Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes
Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) a...
Gespeichert in:
Veröffentlicht in: | Computational Intelligence and Neuroscience 2015-01, Vol.2015 (2015), p.550-558 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 558 |
---|---|
container_issue | 2015 |
container_start_page | 550 |
container_title | Computational Intelligence and Neuroscience |
container_volume | 2015 |
creator | Sun, Jian Lu, Qing-Chang Peng, Zhong-Ren Bai, Cong |
description | Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) and Kalman filtering-based algorithm. In the proposed model, the well-trained SVM model predicts the baseline bus travel times from the historical bus trip data; the Kalman filtering-based dynamic algorithm can adjust bus travel times with the latest bus operation information and the estimated baseline travel times. The performance of the proposed dynamic model is validated with the real-world data on road with multiple bus routes in Shenzhen, China. The results show that the proposed dynamic model is feasible and applicable for bus travel time prediction and has the best prediction performance among all the five models proposed in the study in terms of prediction accuracy on road with multiple bus routes. |
doi_str_mv | 10.1155/2015/432389 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4534590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A462299411</galeid><airiti_id>P20160527002_201512_201706200024_201706200024_550_558</airiti_id><sourcerecordid>A462299411</sourcerecordid><originalsourceid>FETCH-LOGICAL-a630t-cb09ae5cbc8a66638eecb7d244c05cf913d87f14f4cdad4c42da90f2581dc3553</originalsourceid><addsrcrecordid>eNqNkktvEzEUhS0EoiWwYo9GYoNAoX4_NpVKeSsVVRXWlmN7Glcz42DPtOq_x5MpacsqC-te25-PdI8PAK8R_IgQY0cYInZECSZSPQGHiEsxZ1iQp7ueswPwIucrCJlgED8HB5hjRRUkh-Dn59vOtMFWn4ZcLZO59k21DK2vzpN3wfYhdtVZdL7JVekuonHVTejX1dnQ9GHT-O27izj0Pr8Ez2rTZP_qrs7A769flqff54tf336cnizmhhPYz-0KKuOZXVlpOOdEem9XwmFKLWS2Vog4KWpEa2qdcdRS7IyCNWYSOUsYIzNwPOluhlXrnfVdn0yjNym0Jt3qaIJ-fNOFtb6M15oyQlmZegbe3Qmk-GfwuddtyNY3jel8HLJGAknFpBJ0DxQqJCRHbB-UYygxIgV9-x96FYfUFdNGqnwOwYjeU5em8Tp0dSzT2FFUn1COsVIUoUJ9mCibYs7J1zsjENRjPvSYDz3lo9BvHnq3Y_8FogDvJ2AdOmduwn5qviC-Ng9gJgQcnV5MgAkp9OF-zPMiw2GJKYR4K4m2ZWtROaKPN4zBsiT5C5403cg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1702623214</pqid></control><display><type>article</type><title>Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Sun, Jian ; Lu, Qing-Chang ; Peng, Zhong-Ren ; Bai, Cong</creator><contributor>Dawson, Christian W.</contributor><creatorcontrib>Sun, Jian ; Lu, Qing-Chang ; Peng, Zhong-Ren ; Bai, Cong ; Dawson, Christian W.</creatorcontrib><description>Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) and Kalman filtering-based algorithm. In the proposed model, the well-trained SVM model predicts the baseline bus travel times from the historical bus trip data; the Kalman filtering-based dynamic algorithm can adjust bus travel times with the latest bus operation information and the estimated baseline travel times. The performance of the proposed dynamic model is validated with the real-world data on road with multiple bus routes in Shenzhen, China. The results show that the proposed dynamic model is feasible and applicable for bus travel time prediction and has the best prediction performance among all the five models proposed in the study in terms of prediction accuracy on road with multiple bus routes.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2015/432389</identifier><identifier>PMID: 26294903</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Accuracy ; Algorithms ; Bus travel ; Buses (vehicles) ; China ; Data buses ; Dynamic models ; Dynamics ; Economic models ; Mathematical models ; Models, Theoretical ; Motor Vehicles ; Neural networks ; Regression analysis ; Roads ; School buses ; Support vector machines ; Systems Analysis ; Time Factors ; Traffic flow ; Transportation - methods ; Travel - statistics & numerical data ; Variables</subject><ispartof>Computational Intelligence and Neuroscience, 2015-01, Vol.2015 (2015), p.550-558</ispartof><rights>Copyright © 2015 Cong Bai et al.</rights><rights>COPYRIGHT 2015 John Wiley & Sons, Inc.</rights><rights>Copyright © 2015 Cong Bai et al. Cong Bai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2015 Cong Bai et al. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a630t-cb09ae5cbc8a66638eecb7d244c05cf913d87f14f4cdad4c42da90f2581dc3553</citedby><cites>FETCH-LOGICAL-a630t-cb09ae5cbc8a66638eecb7d244c05cf913d87f14f4cdad4c42da90f2581dc3553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534590/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534590/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26294903$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Dawson, Christian W.</contributor><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Lu, Qing-Chang</creatorcontrib><creatorcontrib>Peng, Zhong-Ren</creatorcontrib><creatorcontrib>Bai, Cong</creatorcontrib><title>Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes</title><title>Computational Intelligence and Neuroscience</title><addtitle>Comput Intell Neurosci</addtitle><description>Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) and Kalman filtering-based algorithm. In the proposed model, the well-trained SVM model predicts the baseline bus travel times from the historical bus trip data; the Kalman filtering-based dynamic algorithm can adjust bus travel times with the latest bus operation information and the estimated baseline travel times. The performance of the proposed dynamic model is validated with the real-world data on road with multiple bus routes in Shenzhen, China. The results show that the proposed dynamic model is feasible and applicable for bus travel time prediction and has the best prediction performance among all the five models proposed in the study in terms of prediction accuracy on road with multiple bus routes.