Multiple linear analysis methods for the quantification of irreversibly binding radiotracers
Gjedde—Patlak graphical analysis (GPGA) has commonly been used to quantify the net accumulations (Kin) of radioligands that bind or are taken up irreversibly. We suggest an alternative approach (MLAIR: multiple linear analysis for irreversible radiotracers) for the quantification of these types of t...
Gespeichert in:
Veröffentlicht in: | Journal of cerebral blood flow and metabolism 2008-12, Vol.28 (12), p.1965-1977 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1977 |
---|---|
container_issue | 12 |
container_start_page | 1965 |
container_title | Journal of cerebral blood flow and metabolism |
container_volume | 28 |
creator | Kim, Su Jin Lee, Jae Sung Kim, Yu Kyeong Frost, James Wand, Gary McCaul, Mary E Lee, Dong Soo |
description | Gjedde—Patlak graphical analysis (GPGA) has commonly been used to quantify the net accumulations (Kin) of radioligands that bind or are taken up irreversibly. We suggest an alternative approach (MLAIR: multiple linear analysis for irreversible radiotracers) for the quantification of these types of tracers. Two multiple linear regression model equations were derived from differential equations of the two-tissue compartment model with irreversible binding. Multiple linear analysis for irreversible radiotracer 1 has a desirable feature for ordinary least square estimations because only the dependent variable CT(t) is noisy. Multiple linear analysis for irreversible radiotracer 2 provides Kin from direct estimates of the coefficients of independent variables without the mediation of a division operation. During computer simulations, MLAIR1 provided less biased Kin estimates than the other linear methods, but showed a high uncertainty level for noisy data, whereas MLAIR2 increased the robustness of estimation in terms of variability, but at the expense of increased bias. For real [11C]MeNTI positron emission tomography data, both methods showed good correlations, with parameters estimated using the standard nonlinear least squares method. Multiple linear analysis for irreversible radiotracer 2 parametric images showed remarkable image quality as compared with GPGA images. It also showed markedly improved statistical power for voxelwise comparisons than GPGA. The two MLAIR approaches examined were found to have several advantages over the conventional GPGA method. |
doi_str_mv | 10.1038/jcbfm.2008.84 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4533870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1038_jcbfm.2008.84</sage_id><sourcerecordid>1599266651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-6f6a655e5d4eb30dd1efd844ca986c866c787cd93fd9868896f6ce53ea7a88623</originalsourceid><addsrcrecordid>eNp10c9rFDEUB_Agit1Wj14lCiIIsyYzkx9zKUipP6DiRcGDEN5kkt0smWSbzBT2vzfbXbYqeAokn3zfSx5CLyhZUtLI9xvd23FZEyKXsn2EFpSxrhKE8sdoQWpBKy7kzzN0nvOGFNQw9hSdUclrKYRYoF9fZz-5rTfYu2AgYQjgd9llPJppHYeMbUx4Wht8O0OYnHUaJhcDjha7lMydSdn1fod7FwYXVjjB4OKUQJeDZ-iJBZ_N8-N6gX58vP5-9bm6-fbpy9WHm0qzhk0Vtxw4Y4YNrekbMgzU2EG2rYZOci0510IKPXSNHcqGlF25oA1rDAiQ5SXNBbo85G7nfjSDNqE04NU2uRHSTkVw6u-T4NZqFe9Uy5pGClIC3h4DUrydTZ7U6LI23kMwcc5KilJF1EIW-fofuYlzKn-WVU07RlrS8oKqA9Ip5pyMPbVCidpPTd1PTe2npmRb_Ms_-3_QxzEV8OYIIGvwNkHQLp9cTTpZYmlx7w4uw8o8dPa_qq8OOMA0J3NKu1d7VMxvgLS80g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219504046</pqid></control><display><type>article</type><title>Multiple linear analysis methods for the quantification of irreversibly binding radiotracers</title><source>MEDLINE</source><source>SAGE Complete</source><creator>Kim, Su Jin ; Lee, Jae Sung ; Kim, Yu Kyeong ; Frost, James ; Wand, Gary ; McCaul, Mary E ; Lee, Dong Soo</creator><creatorcontrib>Kim, Su Jin ; Lee, Jae Sung ; Kim, Yu Kyeong ; Frost, James ; Wand, Gary ; McCaul, Mary E ; Lee, Dong Soo</creatorcontrib><description>Gjedde—Patlak graphical analysis (GPGA) has commonly been used to quantify the net accumulations (Kin) of radioligands that bind or are taken up irreversibly. We suggest an alternative approach (MLAIR: multiple linear analysis for irreversible