Multiple linear analysis methods for the quantification of irreversibly binding radiotracers

Gjedde—Patlak graphical analysis (GPGA) has commonly been used to quantify the net accumulations (Kin) of radioligands that bind or are taken up irreversibly. We suggest an alternative approach (MLAIR: multiple linear analysis for irreversible radiotracers) for the quantification of these types of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cerebral blood flow and metabolism 2008-12, Vol.28 (12), p.1965-1977
Hauptverfasser: Kim, Su Jin, Lee, Jae Sung, Kim, Yu Kyeong, Frost, James, Wand, Gary, McCaul, Mary E, Lee, Dong Soo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1977
container_issue 12
container_start_page 1965
container_title Journal of cerebral blood flow and metabolism
container_volume 28
creator Kim, Su Jin
Lee, Jae Sung
Kim, Yu Kyeong
Frost, James
Wand, Gary
McCaul, Mary E
Lee, Dong Soo
description Gjedde—Patlak graphical analysis (GPGA) has commonly been used to quantify the net accumulations (Kin) of radioligands that bind or are taken up irreversibly. We suggest an alternative approach (MLAIR: multiple linear analysis for irreversible radiotracers) for the quantification of these types of tracers. Two multiple linear regression model equations were derived from differential equations of the two-tissue compartment model with irreversible binding. Multiple linear analysis for irreversible radiotracer 1 has a desirable feature for ordinary least square estimations because only the dependent variable CT(t) is noisy. Multiple linear analysis for irreversible radiotracer 2 provides Kin from direct estimates of the coefficients of independent variables without the mediation of a division operation. During computer simulations, MLAIR1 provided less biased Kin estimates than the other linear methods, but showed a high uncertainty level for noisy data, whereas MLAIR2 increased the robustness of estimation in terms of variability, but at the expense of increased bias. For real [11C]MeNTI positron emission tomography data, both methods showed good correlations, with parameters estimated using the standard nonlinear least squares method. Multiple linear analysis for irreversible radiotracer 2 parametric images showed remarkable image quality as compared with GPGA images. It also showed markedly improved statistical power for voxelwise comparisons than GPGA. The two MLAIR approaches examined were found to have several advantages over the conventional GPGA method.
doi_str_mv 10.1038/jcbfm.2008.84
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4533870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1038_jcbfm.2008.84</sage_id><sourcerecordid>1599266651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-6f6a655e5d4eb30dd1efd844ca986c866c787cd93fd9868896f6ce53ea7a88623</originalsourceid><addsrcrecordid>eNp10c9rFDEUB_Agit1Wj14lCiIIsyYzkx9zKUipP6DiRcGDEN5kkt0smWSbzBT2vzfbXbYqeAokn3zfSx5CLyhZUtLI9xvd23FZEyKXsn2EFpSxrhKE8sdoQWpBKy7kzzN0nvOGFNQw9hSdUclrKYRYoF9fZz-5rTfYu2AgYQjgd9llPJppHYeMbUx4Wht8O0OYnHUaJhcDjha7lMydSdn1fod7FwYXVjjB4OKUQJeDZ-iJBZ_N8-N6gX58vP5-9bm6-fbpy9WHm0qzhk0Vtxw4Y4YNrekbMgzU2EG2rYZOci0510IKPXSNHcqGlF25oA1rDAiQ5SXNBbo85G7nfjSDNqE04NU2uRHSTkVw6u-T4NZqFe9Uy5pGClIC3h4DUrydTZ7U6LI23kMwcc5KilJF1EIW-fofuYlzKn-WVU07RlrS8oKqA9Ip5pyMPbVCidpPTd1PTe2npmRb_Ms_-3_QxzEV8OYIIGvwNkHQLp9cTTpZYmlx7w4uw8o8dPa_qq8OOMA0J3NKu1d7VMxvgLS80g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219504046</pqid></control><display><type>article</type><title>Multiple linear analysis methods for the quantification of irreversibly binding radiotracers</title><source>MEDLINE</source><source>SAGE Complete</source><creator>Kim, Su Jin ; Lee, Jae Sung ; Kim, Yu Kyeong ; Frost, James ; Wand, Gary ; McCaul, Mary E ; Lee, Dong Soo</creator><creatorcontrib>Kim, Su Jin ; Lee, Jae Sung ; Kim, Yu Kyeong ; Frost, James ; Wand, Gary ; McCaul, Mary E ; Lee, Dong Soo</creatorcontrib><description>Gjedde—Patlak graphical analysis (GPGA) has commonly been used to quantify the net accumulations (Kin) of radioligands that bind or are taken up irreversibly. We suggest an alternative approach (MLAIR: multiple linear analysis for irreversible radiotracers) for the quantification of these types of tracers. Two multiple linear regression model equations were derived from differential equations of the two-tissue compartment model with irreversible binding. Multiple linear analysis for irreversible radiotracer 1 has a desirable feature for ordinary least square estimations because only the dependent variable CT(t) is noisy. Multiple linear analysis for irreversible radiotracer 2 provides Kin from direct estimates of the coefficients of independent variables without the mediation of a division operation. During computer simulations, MLAIR1 provided less biased Kin estimates than the other linear methods, but showed a high uncertainty level for noisy data, whereas MLAIR2 increased the robustness of estimation in terms of variability, but at the expense of increased bias. For real [11C]MeNTI positron emission tomography data, both methods showed good correlations, with parameters estimated using the standard nonlinear least squares method. Multiple linear analysis for irreversible radiotracer 2 parametric images showed remarkable image quality as compared with GPGA images. It also showed markedly improved statistical power for voxelwise comparisons than GPGA. The two MLAIR approaches examined were found to have several advantages over the conventional GPGA method.</description><identifier>ISSN: 0271-678X</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1038/jcbfm.2008.84</identifier><identifier>PMID: 18628777</identifier><identifier>CODEN: JCBMDN</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Biological and medical sciences ; Brain - diagnostic imaging ; Cardiology. Vascular system ; Computer Simulation ; Congenital heart diseases. Malformations of the aorta, pulmonary vessels and vena cava ; Fluorine Radioisotopes - analysis ; Fluorine Radioisotopes - pharmacokinetics ; Heart ; Humans ; Linear Models ; Male ; Medical sciences ; Models, Theoretical ; Neurology ; Positron-Emission Tomography - methods ; Radioisotopes - analysis ; Radioisotopes - pharmacokinetics ; Vascular diseases and vascular malformations of the nervous system ; Young Adult</subject><ispartof>Journal of cerebral blood flow and metabolism, 2008-12, Vol.28 (12), p.1965-1977</ispartof><rights>2008 ISCBFM</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Nature Publishing Group Dec 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-6f6a655e5d4eb30dd1efd844ca986c866c787cd93fd9868896f6ce53ea7a88623</citedby><cites>FETCH-LOGICAL-c535t-6f6a655e5d4eb30dd1efd844ca986c866c787cd93fd9868896f6ce53ea7a88623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1038/jcbfm.2008.84$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1038/jcbfm.2008.84$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,778,782,883,21802,27907,27908,43604,43605</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20981031$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18628777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Su Jin</creatorcontrib><creatorcontrib>Lee, Jae Sung</creatorcontrib><creatorcontrib>Kim, Yu Kyeong</creatorcontrib><creatorcontrib>Frost, James</creatorcontrib><creatorcontrib>Wand, Gary</creatorcontrib><creatorcontrib>McCaul, Mary E</creatorcontrib><creatorcontrib>Lee, Dong Soo</creatorcontrib><title>Multiple linear analysis methods for the quantification of irreversibly binding radiotracers</title><title>Journal of cerebral blood flow and metabolism</title><addtitle>J Cereb Blood Flow Metab</addtitle><description>Gjedde—Patlak graphical analysis (GPGA) has commonly been used to quantify the net accumulations (Kin) of radioligands that bind or are taken up irreversibly. We suggest an alternative approach (MLAIR: multiple linear analysis for irreversible radiotracers) for the quantification of these types of tracers. Two multiple linear regression model equations were derived from differential equations of the two-tissue compartment model with irreversible binding. Multiple linear analysis for irreversible radiotracer 1 has a desirable feature for ordinary least square