Ligand-Induced Proton Transfer and Low-Barrier Hydrogen Bond Revealed by X‑ray Crystallography

Ligand binding can change the pK a of protein residues and influence enzyme catalysis. Herein, we report three ultrahigh resolution X-ray crystal structures of CTX-M β-lactamase, directly visualizing protonation state changes along the enzymatic pathway: apo protein at 0.79 Å, precovalent complex wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2015-07, Vol.137 (25), p.8086-8095
Hauptverfasser: Nichols, Derek A, Hargis, Jacqueline C, Sanishvili, Ruslan, Jaishankar, Priyadarshini, Defrees, Kyle, Smith, Emmanuel W, Wang, Kenneth K, Prati, Fabio, Renslo, Adam R, Woodcock, H. Lee, Chen, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8095
container_issue 25
container_start_page 8086
container_title Journal of the American Chemical Society
container_volume 137
creator Nichols, Derek A
Hargis, Jacqueline C
Sanishvili, Ruslan
Jaishankar, Priyadarshini
Defrees, Kyle
Smith, Emmanuel W
Wang, Kenneth K
Prati, Fabio
Renslo, Adam R
Woodcock, H. Lee
Chen, Yu
description Ligand binding can change the pK a of protein residues and influence enzyme catalysis. Herein, we report three ultrahigh resolution X-ray crystal structures of CTX-M β-lactamase, directly visualizing protonation state changes along the enzymatic pathway: apo protein at 0.79 Å, precovalent complex with nonelectrophilic ligand at 0.89 Å, and acylation transition state (TS) analogue at 0.84 Å. Binding of the noncovalent ligand induces a proton transfer from the catalytic Ser70 to the negatively charged Glu166, and the formation of a low-barrier hydrogen bond (LBHB) between Ser70 and Lys73, with a length of 2.53 Å and the shared hydrogen equidistant from the heteroatoms. QM/MM reaction path calculations determined the proton transfer barrier to be 1.53 kcal/mol. The LBHB is absent in the other two structures although Glu166 remains neutral in the covalent complex. Our data represents the first X-ray crystallographic example of a hydrogen engaged in an enzymatic LBHB, and demonstrates that desolvation of the active site by ligand binding can provide a protein microenvironment conducive to LBHB formation. It also suggests that LBHBs may contribute to stabilization of the TS in general acid/base catalysis together with other preorganized features of enzyme active sites. These structures reconcile previous experimental results suggesting alternatively Glu166 or Lys73 as the general base for acylation, and underline the importance of considering residue protonation state change when modeling protein–ligand interactions. Additionally, the observation of another LBHB (2.47 Å) between two conserved residues, Asp233 and Asp246, suggests that LBHBs may potentially play a special structural role in proteins.
doi_str_mv 10.1021/jacs.5b00749
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4530788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1693187956</sourcerecordid><originalsourceid>FETCH-LOGICAL-a516t-c34f27fe5def53d70a585f26121e68fe971c41888c62d4005af53689c7f531543</originalsourceid><addsrcrecordid>eNqFkc1KAzEUhYMoWqs71zJLF44mmcnPbARb_CkUFFFwF9NMpp0yTWoyU5mdr-Ar-iSmWKuC4OpyOd89ubkHgAMETxDE6HQqlT8hIwhZmm2ADiIYxgRhugk6EEIcM06THbDr_TS0KeZoG-xgCgnDBHfA07AcS5PHA5M3SufRrbO1NdG9k8YX2kVBi4b2Je5J58rQX7e5s2Ntop4Nyp1eaFmFsVEbPb6_vjnZRn3X-lpWlR07OZ-0e2CrkJXX-6vaBQ-XF_f963h4czXonw9jSRCtY5WkBWaFJrkuSJIzKAknBaYII015oTOGVIo454riPIWQyIBRnikWKiJp0gVnn77zZjTTudKmdrISc1fOpGuFlaX4rZhyIsZ2IVKSQMZ5MDhaGTj73Ghfi1npla4qabRtvMDhfEmKacL-RRHNEsRZRmhAjz9R5az3ThfrjRAUy_zEMj-xyi_ghz9_sYa_Avt-ejk1tY0z4ah_e30AuYGk3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1693187956</pqid></control><display><type>article</type><title>Ligand-Induced Proton Transfer and Low-Barrier Hydrogen Bond Revealed by X‑ray Crystallography</title><source>American Chemical