runx2 are insufficient for chondrogenesis. Molecular studies revealed that despite normal levels of Sox9 and PTHrP, chondrocyte differentiation and cartilage growth are disrupted in Runx2ΔE8/ΔE8 mice. Loss of Runx2 in chondrocytes also impaired osteoprotegerin‐receptor activator of NF‐κB ligand (OPG‐RANKL) signaling and chondroclast development. Dwarfism observed in Runx2 mutants was associated with the near absence of proliferative zone in the growth plates. Finally, we show Runx2 directly regulates a unique set of cell cycle genes, Gpr132, Sfn, c‐Myb, and Cyclin A1, to control proliferative capacity of chondrocyte. Thus, Runx2 is obligatory for both proliferation and differentiation of chondrocytes. © 2014 American Society for Bone and Mineral Research. |
doi_str_mv | 10.1002/jbmr.2287 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4535340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1637558343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5097-1c722ebba814b3e4c0d310e05322f2ed0af85c2bddaace063f79e8cb4dfd2f323</originalsourceid><addsrcrecordid>eNp1kc1uEzEUhS0EoqGw4AWQJTZ0Ma1_Z9wNEqTlT0VFUVlbHvs6cTSxiz0D5O1xklIBEivL9376dK4OQs8pOaWEsLN1v8mnjKnuAZpRyXgjWkUfohlRSjREcHqEnpSyJoS0sm0foyMmVMsIVzO0XkzxJ8MLWE6DGaHgy-iSXaXoshnwdSnBB2vGkCK-WeU0LVd4nuKY04CTx_M9mOx2BPylzoKHfIBNdPgi-PqHOIb97Cl65M1Q4Nnde4y-vru8mX9orq7ff5y_uWqsJOddQ23HGPS9UVT0HIQljlMCRHLGPANHjFfSst45YyyQlvvuHJTthfOOec74MXp98N5O_QacrQHqLfo2h43JW51M0H9vYljpZfquheSSC1IFr-4EOX2boIx6E4qFYTAR0lQ0bXknpeKCV_TlP-g6TTnW83aU5FxSTit1cqBsTqVk8PdhKNG7BvWuQb1rsLIv_kx_T_6urAJnB-BHGGD7f5P-9PbzYq_8BVTfqTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1635335131</pqid></control><display><type>article</type><title>Runx2 Regulates Endochondral Ossification Through Control of Chondrocyte Proliferation and Differentiation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Chen, Haiyan ; Ghori‐Javed, Farah Y ; Rashid, Harunur ; Adhami, Mitra D ; Serra, Rosa ; Gutierrez, Soraya E ; Javed, Amjad</creator><creatorcontrib>Chen, Haiyan ; Ghori‐Javed, Farah Y ; Rashid, Harunur ; Adhami, Mitra D ; Serra, Rosa ; Gutierrez, Soraya E ; Javed, Amjad</creatorcontrib><description>ABSTRACT
Synthesis of cartilage by chondrocytes is an obligatory step for endochondral ossification. Global deletion of the Runx2 gene results in complete failure of the ossification process, but the underlying cellular and molecular mechanisms are not fully known. Here, we elucidated Runx2 regulatory control distinctive to chondrocyte and cartilage tissue by generating Runx2 exon 8 floxed mice. Deletion of Runx2 gene in chondrocytes caused failure of endochondral ossification and lethality at birth. The limbs of Runx2ΔE8/ΔE8 mice were devoid of mature chondrocytes, vasculature, and marrow. We demonstrate that the C‐terminus of Runx2 drives its biological activity. Importantly, nuclear import and DNA binding functions of Runx2 are insufficient for chondrogenesis. Molecular studies revealed that despite normal levels of Sox9 and PTHrP, chondrocyte differentiation and cartilage growth are disrupted in Runx2ΔE8/ΔE8 mice. Loss of Runx2 in chondrocytes also impaired osteoprotegerin‐receptor activator of NF‐κB ligand (OPG‐RANKL) signaling and chondroclast development. Dwarfism observed in Runx2 mutants was associated with the near absence of proliferative zone in the growth plates. Finally, we show Runx2 directly regulates a unique set of cell cycle genes, Gpr132, Sfn, c‐Myb, and Cyclin A1, to control proliferative capacity of chondrocyte. Thus, Runx2 is obligatory for both proliferation and differentiation of chondrocytes. © 2014 American Society for Bone and Mineral Research.