Runx2 Regulates Endochondral Ossification Through Control of Chondrocyte Proliferation and Differentiation

ABSTRACT Synthesis of cartilage by chondrocytes is an obligatory step for endochondral ossification. Global deletion of the Runx2 gene results in complete failure of the ossification process, but the underlying cellular and molecular mechanisms are not fully known. Here, we elucidated Runx2 regulato...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bone and mineral research 2014-12, Vol.29 (12), p.2653-2665
Hauptverfasser: Chen, Haiyan, Ghori‐Javed, Farah Y, Rashid, Harunur, Adhami, Mitra D, Serra, Rosa, Gutierrez, Soraya E, Javed, Amjad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2665
container_issue 12
container_start_page 2653
container_title Journal of bone and mineral research
container_volume 29
creator Chen, Haiyan
Ghori‐Javed, Farah Y
Rashid, Harunur
Adhami, Mitra D
Serra, Rosa
Gutierrez, Soraya E
Javed, Amjad
description ABSTRACT Synthesis of cartilage by chondrocytes is an obligatory step for endochondral ossification. Global deletion of the Runx2 gene results in complete failure of the ossification process, but the underlying cellular and molecular mechanisms are not fully known. Here, we elucidated Runx2 regulatory control distinctive to chondrocyte and cartilage tissue by generating Runx2 exon 8 floxed mice. Deletion of Runx2 gene in chondrocytes caused failure of endochondral ossification and lethality at birth. The limbs of Runx2ΔE8/ΔE8 mice were devoid of mature chondrocytes, vasculature, and marrow. We demonstrate that the C‐terminus of Runx2 drives its biological activity. Importantly, nuclear import and DNA binding functions of Runx2 are insufficient for chondrogenesis. Molecular studies revealed that despite normal levels of Sox9 and PTHrP, chondrocyte differentiation and cartilage growth are disrupted in Runx2ΔE8/ΔE8 mice. Loss of Runx2 in chondrocytes also impaired osteoprotegerin‐receptor activator of NF‐κB ligand (OPG‐RANKL) signaling and chondroclast development. Dwarfism observed in Runx2 mutants was associated with the near absence of proliferative zone in the growth plates. Finally, we show Runx2 directly regulates a unique set of cell cycle genes, Gpr132, Sfn, c‐Myb, and Cyclin A1, to control proliferative capacity of chondrocyte. Thus, Runx2 is obligatory for both proliferation and differentiation of chondrocytes. © 2014 American Society for Bone and Mineral Research.
doi_str_mv 10.1002/jbmr.2287
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4535340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1637558343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5097-1c722ebba814b3e4c0d310e05322f2ed0af85c2bddaace063f79e8cb4dfd2f323</originalsourceid><addsrcrecordid>eNp1kc1uEzEUhS0EoqGw4AWQJTZ0Ma1_Z9wNEqTlT0VFUVlbHvs6cTSxiz0D5O1xklIBEivL9376dK4OQs8pOaWEsLN1v8mnjKnuAZpRyXgjWkUfohlRSjREcHqEnpSyJoS0sm0foyMmVMsIVzO0XkzxJ8MLWE6DGaHgy-iSXaXoshnwdSnBB2vGkCK-WeU0LVd4nuKY04CTx_M9mOx2BPylzoKHfIBNdPgi-PqHOIb97Cl65M1Q4Nnde4y-vru8mX9orq7ff5y_uWqsJOddQ23HGPS9UVT0HIQljlMCRHLGPANHjFfSst45YyyQlvvuHJTthfOOec74MXp98N5O_QacrQHqLfo2h43JW51M0H9vYljpZfquheSSC1IFr-4EOX2boIx6E4qFYTAR0lQ0bXknpeKCV_TlP-g6TTnW83aU5FxSTit1cqBsTqVk8PdhKNG7BvWuQb1rsLIv_kx_T_6urAJnB-BHGGD7f5P-9PbzYq_8BVTfqTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1635335131</pqid></control><display><type>article</type><title>Runx2 Regulates Endochondral Ossification Through Control of Chondrocyte Proliferation and Differentiation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Chen, Haiyan ; Ghori‐Javed, Farah Y ; Rashid, Harunur ; Adhami, Mitra D ; Serra, Rosa ; Gutierrez, Soraya E ; Javed, Amjad</creator><creatorcontrib>Chen, Haiyan ; Ghori‐Javed, Farah Y ; Rashid, Harunur ; Adhami, Mitra D ; Serra, Rosa ; Gutierrez, Soraya E ; Javed, Amjad</creatorcontrib><description>ABSTRACT Synthesis of cartilage by chondrocytes is an obligatory step for endochondral ossification. Global deletion of the Runx2 gene results in complete failure of the ossification process, but the underlying cellular and molecular mechanisms are not fully known. Here, we elucidated Runx2 regulatory control distinctive to chondrocyte and cartilage tissue by generating Runx2 exon 8 floxed mice. Deletion of Runx2 gene in chondrocytes caused failure of endochondral ossification and lethality