Society</source><source>MEDLINE</source><creator>Nichols, Derek A ; Hargis, Jacqueline C ; Sanishvili, Ruslan ; Jaishankar, Priyadarshini ; Defrees, Kyle ; Smith, Emmanuel W ; Wang, Kenneth K ; Prati, Fabio ; Renslo, Adam R ; Woodcock, H. Lee ; Chen, Yu</creator><creatorcontrib>Nichols, Derek A ; Hargis, Jacqueline C ; Sanishvili, Ruslan ; Jaishankar, Priyadarshini ; Defrees, Kyle ; Smith, Emmanuel W ; Wang, Kenneth K ; Prati, Fabio ; Renslo, Adam R ; Woodcock, H. Lee ; Chen, Yu</creatorcontrib><description>Ligand binding can change the pK a of protein residues and influence enzyme catalysis. Herein, we report three ultrahigh resolution X-ray crystal structures of CTX-M β-lactamase, directly visualizing protonation state changes along the enzymatic pathway: apo protein at 0.79 Å, precovalent complex with nonelectrophilic ligand at 0.89 Å, and acylation transition state (TS) analogue at 0.84 Å. Binding of the noncovalent ligand induces a proton transfer from the catalytic Ser70 to the negatively charged Glu166, and the formation of a low-barrier hydrogen bond (LBHB) between Ser70 and Lys73, with a length of 2.53 Å and the shared hydrogen equidistant from the heteroatoms. QM/MM reaction path calculations determined the proton transfer barrier to be 1.53 kcal/mol. The LBHB is absent in the other two structures although Glu166 remains neutral in the covalent complex. Our data represents the first X-ray crystallographic example of a hydrogen engaged in an enzymatic LBHB, and demonstrates that desolvation of the active site by ligand binding can provide a protein microenvironment conducive to LBHB formation. It also suggests that LBHBs may contribute to stabilization of the TS in general acid/base catalysis together with other preorganized features of enzyme active sites. These structures reconcile previous experimental results suggesting alternatively Glu166 or Lys73 as the general base for acylation, and underline the importance of considering residue protonation state change when modeling protein–ligand interactions. Additionally, the observation of another LBHB (2.47 Å) between two conserved residues, Asp233 and Asp246, suggests that LBHBs may potentially play a special structural role in proteins.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.5b00749</identifier><identifier>PMID: 26057252</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>active sites ; acylation ; beta-lactamase ; beta-Lactamases - chemistry ; catalytic activity ; Crystallography, X-Ray ; Escherichia coli - chemistry ; Escherichia coli - enzymology ; hydrogen ; Hydrogen Bonding ; ligands ; Models, Molecular ; Protein Conformation ; proteins ; Protons ; X-ray diffraction</subject><ispartof>Journal of the American Chemical Society, 2015-07, Vol.137 (25), p.8086-8095</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a516t-c34f27fe5def53d70a585f26121e68fe971c41888c62d4005af53689c7f531543</citedby><cites>FETCH-LOGICAL-a516t-c34f27fe5def53d70a585f26121e68fe971c41888c62d4005af53689c7f531543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.5b00749$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.5b00749$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26057252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nichols, Derek A</creatorcontrib><creatorcontrib>Hargis, Jacqueline C</creatorcontrib><creatorcontrib>Sanishvili, Ruslan</creatorcontrib><creatorcontrib>Jaishankar, Priyadarshini</creatorcontrib><creatorcontrib>Defrees, Kyle</creatorcontrib><creatorcontrib>Smith, Emmanuel W</creatorcontrib><creatorcontrib>Wang, Kenneth K</creatorcontrib><creatorcontrib>Prati, Fabio</creatorcontrib><creatorcontrib>Renslo, Adam R</creatorcontrib><creatorcontrib>Woodcock, H. Lee</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><title>Ligand-Induced Proton Transfer and Low-Barrier Hydrogen Bond Revealed by X‑ray Crystallography</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Ligand