</description><identifier>ISSN: 0884-0431</identifier><identifier>EISSN: 1523-4681</identifier><identifier>DOI: 10.1002/jbmr.2287</identifier><identifier>PMID: 24862038</identifier><identifier>CODEN: JBMREJ</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Active Transport, Cell Nucleus - physiology ; Animals ; CARTILAGE REMODELING ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Differentiation - physiology ; Cell Nucleus - genetics ; Cell Nucleus - metabolism ; Cell Proliferation - physiology ; CHONDROCYTE DIFFERENTIATION ; Chondrocytes - cytology ; Chondrocytes - metabolism ; Chondrogenesis - physiology ; Core Binding Factor Alpha 1 Subunit - genetics ; Core Binding Factor Alpha 1 Subunit - metabolism ; Gene Expression Regulation, Developmental - physiology ; Mice ; Mice, Transgenic ; Osteogenesis - physiology ; Osteoprotegerin - genetics ; Osteoprotegerin - metabolism ; RANK Ligand - genetics ; RANK Ligand - metabolism ; RUNX2 ; Signal Transduction - physiology ; SKELETAL DEVELOPMENT ; SOX9 Transcription Factor - genetics ; SOX9 Transcription Factor - metabolism ; Spine - cytology ; Spine - embryology</subject><ispartof>Journal of bone and mineral research, 2014-12, Vol.29 (12), p.2653-2665</ispartof><rights>2014 American Society for Bone and Mineral Research</rights><rights>2014 American Society for Bone and Mineral Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5097-1c722ebba814b3e4c0d310e05322f2ed0af85c2bddaace063f79e8cb4dfd2f323</citedby><cites>FETCH-LOGICAL-c5097-1c722ebba814b3e4c0d310e05322f2ed0af85c2bddaace063f79e8cb4dfd2f323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbmr.2287$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbmr.2287$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24862038$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Haiyan</creatorcontrib><creatorcontrib>Ghori‐Javed, Farah Y</creatorcontrib><creatorcontrib>Rashid, Harunur</creatorcontrib><creatorcontrib>Adhami, Mitra D</creatorcontrib><creatorcontrib>Serra, Rosa</creatorcontrib><creatorcontrib>Gutierrez, Soraya E</creatorcontrib><creatorcontrib>Javed, Amjad</creatorcontrib><title>Runx2 Regulates Endochondral Ossification Through Control of Chondrocyte Proliferation and Differentiation</title><title>Journal of bone and mineral research</title><addtitle>J Bone Miner Res</addtitle><description>ABSTRACT
Synthesis of cartilage by chondrocytes is an obligatory step for endochondral ossification. Global deletion of the Runx2 gene results in complete failure of the ossification process, but the underlying cellular and molecular mechanisms are not fully known. Here, we elucidated Runx2 regulatory control distinctive to chondrocyte and cartilage tissue by generating Runx2 exon 8 floxed mice. Deletion of Runx2 gene in chondrocytes caused failure of endochondral ossification and lethality at birth. The limbs of Runx2ΔE8/ΔE8 mice were devoid of mature chondrocytes, vasculature, and marrow. We demonstrate that the C‐terminus of Runx2 drives its biological activity. Importantly, nuclear import and DNA binding functions of Runx2 are insufficient for chondrogenesis. Molecular studies revealed that despite normal levels of Sox9 and PTHrP, chondrocyte differentiation and cartilage growth are disrupted in Runx2ΔE8/ΔE8 mice. Loss of Runx2 in chondrocytes also impaired osteoprotegerin‐receptor activator of NF‐κB ligand (OPG‐RANKL) signaling and chondroclast development. Dwarfism observed in Runx2 mutants was associated with the near absence of proliferative zone in the growth plates. Finally, we show Runx2 directly regulates a unique set of cell cycle genes, Gpr132, Sfn, c‐Myb, and Cyclin A1, to control proliferative capacity of chondrocyte. Thus, Runx2 is obligatory for both proliferation and differentiation of chondrocytes. © 2014 American Society for Bone and Mineral Research.