estimations because only the dependent variable CT(t) is noisy. Multiple linear analysis for irreversible radiotracer 2 provides Kin from direct estimates of the coefficients of independent variables without the mediation of a division operation. During computer simulations, MLAIR1 provided less biased Kin estimates than the other linear methods, but showed a high uncertainty level for noisy data, whereas MLAIR2 increased the robustness of estimation in terms of variability, but at the expense of increased bias. For real [11C]MeNTI positron emission tomography data, both methods showed good correlations, with parameters estimated using the standard nonlinear least squares method. Multiple linear analysis for irreversible radiotracer 2 parametric images showed remarkable image quality as compared with GPGA images. It also showed markedly improved statistical power for voxelwise comparisons than GPGA. The two MLAIR approaches examined were found to have several advantages over the conventional GPGA method.</description><subject>Biological and medical sciences</subject><subject>Brain - diagnostic imaging</subject><subject>Cardiology. Vascular system</subject><subject>Computer Simulation</subject><subject>Congenital heart diseases. Malformations of the aorta, pulmonary vessels and vena cava</subject><subject>Fluorine Radioisotopes - analysis</subject><subject>Fluorine Radioisotopes - pharmacokinetics</subject><subject>Heart</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Models, Theoretical</subject><subject>Neurology</subject><subject>Positron-Emission Tomography - methods</subject><subject>Radioisotopes - analysis</subject><subject>Radioisotopes - pharmacokinetics</subject><subject>Vascular diseases and vascular malformations of the nervous system</subject><subject>Young Adult</subject><issn>0271-678X</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp10c9rFDEUB_Agit1Wj14lCiIIsyYzkx9zKUipP6DiRcGDEN5kkt0smWSbzBT2vzfbXbYqeAokn3zfSx5CLyhZUtLI9xvd23FZEyKXsn2EFpSxrhKE8sdoQWpBKy7kzzN0nvOGFNQw9hSdUclrKYRYoF9fZz-5rTfYu2AgYQjgd9llPJppHYeMbUx4Wht8O0OYnHUaJhcDjha7lMydSdn1fod7FwYXVjjB4OKUQJeDZ-iJBZ_N8-N6gX58vP5-9bm6-fbpy9WHm0qzhk0Vtxw4Y4YNrekbMgzU2EG2rYZOci0510IKPXSNHcqGlF25oA1rDAiQ5SXNBbo85G7nfjSDNqE04NU2uRHSTkVw6u-T4NZqFe9Uy5pGClIC3h4DUrydTZ7U6LI23kMwcc5KilJF1EIW-fofuYlzKn-WVU07RlrS8oKqA9Ip5pyMPbVCidpPTd1PTe2npmRb_Ms_-3_QxzEV8OYIIGvwNkHQLp9cTTpZYmlx7w4uw8o8dPa_qq8OOMA0J3NKu1d7VMxvgLS80g</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Kim, Su Jin</creator><creator>Lee, Jae Sung</creator><creator>Kim, Yu Kyeong</creator><creator>Frost, James</creator><creator>Wand, Gary</creator><creator>McCaul, Mary E</creator><creator>Lee, Dong Soo</creator><general>SAGE Publications</general><general>Nature Publishing Group</general><general>Sage Publications Ltd</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20081201</creationdate><title>Multiple linear analysis methods for the quantification of irreversibly binding radiotracers</title><author>Kim, Su Jin ; Lee, Jae Sung ; Kim, Yu Kyeong ; Frost, James ; Wand, Gary ; McCaul, Mary E ; Lee, Dong Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-6f6a655e5d4eb30dd1efd844ca986c866c787cd93fd9868896f6ce53ea7a88623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biological and medical sciences</topic><topic>Brain - diagnostic imaging</topic><topic>Cardiology. Vascular system</topic><topic>Computer Simulation</topic><topic>Congenital heart diseases. Malformations of the aorta, pulmonary vessels and vena cava</topic><topic>Fluorine Radioisotopes - analysis</topic><topic>Fluorine Radioisotopes - pharmacokinetics</topic><topic>Heart</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Models, Theoretical</topic><topic>Neurology</topic><topic>Positron-Emission Tomography - methods</topic><topic>Radioisotopes - analysis</topic><topic>Radioisotopes - pharmacokinetics</topic><topic>Vascular diseases and vascular malformations of the nervous system</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Su Jin</creatorcontrib><creatorcontrib>Lee, Jae Sung</creatorcontrib><creatorcontrib>Kim, Yu