binding can change the pK a of protein residues and influence enzyme catalysis. Herein, we report three ultrahigh resolution X-ray crystal structures of CTX-M β-lactamase, directly visualizing protonation state changes along the enzymatic pathway: apo protein at 0.79 Å, precovalent complex with nonelectrophilic ligand at 0.89 Å, and acylation transition state (TS) analogue at 0.84 Å. Binding of the noncovalent ligand induces a proton transfer from the catalytic Ser70 to the negatively charged Glu166, and the formation of a low-barrier hydrogen bond (LBHB) between Ser70 and Lys73, with a length of 2.53 Å and the shared hydrogen equidistant from the heteroatoms. QM/MM reaction path calculations determined the proton transfer barrier to be 1.53 kcal/mol. The LBHB is absent in the other two structures although Glu166 remains neutral in the covalent complex. Our data represents the first X-ray crystallographic example of a hydrogen engaged in an enzymatic LBHB, and demonstrates that desolvation of the active site by ligand binding can provide a protein microenvironment conducive to LBHB formation. It also suggests that LBHBs may contribute to stabilization of the TS in general acid/base catalysis together with other preorganized features of enzyme active sites. These structures reconcile previous experimental results suggesting alternatively Glu166 or Lys73 as the general base for acylation, and underline the importance of considering residue protonation state change when modeling protein–ligand interactions. Additionally, the observation of another LBHB (2.47 Å) between two conserved residues, Asp233 and Asp246, suggests that LBHBs may potentially play a special structural role in proteins.</description><subject>active sites</subject><subject>acylation</subject><subject>beta-lactamase</subject><subject>beta-Lactamases - chemistry</subject><subject>catalytic activity</subject><subject>Crystallography, X-Ray</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - enzymology</subject><subject>hydrogen</subject><subject>Hydrogen Bonding</subject><subject>ligands</subject><subject>Models, Molecular</subject><subject>Protein Conformation</subject><subject>proteins</subject><subject>Protons</subject><subject>X-ray diffraction</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1KAzEUhYMoWqs71zJLF44mmcnPbARb_CkUFFFwF9NMpp0yTWoyU5mdr-Ar-iSmWKuC4OpyOd89ubkHgAMETxDE6HQqlT8hIwhZmm2ADiIYxgRhugk6EEIcM06THbDr_TS0KeZoG-xgCgnDBHfA07AcS5PHA5M3SufRrbO1NdG9k8YX2kVBi4b2Je5J58rQX7e5s2Ntop4Nyp1eaFmFsVEbPb6_vjnZRn3X-lpWlR07OZ-0e2CrkJXX-6vaBQ-XF_f963h4czXonw9jSRCtY5WkBWaFJrkuSJIzKAknBaYII015oTOGVIo454riPIWQyIBRnikWKiJp0gVnn77zZjTTudKmdrISc1fOpGuFlaX4rZhyIsZ2IVKSQMZ5MDhaGTj73Ghfi1npla4qabRtvMDhfEmKacL-RRHNEsRZRmhAjz9R5az3ThfrjRAUy_zEMj-xyi_ghz9_sYa_Avt-ejk1tY0z4ah_e30AuYGk3Q</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Nichols, Derek A</creator><creator>Hargis, Jacqueline C</creator><creator>Sanishvili, Ruslan</creator><creator>Jaishankar, Priyadarshini</creator><creator>Defrees, Kyle</creator><creator>Smith, Emmanuel W</creator><creator>Wang, Kenneth K</creator><creator>Prati, Fabio</creator><creator>Renslo, Adam R</creator><creator>Woodcock, H. Lee</creator><creator>Chen, Yu</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20150701</creationdate><title>Ligand-Induced Proton Transfer and Low-Barrier Hydrogen Bond Revealed by X‑ray Crystallography</title><author>Nichols, Derek A ; Hargis, Jacqueline C ; Sanishvili, Ruslan ; Jaishankar, Priyadarshini ; Defrees, Kyle ; Smith, Emmanuel W ; Wang, Kenneth K ; Prati, Fabio ; Renslo, Adam R ; Woodcock, H. Lee ; Chen, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a516t-c34f27fe5def53d70a585f26121e68fe971c41888c62d4005af53689c7f531543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>active