</description><subject>Active Transport, Cell Nucleus - physiology</subject><subject>Animals</subject><subject>CARTILAGE REMODELING</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell Proliferation - physiology</subject><subject>CHONDROCYTE DIFFERENTIATION</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - metabolism</subject><subject>Chondrogenesis - physiology</subject><subject>Core Binding Factor Alpha 1 Subunit - genetics</subject><subject>Core Binding Factor Alpha 1 Subunit - metabolism</subject><subject>Gene Expression Regulation, Developmental - physiology</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Osteogenesis - physiology</subject><subject>Osteoprotegerin - genetics</subject><subject>Osteoprotegerin - metabolism</subject><subject>RANK Ligand - genetics</subject><subject>RANK Ligand - metabolism</subject><subject>RUNX2</subject><subject>Signal Transduction - physiology</subject><subject>SKELETAL DEVELOPMENT</subject><subject>SOX9 Transcription Factor - genetics</subject><subject>SOX9 Transcription Factor - metabolism</subject><subject>Spine - cytology</subject><subject>Spine - embryology</subject><issn>0884-0431</issn><issn>1523-4681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1uEzEUhS0EoqGw4AWQJTZ0Ma1_Z9wNEqTlT0VFUVlbHvs6cTSxiz0D5O1xklIBEivL9376dK4OQs8pOaWEsLN1v8mnjKnuAZpRyXgjWkUfohlRSjREcHqEnpSyJoS0sm0foyMmVMsIVzO0XkzxJ8MLWE6DGaHgy-iSXaXoshnwdSnBB2vGkCK-WeU0LVd4nuKY04CTx_M9mOx2BPylzoKHfIBNdPgi-PqHOIb97Cl65M1Q4Nnde4y-vru8mX9orq7ff5y_uWqsJOddQ23HGPS9UVT0HIQljlMCRHLGPANHjFfSst45YyyQlvvuHJTthfOOec74MXp98N5O_QacrQHqLfo2h43JW51M0H9vYljpZfquheSSC1IFr-4EOX2boIx6E4qFYTAR0lQ0bXknpeKCV_TlP-g6TTnW83aU5FxSTit1cqBsTqVk8PdhKNG7BvWuQb1rsLIv_kx_T_6urAJnB-BHGGD7f5P-9PbzYq_8BVTfqTQ</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Chen, Haiyan</creator><creator>Ghori‐Javed, Farah Y</creator><creator>Rashid, Harunur</creator><creator>Adhami, Mitra D</creator><creator>Serra, Rosa</creator><creator>Gutierrez, Soraya E</creator><creator>Javed, Amjad</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201412</creationdate><title>Runx2 Regulates Endochondral Ossification Through Control of Chondrocyte Proliferation and Differentiation</title><author>Chen, Haiyan ; Ghori‐Javed, Farah Y ; Rashid, Harunur ; Adhami, Mitra D ; Serra, Rosa ; Gutierrez, Soraya E ; Javed, Amjad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5097-1c722ebba814b3e4c0d310e05322f2ed0af85c2bddaace063f79e8cb4dfd2f323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Active Transport, Cell Nucleus - physiology</topic><topic>Animals</topic><topic>CARTILAGE REMODELING</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell Proliferation - physiology</topic><topic>CHONDROCYTE DIFFERENTIATION</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - metabolism</topic><topic>Chondrogenesis - physiology</topic><topic>Core Binding Factor Alpha 1 Subunit - genetics</topic><topic>Core Binding Factor Alpha 1 Subunit - metabolism</topic><topic>Gene Expression Regulation, Developmental - physiology</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Osteogenesis - physiology</topic><topic>Osteoprotegerin - genetics</topic><topic>Osteoprotegerin - metabolism</topic><topic>RANK Ligand - genetics</topic><topic>RANK Ligand - metabolism</topic><topic>RUNX2</topic><topic>Signal Transduction - physiology</topic><topic>SKELETAL DEVELOPMENT</topic><topic>SOX9 Transcription Factor - genetics</topic><topic>SOX9 Transcription Factor - metabolism</topic><topic>Spine - cytology</topic><topic>Spine - embryology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Haiyan</creatorcontrib><creatorcontrib>Ghori‐Javed, Farah Y</creatorcontrib><creatorcontrib>Rashid, Harunur</creatorcontrib><creatorcontrib>Adhami, Mitra D</creatorcontrib><creatorcontrib>Serra, Rosa</creatorcontrib><creatorcontrib>Gutierrez, Soraya E</creatorcontrib><creatorcontrib>Javed, Amjad</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of bone and mineral research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Haiyan</au><au>Ghori‐Javed, Farah Y</au><au>Rashid, Harunur</au><au>Adhami, Mitra D</au><au>Serra, Rosa</au><au>Gutierrez, Soraya E</au><au>Javed, Amjad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Runx2 Regulates Endochondral Ossification Through Control of Chondrocyte Proliferation and Differentiation</atitle><jtitle>Journal of bone and mineral research</jtitle><addtitle>J Bone Miner Res</addtitle><date>2014-12</date><risdate>2014</risdate><volume>29</volume><issue>12</issue><spage>2653</spage><epage>2665</epage><pages>2653-2665</pages><issn>0884-0431</issn><eissn>1523-4681</eissn><coden>JBMREJ</coden><abstract>ABSTRACT