radiotracers) for the quantification of these types of tracers. Two multiple linear regression model equations were derived from differential equations of the two-tissue compartment model with irreversible binding. Multiple linear analysis for irreversible radiotracer 1 has a desirable feature for ordinary least square estimations because only the dependent variable CT(t) is noisy. Multiple linear analysis for irreversible radiotracer 2 provides Kin from direct estimates of the coefficients of independent variables without the mediation of a division operation. During computer simulations, MLAIR1 provided less biased Kin estimates than the other linear methods, but showed a high uncertainty level for noisy data, whereas MLAIR2 increased the robustness of estimation in terms of variability, but at the expense of increased bias. For real [11C]MeNTI positron emission tomography data, both methods showed good correlations, with parameters estimated using the standard nonlinear least squares method. Multiple linear analysis for irreversible radiotracer 2 parametric images showed remarkable image quality as compared with GPGA images. It also showed markedly improved statistical power for voxelwise comparisons than GPGA. The two MLAIR approaches examined were found to have several advantages over the conventional GPGA method.</description><identifier>ISSN: 0271-678X</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1038/jcbfm.2008.84</identifier><identifier>PMID: 18628777</identifier><identifier>CODEN: JCBMDN</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Biological and medical sciences ; Brain - diagnostic imaging ; Cardiology. Vascular system ; Computer Simulation ; Congenital heart diseases. Malformations of the aorta, pulmonary vessels and vena cava ; Fluorine Radioisotopes - analysis ; Fluorine Radioisotopes - pharmacokinetics ; Heart ; Humans ; Linear Models ; Male ; Medical sciences ; Models, Theoretical ; Neurology ; Positron-Emission Tomography - methods ; Radioisotopes - analysis ; Radioisotopes - pharmacokinetics ; Vascular diseases and vascular malformations of the nervous system ; Young Adult</subject><ispartof>Journal of cerebral blood flow and metabolism, 2008-12, Vol.28 (12), p.1965-1977</ispartof><rights>2008 ISCBFM</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Nature Publishing Group Dec 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-6f6a655e5d4eb30dd1efd844ca986c866c787cd93fd9868896f6ce53ea7a88623</citedby><cites>FETCH-LOGICAL-c535t-6f6a655e5d4eb30dd1efd844ca986c866c787cd93fd9868896f6ce53ea7a88623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1038/jcbfm.2008.84$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1038/jcbfm.2008.84$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,778,782,883,21802,27907,27908,43604,43605</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20981031$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18628777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Su Jin</creatorcontrib><creatorcontrib>Lee, Jae Sung</creatorcontrib><creatorcontrib>Kim, Yu Kyeong</creatorcontrib><creatorcontrib>Frost, James</creatorcontrib><creatorcontrib>Wand, Gary</creatorcontrib><creatorcontrib>McCaul, Mary E</creatorcontrib><creatorcontrib>Lee, Dong Soo</creatorcontrib><title>Multiple linear analysis methods for the quantification of irreversibly binding radiotracers</title><title>Journal of cerebral blood flow and metabolism</title><addtitle>J Cereb Blood Flow Metab</addtitle><description>Gjedde—Patlak graphical analysis (GPGA) has commonly been used to quantify the net accumulations (Kin) of radioligands that bind or are taken up irreversibly. We suggest an alternative approach (MLAIR: multiple linear analysis for irreversible radiotracers) for the quantification of these types of tracers. Two multiple linear regression model equations were derived from differential equations of the two-tissue compartment model with irreversible binding. Multiple linear analysis for irreversible radiotracer 1 has a desirable feature for ordinary least square estimations because only the dependent variable