Kyeong</creatorcontrib><creatorcontrib>Frost, James</creatorcontrib><creatorcontrib>Wand, Gary</creatorcontrib><creatorcontrib>McCaul, Mary E</creatorcontrib><creatorcontrib>Lee, Dong Soo</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cerebral blood flow and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Su Jin</au><au>Lee, Jae Sung</au><au>Kim, Yu Kyeong</au><au>Frost, James</au><au>Wand, Gary</au><au>McCaul, Mary E</au><au>Lee, Dong Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple linear analysis methods for the quantification of irreversibly binding radiotracers</atitle><jtitle>Journal of cerebral blood flow and metabolism</jtitle><addtitle>J Cereb Blood Flow Metab</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>28</volume><issue>12</issue><spage>1965</spage><epage>1977</epage><pages>1965-1977</pages><issn>0271-678X</issn><eissn>1559-7016</eissn><coden>JCBMDN</coden><abstract>Gjedde—Patlak graphical analysis (GPGA) has commonly been used to quantify the net accumulations (Kin) of radioligands that bind or are taken up irreversibly. We suggest an alternative approach (MLAIR: multiple linear analysis for irreversible radiotracers) for the quantification of these types of tracers. Two multiple linear regression model equations were derived from differential equations of the two-tissue compartment model with irreversible binding. Multiple linear analysis for irreversible radiotracer 1 has a desirable feature for ordinary least square estimations because only the dependent variable CT(t) is noisy. Multiple linear analysis for irreversible radiotracer 2 provides Kin from direct estimates of the coefficients of independent variables without the mediation of a division operation. During computer simulations, MLAIR1 provided less biased Kin estimates than the other linear methods, but showed a high uncertainty level for noisy data, whereas MLAIR2 increased the robustness of estimation in terms of variability, but at the expense of increased bias. For real [11C]MeNTI positron emission tomography data, both methods showed good correlations, with parameters estimated using the standard nonlinear least squares method. Multiple linear analysis for irreversible radiotracer 2 parametric images showed remarkable image quality as compared with GPGA images. It also showed markedly improved statistical power for voxelwise comparisons than GPGA. The two MLAIR approaches examined were found to have several advantages over the conventional GPGA method.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>18628777</pmid><doi>10.1038/jcbfm.2008.84</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0271-678X
ispartof Journal of cerebral blood flow and metabolism, 2008-12, Vol.28 (12), p.1965-1977
issn 0271-678X
1559-7016
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4533870
source MEDLINE; SAGE Complete
subjects Biological and medical sciences
Brain - diagnostic imaging
Cardiology. Vascular system
Computer Simulation
Congenital heart diseases. Malformations of the aorta, pulmonary vessels and vena cava
Fluorine Radioisotopes - analysis
Fluorine Radioisotopes - pharmacokinetics
Heart
Humans
Linear Models
Male
Medical sciences
Models, Theoretical
Neurology
Positron-Emission Tomography - methods
Radioisotopes - analysis
Radioisotopes - pharmacokinetics
Vascular diseases and vascular malformations of the nervous system
Young Adult
title Multiple linear analysis methods for the quantification of irreversibly binding radiotracers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A43%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20linear%20analysis%20methods%20for%20the%20quantification%20of%20irreversibly%20binding%20radiotracers&rft.jtitle=Journal%20of%20cerebral%20blood%20flow%20and%20metabolism&rft.au=Kim,%20Su%20Jin&rft.date=2008-12-01&rft.volume=28&rft.issue=12&rft.spage=1965&rft.epage=1977&rft.pages=1965-1977&rft.issn=0271-678X&rft.eissn=1559-7016&rft.coden=JCBMDN&rft_id=info:doi/10.1038/jcbfm.2008.84&rft_dat=%3Cproquest_pubme%3E1599266651%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219504046&rft_id=info:pmid/18628777&rft_sage_id=10.1038_jcbfm.2008.84&rfr_iscdi=true