at birth. The limbs of Runx2ΔE8/ΔE8 mice were devoid of mature chondrocytes, vasculature, and marrow. We demonstrate that the C‐terminus of Runx2 drives its biological activity. Importantly, nuclear import and DNA binding functions of Runx2 are insufficient for chondrogenesis. Molecular studies revealed that despite normal levels of Sox9 and PTHrP, chondrocyte differentiation and cartilage growth are disrupted in Runx2ΔE8/ΔE8 mice. Loss of Runx2 in chondrocytes also impaired osteoprotegerin‐receptor activator of NF‐κB ligand (OPG‐RANKL) signaling and chondroclast development. Dwarfism observed in Runx2 mutants was associated with the near absence of proliferative zone in the growth plates. Finally, we show Runx2 directly regulates a unique set of cell cycle genes, Gpr132, Sfn, c‐Myb, and Cyclin A1, to control proliferative capacity of chondrocyte. Thus, Runx2 is obligatory for both proliferation and differentiation of chondrocytes. © 2014 American Society for Bone and Mineral Research.</description><identifier>ISSN: 0884-0431</identifier><identifier>EISSN: 1523-4681</identifier><identifier>DOI: 10.1002/jbmr.2287</identifier><identifier>PMID: 24862038</identifier><identifier>CODEN: JBMREJ</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Active Transport, Cell Nucleus - physiology ; Animals ; CARTILAGE REMODELING ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Differentiation - physiology ; Cell Nucleus - genetics ; Cell Nucleus - metabolism ; Cell Proliferation - physiology ; CHONDROCYTE DIFFERENTIATION ; Chondrocytes - cytology ; Chondrocytes - metabolism ; Chondrogenesis - physiology ; Core Binding Factor Alpha 1 Subunit - genetics ; Core Binding Factor Alpha 1 Subunit - metabolism ; Gene Expression Regulation, Developmental - physiology ; Mice ; Mice, Transgenic ; Osteogenesis - physiology ; Osteoprotegerin - genetics ; Osteoprotegerin - metabolism ; RANK Ligand - genetics ; RANK Ligand - metabolism ; RUNX2 ; Signal Transduction - physiology ; SKELETAL DEVELOPMENT ; SOX9 Transcription Factor - genetics ; SOX9 Transcription Factor - metabolism ; Spine - cytology ; Spine - embryology</subject><ispartof>Journal of bone and mineral research, 2014-12, Vol.29 (12), p.2653-2665</ispartof><rights>2014 American Society for Bone and Mineral Research</rights><rights>2014 American Society for Bone and Mineral Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5097-1c722ebba814b3e4c0d310e05322f2ed0af85c2bddaace063f79e8cb4dfd2f323</citedby><cites>FETCH-LOGICAL-c5097-1c722ebba814b3e4c0d310e05322f2ed0af85c2bddaace063f79e8cb4dfd2f323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbmr.2287$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbmr.2287$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24862038$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Haiyan</creatorcontrib><creatorcontrib>Ghori‐Javed, Farah Y</creatorcontrib><creatorcontrib>Rashid, Harunur</creatorcontrib><creatorcontrib>Adhami, Mitra D</creatorcontrib><creatorcontrib>Serra, Rosa</creatorcontrib><creatorcontrib>Gutierrez, Soraya E</creatorcontrib><creatorcontrib>Javed, Amjad</creatorcontrib><title>Runx2 Regulates Endochondral Ossification Through Control of Chondrocyte Proliferation and Differentiation</title><title>Journal of bone and mineral research</title><addtitle>J Bone Miner Res</addtitle><description>ABSTRACT Synthesis of cartilage by chondrocytes is an obligatory step for endochondral ossification. Global deletion of the Runx2 gene results in complete failure of the ossification process, but the underlying cellular and molecular mechanisms are not fully known. Here, we elucidated Runx2 regulatory control distinctive to chondrocyte and cartilage tissue by generating Runx2 exon 8 floxed mice. Deletion of Runx2 gene in chondrocytes caused failure of endochondral ossification and lethality at birth. The limbs of Runx2ΔE8/ΔE8 mice were devoid of mature chondrocytes, vasculature, and marrow. We demonstrate that the C‐terminus of Runx2 drives its biological activity. Importantly, nuclear import and DNA binding functions of Runx2 are insufficient for chondrogenesis. Molecular studies revealed that despite normal levels of Sox9 and PTHrP, chondrocyte differentiation and cartilage growth are disrupted in Runx2ΔE8/ΔE8 mice. Loss of Runx2 in chondrocytes also impaired osteoprotegerin‐receptor activator of NF‐κB ligand (OPG‐RANKL) signaling and chondroclast development. Dwarfism observed in Runx2 mutants was associated with the near absence of proliferative zone in the growth plates. Finally, we show Runx2 directly regulates a unique set of cell cycle genes, Gpr132, Sfn, c‐Myb, and Cyclin A1, to control proliferative capacity of chondrocyte. Thus, Runx2 is obligatory for both proliferation and differentiation of chondrocytes. © 2014 American Society for Bone and Mineral Research.