Interpreting support vector machine models for multivariate group wise analysis in neuroimaging

•Support vector machines (SVM) use multivariate imaging information for diagnosis.•Approximate SVM permutation tests for population statistics.•Improved statistics used for SVM permutation testing.•Fast multivariate inference.•Difference between multivariate and univariate inference. [Display omitte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis 2015-08, Vol.24 (1), p.190-204
Hauptverfasser: Gaonkar, Bilwaj, T. Shinohara, Russell, Davatzikos, Christos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 204
container_issue 1
container_start_page 190
container_title Medical image analysis
container_volume 24
creator Gaonkar, Bilwaj
T. Shinohara, Russell
Davatzikos, Christos
description •Support vector machines (SVM) use multivariate imaging information for diagnosis.•Approximate SVM permutation tests for population statistics.•Improved statistics used for SVM permutation testing.•Fast multivariate inference.•Difference between multivariate and univariate inference. [Display omitted] Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier’s decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification.
doi_str_mv 10.1016/j.media.2015.06.008
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4532600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S136184151500095X</els_id><sourcerecordid>1703709277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-e574ce4b0436930c8d4e5a100944cc7fd600be87e7f864d444364d410950a8543</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhi1UxFLaX1AJ-djLpuPYiZNDkRDqBxISFzhbXmey61ViB9tZxL-vl6Wr9sJpRuN33hnPQ8gXBgUDVn_bFiN2VhclsKqAugBoTsg54zVbNqLkH445qxbkY4xbAJBCwBlZlHXJoGX8nKhblzBMAZN1axrnafIh0R2a5AMdtdlYh3T0HQ6R9vvSPCS708HqhHQd_DzRZxuRaqeHl2gjtY46nIO3o15ny0_ktNdDxM9v8YI8_vzxcPN7eXf_6_bm-m5pRNWmJVZSGBQrELxuOZimE1hpBtAKYYzsuxpghY1E2Te16ITIuhzyJyrQTSX4Bbk6-E7zKp_FoEtBD2oKeY_wory26v8XZzdq7XdKVLzM5tng65tB8E8zxqRGGw0Og3bo56iYBC6hLaXMUn6QmuBjDNgfxzBQezRqq17RqD0aBbXKaHLX5b8bHnv-ssiC7wdBvjXuLAYVjUVnslPIPFTn7bsD_gAyLKL4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1703709277</pqid></control><display><type>article</type><title>Interpreting support vector machine models for multivariate group wise analysis in neuroimaging</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Gaonkar, Bilwaj ; T. Shinohara, Russell ; Davatzikos, Christos</creator><creatorcontrib>Gaonkar, Bilwaj ; T. Shinohara, Russell ; Davatzikos, Christos ; for the Alzheimers Disease Neuroimaging Initiative ; Alzheimers Disease Neuroimaging Initiative</creatorcontrib><description>•Support vector machines (SVM) use multivariate imaging information for diagnosis.•Approximate SVM permutation tests for population statistics.•Improved statistics used for SVM permutation testing.•Fast multivariate inference.•Difference between multivariate and univariate inference. [Display omitted] Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier’s decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2015.06.008</identifier><identifier>PMID: 26210913</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Analytic approximation ; Brain - anatomy &amp; histology ; Brain - physiology ; Computer Simulation ; Humans ; Image Enhancement - methods ; Magnetic Resonance Imaging - methods ; Models, Statistical ; Multivariate Analysis ; Neuroimaging - methods ; Pattern Recognition, Automated - methods ; Permutation tests ; Reproducibility of Results ; Sensitivity and Specificity ; Support Vector Machine ; SVM</subject><ispartof>Medical image analysis, 2015-08, Vol.24 (1), p.190-204</ispartof><rights>2015 Elsevier B.V.</rights><rights>Copyright © 2015 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-e574ce4b0436930c8d4e5a100944cc7fd600be87e7f864d444364d410950a8543</citedby><cites>FETCH-LOGICAL-c459t-e574ce4b0436930c8d4e5a100944cc7fd600be87e7f864d444364d410950a8543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.media.2015.06.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26210913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaonkar, Bilwaj</creatorcontrib><creatorcontrib>T. Shinohara, Russell</creatorcontrib><creatorcontrib>Davatzikos, Christos</creatorcontrib><creatorcontrib>for the Alzheimers Disease Neuroimaging Initiative</creatorcontrib><creatorcontrib>Alzheimers Disease Neuroimaging Initiative</creatorcontrib><title>Interpreting support vector machine models for multivariate group wise analysis in neuroimaging</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>•Support vector machines (SVM) use multivariate imaging information for diagnosis.•Approximate SVM permutation tests for population statistics.•Improved statistics used for SVM permutation testing.•Fast multivariate inference.•Difference between multivariate and univariate inference. [Display omitted] Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier’s decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification.</description><subject>Analytic approximation</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain - physiology</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Models, Statistical</subject><subject>Multivariate Analysis</subject><subject>Neuroimaging - methods</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Permutation tests</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Support Vector Machine</subject><subject>SVM</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1P3DAQhi1UxFLaX1AJ-djLpuPYiZNDkRDqBxISFzhbXmey61ViB9tZxL-vl6Wr9sJpRuN33hnPQ8gXBgUDVn_bFiN2VhclsKqAugBoTsg54zVbNqLkH445qxbkY4xbAJBCwBlZlHXJoGX8nKhblzBMAZN1axrnafIh0R2a5AMdtdlYh3T0HQ6R9vvSPCS708HqhHQd_DzRZxuRaqeHl2gjtY46nIO3o15ny0_ktNdDxM9v8YI8_vzxcPN7eXf_6_bm-m5pRNWmJVZSGBQrELxuOZimE1hpBtAKYYzsuxpghY1E2Te16ITIuhzyJyrQTSX4Bbk6-E7zKp_FoEtBD2oKeY_wory26v8XZzdq7XdKVLzM5tng65tB8E8zxqRGGw0Og3bo56iYBC6hLaXMUn6QmuBjDNgfxzBQezRqq17RqD0aBbXKaHLX5b8bHnv-ssiC7wdBvjXuLAYVjUVnslPIPFTn7bsD_gAyLKL4</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Gaonkar, Bilwaj</creator><creator>T. Shinohara, Russell</creator><creator>Davatzikos, Christos</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150801</creationdate><title>Interpreting support vector machine models for multivariate group wise analysis in neuroimaging</title><author>Gaonkar, Bilwaj ; T. Shinohara, Russell ; Davatzikos, Christos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-e574ce4b0436930c8d4e5a100944cc7fd600be87e7f864d444364d410950a8543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analytic approximation</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain - physiology</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Models, Statistical</topic><topic>Multivariate Analysis</topic><topic>Neuroimaging - methods</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Permutation tests</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Support Vector Machine</topic><topic>SVM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaonkar, Bilwaj</creatorcontrib><creatorcontrib>T. Shinohara, Russell</creatorcontrib><creatorcontrib>Davatzikos, Christos</creatorcontrib><creatorcontrib>for the Alzheimers Disease Neuroimaging Initiative</creatorcontrib><creatorcontrib>Alzheimers Disease Neuroimaging Initiative</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaonkar, Bilwaj</au><au>T. Shinohara, Russell</au><au>Davatzikos, Christos</au><aucorp>for the Alzheimers Disease Neuroimaging Initiative</aucorp><aucorp>Alzheimers Disease Neuroimaging Initiative</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpreting support vector machine models for multivariate group wise analysis in neuroimaging</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2015-08-01</date><risdate>2015</risdate><volume>24</volume><issue>1</issue><spage>190</spage><epage>204</epage><pages>190-204</pages><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>•Support vector machines (SVM) use multivariate imaging information for diagnosis.•Approximate SVM permutation tests for population statistics.•Improved statistics used for SVM permutation testing.•Fast multivariate inference.•Difference between multivariate and univariate inference. [Display omitted] Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier’s decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>26210913</pmid><doi>10.1016/j.media.2015.06.008</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1361-8415
ispartof Medical image analysis, 2015-08, Vol.24 (1), p.190-204
issn 1361-8415
1361-8423
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4532600
source MEDLINE; Elsevier ScienceDirect Journals
subjects Analytic approximation
Brain - anatomy & histology
Brain - physiology
Computer Simulation
Humans
Image Enhancement - methods
Magnetic Resonance Imaging - methods
Models, Statistical
Multivariate Analysis
Neuroimaging - methods
Pattern Recognition, Automated - methods
Permutation tests
Reproducibility of Results
Sensitivity and Specificity
Support Vector Machine
SVM
title Interpreting support vector machine models for multivariate group wise analysis in neuroimaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A04%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpreting%20support%20vector%20machine%20models%20for%20multivariate%20group%20wise%20analysis%20in%20neuroimaging&rft.jtitle=Medical%20image%20analysis&rft.au=Gaonkar,%20Bilwaj&rft.aucorp=for%20the%20Alzheimers%20Disease%20Neuroimaging%20Initiative&rft.date=2015-08-01&rft.volume=24&rft.issue=1&rft.spage=190&rft.epage=204&rft.pages=190-204&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2015.06.008&rft_dat=%3Cproquest_pubme%3E1703709277%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1703709277&rft_id=info:pmid/26210913&rft_els_id=S136184151500095X&rfr_iscdi=true