CT(t) is noisy. Multiple linear analysis for irreversible radiotracer 2 provides Kin from direct estimates of the coefficients of independent variables without the mediation of a division operation. During computer simulations, MLAIR1 provided less biased Kin estimates than the other linear methods, but showed a high uncertainty level for noisy data, whereas MLAIR2 increased the robustness of estimation in terms of variability, but at the expense of increased bias. For real [11C]MeNTI positron emission tomography data, both methods showed good correlations, with parameters estimated using the standard nonlinear least squares method. Multiple linear analysis for irreversible radiotracer 2 parametric images showed remarkable image quality as compared with GPGA images. It also showed markedly improved statistical power for voxelwise comparisons than GPGA. The two MLAIR approaches examined were found to have several advantages over the conventional GPGA method.</description><subject>Biological and medical sciences</subject><subject>Brain - diagnostic imaging</subject><subject>Cardiology. Vascular system</subject><subject>Computer Simulation</subject><subject>Congenital heart diseases. Malformations of the aorta, pulmonary vessels and vena cava</subject><subject>Fluorine Radioisotopes - analysis</subject><subject>Fluorine Radioisotopes - pharmacokinetics</subject><subject>Heart</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Models, Theoretical</subject><subject>Neurology</subject><subject>Positron-Emission Tomography - methods</subject><subject>Radioisotopes - analysis</subject><subject>Radioisotopes - pharmacokinetics</subject><subject>Vascular diseases and vascular malformations of the nervous system</subject><subject>Young Adult</subject><issn>0271-678X</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp10c9rFDEUB_Agit1Wj14lCiIIsyYzkx9zKUipP6DiRcGDEN5kkt0smWSbzBT2vzfbXbYqeAokn3zfSx5CLyhZUtLI9xvd23FZEyKXsn2EFpSxrhKE8sdoQWpBKy7kzzN0nvOGFNQw9hSdUclrKYRYoF9fZz-5rTfYu2AgYQjgd9llPJppHYeMbUx4Wht8O0OYnHUaJhcDjha7lMydSdn1fod7FwYXVjjB4OKUQJeDZ-iJBZ_N8-N6gX58vP5-9bm6-fbpy9WHm0qzhk0Vtxw4Y4YNrekbMgzU2EG2rYZOci0510IKPXSNHcqGlF25oA1rDAiQ5SXNBbo85G7nfjSDNqE04NU2uRHSTkVw6u-T4NZqFe9Uy5pGClIC3h4DUrydTZ7U6LI23kMwcc5KilJF1EIW-fofuYlzKn-WVU07RlrS8oKqA9Ip5pyMPbVCidpPTd1PTe2npmRb_Ms_-3_QxzEV8OYIIGvwNkHQLp9cTTpZYmlx7w4uw8o8dPa_qq8OOMA0J3NKu1d7VMxvgLS80g</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Kim, Su Jin</creator><creator>Lee, Jae Sung</creator><creator>Kim, Yu Kyeong</creator><creator>Frost, James</creator><creator>Wand, Gary</creator><creator>McCaul, Mary E</creator><creator>Lee, Dong Soo</creator><general>SAGE Publications</general><general>Nature Publishing Group</general><general>Sage Publications Ltd</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20081201</creationdate><title>Multiple linear analysis methods for the quantification of irreversibly binding radiotracers</title><author>Kim, Su Jin ; Lee, Jae Sung ; Kim, Yu Kyeong ; Frost, James ; Wand, Gary ; McCaul, Mary E ; Lee, Dong Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-6f6a655e5d4eb30dd1efd844ca986c866c787cd93fd9868896f6ce53ea7a88623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biological and medical sciences</topic><topic>Brain - diagnostic imaging</topic><topic>Cardiology. Vascular system</topic><topic>Computer Simulation</topic><topic>Congenital heart diseases. Malformations of the aorta, pulmonary vessels and vena cava</topic><topic>Fluorine Radioisotopes - analysis</topic><topic>Fluorine Radioisotopes - pharmacokinetics</topic><topic>Heart</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Models, Theoretical</topic><topic>Neurology</topic><topic>Positron-Emission Tomography - methods</topic><topic>Radioisotopes - analysis</topic><topic>Radioisotopes - pharmacokinetics</topic><topic>Vascular diseases and vascular malformations of the nervous system</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Su Jin</creatorcontrib><creatorcontrib>Lee, Jae Sung</creatorcontrib><creatorcontrib>Kim, Yu