</description><subject>Active Transport, Cell Nucleus - physiology</subject><subject>Animals</subject><subject>CARTILAGE REMODELING</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell Proliferation - physiology</subject><subject>CHONDROCYTE DIFFERENTIATION</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - metabolism</subject><subject>Chondrogenesis - physiology</subject><subject>Core Binding Factor Alpha 1 Subunit - genetics</subject><subject>Core Binding Factor Alpha 1 Subunit - metabolism</subject><subject>Gene Expression Regulation, Developmental - physiology</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Osteogenesis - physiology</subject><subject>Osteoprotegerin - genetics</subject><subject>Osteoprotegerin - metabolism</subject><subject>RANK Ligand - genetics</subject><subject>RANK Ligand - metabolism</subject><subject>RUNX2</subject><subject>Signal Transduction - physiology</subject><subject>SKELETAL DEVELOPMENT</subject><subject>SOX9 Transcription Factor - genetics</subject><subject>SOX9 Transcription Factor - metabolism</subject><subject>Spine - cytology</subject><subject>Spine - embryology</subject><issn>0884-0431</issn><issn>1523-4681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1uEzEUhS0EoqGw4AWQJTZ0Ma1_Z9wNEqTlT0VFUVlbHvs6cTSxiz0D5O1xklIBEivL9376dK4OQs8pOaWEsLN1v8mnjKnuAZpRyXgjWkUfohlRSjREcHqEnpSyJoS0sm0foyMmVMsIVzO0XkzxJ8MLWE6DGaHgy-iSXaXoshnwdSnBB2vGkCK-WeU0LVd4nuKY04CTx_M9mOx2BPylzoKHfIBNdPgi-PqHOIb97Cl65M1Q4Nnde4y-vru8mX9orq7ff5y_uWqsJOddQ23HGPS9UVT0HIQljlMCRHLGPANHjFfSst45YyyQlvvuHJTthfOOec74MXp98N5O_QacrQHqLfo2h43JW51M0H9vYljpZfquheSSC1IFr-4EOX2boIx6E4qFYTAR0lQ0bXknpeKCV_TlP-g6TTnW83aU5FxSTit1cqBsTqVk8PdhKNG7BvWuQb1rsLIv_kx_T_6urAJnB-BHGGD7f5P-9PbzYq_8BVTfqTQ</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Chen, Haiyan</creator><creator>Ghori‐Javed, Farah Y</creator><creator>Rashid, Harunur</creator><creator>Adhami, Mitra D</creator><creator>Serra, Rosa</creator><creator>Gutierrez, Soraya E</creator><creator>Javed, Amjad</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201412</creationdate><title>Runx2 Regulates Endochondral Ossification Through Control of Chondrocyte Proliferation and Differentiation</title><author>Chen, Haiyan ; Ghori‐Javed, Farah Y ; Rashid, Harunur ; Adhami, Mitra D ; Serra, Rosa ; Gutierrez, Soraya E ; Javed, Amjad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5097-1c722ebba814b3e4c0d310e05322f2ed0af85c2bddaace063f79e8cb4dfd2f323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Active Transport, Cell Nucleus - physiology</topic><topic>Animals</topic><topic>CARTILAGE REMODELING</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell Proliferation - physiology</topic><topic>CHONDROCYTE DIFFERENTIATION</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - metabolism</topic><topic>Chondrogenesis - physiology</topic><topic>Core Binding Factor Alpha 1 Subunit - genetics</topic><topic>Core Binding Factor Alpha 1 Subunit - metabolism</topic><topic>Gene Expression Regulation, Developmental - physiology</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Osteogenesis - physiology</topic><topic>Osteoprotegerin - genetics</topic><topic>Osteoprotegerin - metabolism</topic><topic>RANK Ligand - genetics</topic><topic>RANK Ligand - metabolism</topic><topic>RUNX2</topic><topic>Signal Transduction - physiology</topic><topic>SKELETAL DEVELOPMENT</topic><topic>SOX9 Transcription Factor - genetics</topic><topic>SOX9 Transcription Factor - metabolism</topic><topic>Spine - cytology</topic><topic>Spine - embryology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Haiyan</creatorcontrib><creatorcontrib>Ghori‐Javed, Farah Y</creatorcontrib><creatorcontrib>Rashid, Harunur</creatorcontrib><creatorcontrib>Adhami, Mitra D</creatorcontrib><creatorcontrib>Serra, Rosa</creatorcontrib><creatorcontrib>Gutierrez, Soraya