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Bus travel</subject><subject>Buses (vehicles)</subject><subject>China</subject><subject>Data buses</subject><subject>Dynamic models</subject><subject>Dynamics</subject><subject>Economic models</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Motor Vehicles</subject><subject>Neural networks</subject><subject>Regression analysis</subject><subject>Roads</subject><subject>School buses</subject><subject>Support vector machines</subject><subject>Systems Analysis</subject><subject>Time Factors</subject><subject>Traffic flow</subject><subject>Transportation - methods</subject><subject>Travel - statistics & numerical data</subject><subject>Variables</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkktvEzEUhS0EoiWwYo9GYoNAoX4_NpVKeSsVVRXWlmN7Glcz42DPtOq_x5MpacsqC-te25-PdI8PAK8R_IgQY0cYInZECSZSPQGHiEsxZ1iQp7ueswPwIucrCJlgED8HB5hjRRUkh-Dn59vOtMFWn4ZcLZO59k21DK2vzpN3wfYhdtVZdL7JVekuonHVTejX1dnQ9GHT-O27izj0Pr8Ez2rTZP_qrs7A769flqff54tf336cnizmhhPYz-0KKuOZXVlpOOdEem9XwmFKLWS2Vog4KWpEa2qdcdRS7IyCNWYSOUsYIzNwPOluhlXrnfVdn0yjNym0Jt3qaIJ-fNOFtb6M15oyQlmZegbe3Qmk-GfwuddtyNY3jel8HLJGAknFpBJ0DxQqJCRHbB-UYygxIgV9-x96FYfUFdNGqnwOwYjeU5em8Tp0dSzT2FFUn1COsVIUoUJ9mCibYs7J1zsjENRjPvSYDz3lo9BvHnq3Y_8FogDvJ2AdOmduwn5qviC-Ng9gJgQcnV5MgAkp9OF-zPMiw2GJKYR4K4m2ZWtROaKPN4zBsiT5C5403cg</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Sun, Jian</creator><creator>Lu, Qing-Chang</creator><creator>Peng, Zhong-Ren</creator><creator>Bai, Cong</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150101</creationdate><title>Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes</title><author>Sun, Jian ; Lu, Qing-Chang ; Peng, Zhong-Ren ; Bai, Cong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a630t-cb09ae5cbc8a66638eecb7d244c05cf913d87f14f4cdad4c42da90f2581dc3553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Bus travel</topic><topic>Buses (vehicles)</topic><topic>China</topic><topic>Data buses</topic><topic>Dynamic models</topic><topic>Dynamics</topic><topic>Economic models</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Motor Vehicles</topic><topic>Neural networks</topic><topic>Regression analysis</topic><topic>Roads</topic><topic>School buses</topic><topic>Support vector machines</topic><topic>Systems Analysis</topic><topic>Time Factors</topic><topic>Traffic flow</topic><topic>Transportation - methods</topic><topic>Travel - statistics & numerical data</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Lu, Qing-Chang</creatorcontrib><creatorcontrib>Peng, Zhong-Ren</creatorcontrib><creatorcontrib>Bai, Cong</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational Intelligence and Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jian</au><au>Lu, Qing-Chang</au><au>Peng, Zhong-Ren</au><au>Bai, Cong</au><au>Dawson, Christian W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes</atitle><jtitle>Computational Intelligence and Neuroscience</jtitle><addtitle>Comput Intell Neurosci</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>550</spage><epage>558</epage><pages>550-558</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) and Kalman filtering-based algorithm. In the proposed model, the well-trained SVM model predicts the baseline bus travel times from the historical bus trip data; the Kalman filtering-based dynamic algorithm can adjust bus travel times with the latest bus operation information and the estimated baseline travel times. The performance of the proposed dynamic model is validated with the real-world data on road with multiple bus routes in Shenzhen, China. The results show that the proposed dynamic model is feasible and applicable for bus travel time prediction and has the best prediction performance among all the five models proposed in the study in terms of prediction accuracy on road with multiple bus routes.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><pmid>26294903</pmid><doi>10.1155/2015/432389</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-5265 |
ispartof | Computational Intelligence and Neuroscience, 2015-01, Vol.2015 (2015), p.550-558 |
issn | 1687-5265 1687-5273 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4534590 |
source | MEDLINE; Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Accuracy Algorithms Bus travel Buses (vehicles) China Data buses Dynamic models Dynamics Economic models Mathematical models Models, Theoretical Motor Vehicles Neural networks Regression analysis Roads School buses Support vector machines Systems Analysis Time Factors Traffic flow Transportation - methods Travel - statistics & numerical data Variables |
title | Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A44%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Bus%20Travel%20Time%20Prediction%20Models%20on%20Road%20with%20Multiple%20Bus%20Routes&rft.jtitle=Computational%20Intelligence%20and%20Neuroscience&rft.au=Sun,%20Jian&rft.date=2015-01-01&rft.volume=2015&rft.issue=2015&rft.spage=550&rft.epage=558&rft.pages=550-558&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2015/432389&rft_dat=%3Cgale_pubme%3EA462299411%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1702623214&rft_id=info:pmid/26294903&rft_galeid=A462299411&rft_airiti_id=P20160527002_201512_201706200024_201706200024_550_558&rfr_iscdi=true |