Kyeong</creatorcontrib><creatorcontrib>Frost, James</creatorcontrib><creatorcontrib>Wand, Gary</creatorcontrib><creatorcontrib>McCaul, Mary E</creatorcontrib><creatorcontrib>Lee, Dong Soo</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cerebral blood flow and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Su Jin</au><au>Lee, Jae Sung</au><au>Kim, Yu Kyeong</au><au>Frost, James</au><au>Wand, Gary</au><au>McCaul, Mary E</au><au>Lee, Dong Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple linear analysis methods for the quantification of irreversibly binding radiotracers</atitle><jtitle>Journal of cerebral blood flow and metabolism</jtitle><addtitle>J Cereb Blood Flow Metab</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>28</volume><issue>12</issue><spage>1965</spage><epage>1977</epage><pages>1965-1977</pages><issn>0271-678X</issn><eissn>1559-7016</eissn><coden>JCBMDN</coden><abstract>Gjedde—Patlak graphical analysis (GPGA) has commonly been used to quantify the net accumulations (Kin) of radioligands that bind or are taken up irreversibly. We suggest an alternative approach (MLAIR: multiple linear analysis for irreversible radiotracers) for the quantification of these types of tracers. Two multiple linear regression model equations were derived from differential equations of the two-tissue compartment model with irreversible binding. Multiple linear analysis for irreversible radiotracer 1 has a desirable feature for ordinary least square estimations because only the dependent variable CT(t) is noisy. Multiple linear analysis for irreversible radiotracer 2 provides Kin from direct estimates of the coefficients of independent variables without the mediation of a division operation. During computer simulations, MLAIR1 provided less biased Kin estimates than the other linear methods, but showed a high uncertainty level for noisy data, whereas MLAIR2 increased the robustness of estimation in terms of variability, but at the expense of increased bias. For real [11C]MeNTI positron emission tomography data, both methods showed good correlations, with parameters estimated using the standard nonlinear least squares method. Multiple linear analysis for irreversible radiotracer 2 parametric images showed remarkable image quality as compared with GPGA images. It also showed markedly improved statistical power for voxelwise comparisons than GPGA. The two MLAIR approaches examined were found to have several advantages over the conventional GPGA method.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>18628777</pmid><doi>10.1038/jcbfm.2008.84</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-678X |
ispartof | Journal of cerebral blood flow and metabolism, 2008-12, Vol.28 (12), p.1965-1977 |
issn | 0271-678X 1559-7016 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4533870 |
source | MEDLINE; SAGE Complete |
subjects | Biological and medical sciences Brain - diagnostic imaging Cardiology. Vascular system Computer Simulation Congenital heart diseases. Malformations of the aorta, pulmonary vessels and vena cava Fluorine Radioisotopes - analysis Fluorine Radioisotopes - pharmacokinetics Heart Humans Linear Models Male Medical sciences Models, Theoretical Neurology Positron-Emission Tomography - methods Radioisotopes - analysis Radioisotopes - pharmacokinetics Vascular diseases and vascular malformations of the nervous system Young Adult |
title | Multiple linear analysis methods for the quantification of irreversibly binding radiotracers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A43%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20linear%20analysis%20methods%20for%20the%20quantification%20of%20irreversibly%20binding%20radiotracers&rft.jtitle=Journal%20of%20cerebral%20blood%20flow%20and%20metabolism&rft.au=Kim,%20Su%20Jin&rft.date=2008-12-01&rft.volume=28&rft.issue=12&rft.spage=1965&rft.epage=1977&rft.pages=1965-1977&rft.issn=0271-678X&rft.eissn=1559-7016&rft.coden=JCBMDN&rft_id=info:doi/10.1038/jcbfm.2008.84&rft_dat=%3Cproquest_pubme%3E1599266651%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219504046&rft_id=info:pmid/18628777&rft_sage_id=10.1038_jcbfm.2008.84&rfr_iscdi=true |