E</creatorcontrib><creatorcontrib>Javed, Amjad</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of bone and mineral research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Haiyan</au><au>Ghori‐Javed, Farah Y</au><au>Rashid, Harunur</au><au>Adhami, Mitra D</au><au>Serra, Rosa</au><au>Gutierrez, Soraya E</au><au>Javed, Amjad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Runx2 Regulates Endochondral Ossification Through Control of Chondrocyte Proliferation and Differentiation</atitle><jtitle>Journal of bone and mineral research</jtitle><addtitle>J Bone Miner Res</addtitle><date>2014-12</date><risdate>2014</risdate><volume>29</volume><issue>12</issue><spage>2653</spage><epage>2665</epage><pages>2653-2665</pages><issn>0884-0431</issn><eissn>1523-4681</eissn><coden>JBMREJ</coden><abstract>ABSTRACT Synthesis of cartilage by chondrocytes is an obligatory step for endochondral ossification. Global deletion of the Runx2 gene results in complete failure of the ossification process, but the underlying cellular and molecular mechanisms are not fully known. Here, we elucidated Runx2 regulatory control distinctive to chondrocyte and cartilage tissue by generating Runx2 exon 8 floxed mice. Deletion of Runx2 gene in chondrocytes caused failure of endochondral ossification and lethality at birth. The limbs of Runx2ΔE8/ΔE8 mice were devoid of mature chondrocytes, vasculature, and marrow. We demonstrate that the C‐terminus of Runx2 drives its biological activity. Importantly, nuclear import and DNA binding functions of Runx2 are insufficient for chondrogenesis. Molecular studies revealed that despite normal levels of Sox9 and PTHrP, chondrocyte differentiation and cartilage growth are disrupted in Runx2ΔE8/ΔE8 mice. Loss of Runx2 in chondrocytes also impaired osteoprotegerin‐receptor activator of NF‐κB ligand (OPG‐RANKL) signaling and chondroclast development. Dwarfism observed in Runx2 mutants was associated with the near absence of proliferative zone in the growth plates. Finally, we show Runx2 directly regulates a unique set of cell cycle genes, Gpr132, Sfn, c‐Myb, and Cyclin A1, to control proliferative capacity of chondrocyte. Thus, Runx2 is obligatory for both proliferation and differentiation of chondrocytes. © 2014 American Society for Bone and Mineral Research.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>24862038</pmid><doi>10.1002/jbmr.2287</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-0431
ispartof Journal of bone and mineral research, 2014-12, Vol.29 (12), p.2653-2665
issn 0884-0431
1523-4681
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4535340
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Oxford University Press Journals All Titles (1996-Current)
subjects Active Transport, Cell Nucleus - physiology
Animals
CARTILAGE REMODELING
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell Differentiation - physiology
Cell Nucleus - genetics
Cell Nucleus - metabolism
Cell Proliferation - physiology
CHONDROCYTE DIFFERENTIATION
Chondrocytes - cytology
Chondrocytes - metabolism
Chondrogenesis - physiology
Core Binding Factor Alpha 1 Subunit - genetics
Core Binding Factor Alpha 1 Subunit - metabolism
Gene Expression Regulation, Developmental - physiology
Mice
Mice, Transgenic
Osteogenesis - physiology
Osteoprotegerin - genetics
Osteoprotegerin - metabolism
RANK Ligand - genetics
RANK Ligand - metabolism
RUNX2
Signal Transduction - physiology
SKELETAL DEVELOPMENT
SOX9 Transcription Factor - genetics
SOX9 Transcription Factor - metabolism
Spine - cytology
Spine - embryology
title Runx2 Regulates Endochondral Ossification Through Control of Chondrocyte Proliferation and Differentiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A58%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Runx2%20Regulates%20Endochondral%20Ossification%20Through%20Control%20of%20Chondrocyte%20Proliferation%20and%20Differentiation&rft.jtitle=Journal%20of%20bone%20and%20mineral%20research&rft.au=Chen,%20Haiyan&rft.date=2014-12&rft.volume=29&rft.issue=12&rft.spage=2653&rft.epage=2665&rft.pages=2653-2665&rft.issn=0884-0431&rft.eissn=1523-4681&rft.coden=JBMREJ&rft_id=info:doi/10.1002/jbmr.2287&rft_dat=%3Cproquest_pubme%3E1637558343%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1635335131&rft_id=info:pmid/24862038&rfr_iscdi=true