Synthesis of cartilage by chondrocytes is an obligatory step for endochondral ossification. Global deletion of the Runx2 gene results in complete failure of the ossification process, but the underlying cellular and molecular mechanisms are not fully known. Here, we elucidated Runx2 regulatory control distinctive to chondrocyte and cartilage tissue by generating Runx2 exon 8 floxed mice. Deletion of Runx2 gene in chondrocytes caused failure of endochondral ossification and lethality at birth. The limbs of Runx2ΔE8/ΔE8 mice were devoid of mature chondrocytes, vasculature, and marrow. We demonstrate that the C‐terminus of Runx2 drives its biological activity. Importantly, nuclear import and DNA binding functions of Runx2 are insufficient for chondrogenesis. Molecular studies revealed that despite normal levels of Sox9 and PTHrP, chondrocyte differentiation and cartilage growth are disrupted in Runx2ΔE8/ΔE8 mice. Loss of Runx2 in chondrocytes also impaired osteoprotegerin‐receptor activator of NF‐κB ligand (OPG‐RANKL) signaling and chondroclast development. Dwarfism observed in Runx2 mutants was associated with the near absence of proliferative zone in the growth plates. Finally, we show Runx2 directly regulates a unique set of cell cycle genes, Gpr132, Sfn, c‐Myb, and Cyclin A1, to control proliferative capacity of chondrocyte. Thus, Runx2 is obligatory for both proliferation and differentiation of chondrocytes. © 2014 American Society for Bone and Mineral Research.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>24862038</pmid><doi>10.1002/jbmr.2287</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-0431 |
ispartof | Journal of bone and mineral research, 2014-12, Vol.29 (12), p.2653-2665 |
issn | 0884-0431 1523-4681 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4535340 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Oxford University Press Journals All Titles (1996-Current) |
subjects | Active Transport, Cell Nucleus - physiology Animals CARTILAGE REMODELING Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cell Differentiation - physiology Cell Nucleus - genetics Cell Nucleus - metabolism Cell Proliferation - physiology CHONDROCYTE DIFFERENTIATION Chondrocytes - cytology Chondrocytes - metabolism Chondrogenesis - physiology Core Binding Factor Alpha 1 Subunit - genetics Core Binding Factor Alpha 1 Subunit - metabolism Gene Expression Regulation, Developmental - physiology Mice Mice, Transgenic Osteogenesis - physiology Osteoprotegerin - genetics Osteoprotegerin - metabolism RANK Ligand - genetics RANK Ligand - metabolism RUNX2 Signal Transduction - physiology SKELETAL DEVELOPMENT SOX9 Transcription Factor - genetics SOX9 Transcription Factor - metabolism Spine - cytology Spine - embryology |
title | Runx2 Regulates Endochondral Ossification Through Control of Chondrocyte Proliferation and Differentiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A58%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Runx2%20Regulates%20Endochondral%20Ossification%20Through%20Control%20of%20Chondrocyte%20Proliferation%20and%20Differentiation&rft.jtitle=Journal%20of%20bone%20and%20mineral%20research&rft.au=Chen,%20Haiyan&rft.date=2014-12&rft.volume=29&rft.issue=12&rft.spage=2653&rft.epage=2665&rft.pages=2653-2665&rft.issn=0884-0431&rft.eissn=1523-4681&rft.coden=JBMREJ&rft_id=info:doi/10.1002/jbmr.2287&rft_dat=%3Cproquest_pubme%3E1637558343%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1635335131&rft_id=info:pmid/24862038&rfr_iscdi=true |