sites</topic><topic>acylation</topic><topic>beta-lactamase</topic><topic>beta-Lactamases - chemistry</topic><topic>catalytic activity</topic><topic>Crystallography, X-Ray</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - enzymology</topic><topic>hydrogen</topic><topic>Hydrogen Bonding</topic><topic>ligands</topic><topic>Models, Molecular</topic><topic>Protein Conformation</topic><topic>proteins</topic><topic>Protons</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nichols, Derek A</creatorcontrib><creatorcontrib>Hargis, Jacqueline C</creatorcontrib><creatorcontrib>Sanishvili, Ruslan</creatorcontrib><creatorcontrib>Jaishankar, Priyadarshini</creatorcontrib><creatorcontrib>Defrees, Kyle</creatorcontrib><creatorcontrib>Smith, Emmanuel W</creatorcontrib><creatorcontrib>Wang, Kenneth K</creatorcontrib><creatorcontrib>Prati, Fabio</creatorcontrib><creatorcontrib>Renslo, Adam R</creatorcontrib><creatorcontrib>Woodcock, H. Lee</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nichols, Derek A</au><au>Hargis, Jacqueline C</au><au>Sanishvili, Ruslan</au><au>Jaishankar, Priyadarshini</au><au>Defrees, Kyle</au><au>Smith, Emmanuel W</au><au>Wang, Kenneth K</au><au>Prati, Fabio</au><au>Renslo, Adam R</au><au>Woodcock, H. Lee</au><au>Chen, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ligand-Induced Proton Transfer and Low-Barrier Hydrogen Bond Revealed by X‑ray Crystallography</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>137</volume><issue>25</issue><spage>8086</spage><epage>8095</epage><pages>8086-8095</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Ligand binding can change the pK a of protein residues and influence enzyme catalysis. Herein, we report three ultrahigh resolution X-ray crystal structures of CTX-M β-lactamase, directly visualizing protonation state changes along the enzymatic pathway: apo protein at 0.79 Å, precovalent complex with nonelectrophilic ligand at 0.89 Å, and acylation transition state (TS) analogue at 0.84 Å. Binding of the noncovalent ligand induces a proton transfer from the catalytic Ser70 to the negatively charged Glu166, and the formation of a low-barrier hydrogen bond (LBHB) between Ser70 and Lys73, with a length of 2.53 Å and the shared hydrogen equidistant from the heteroatoms. QM/MM reaction path calculations determined the proton transfer barrier to be 1.53 kcal/mol. The LBHB is absent in the other two structures although Glu166 remains neutral in the covalent complex. Our data represents the first X-ray crystallographic example of a hydrogen engaged in an enzymatic LBHB, and demonstrates that desolvation of the active site by ligand binding can provide a protein microenvironment conducive to LBHB formation. It also suggests that LBHBs may contribute to stabilization of the TS in general acid/base catalysis together with other preorganized features of enzyme active sites. These structures reconcile previous experimental results suggesting alternatively Glu166 or Lys73 as the general base for acylation, and underline the importance of considering residue protonation state change when modeling protein–ligand interactions. Additionally, the observation of another LBHB (2.47 Å) between two conserved residues, Asp233 and Asp246, suggests that LBHBs may potentially play a special structural role in proteins.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26057252</pmid><doi>10.1021/jacs.5b00749</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2015-07, Vol.137 (25), p.8086-8095
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4530788
source American Chemical Society; MEDLINE
subjects active sites
acylation
beta-lactamase
beta-Lactamases - chemistry
catalytic activity
Crystallography, X-Ray
Escherichia coli - chemistry
Escherichia coli - enzymology
hydrogen
Hydrogen Bonding
ligands
Models, Molecular
Protein Conformation
proteins
Protons
X-ray diffraction
title Ligand-Induced Proton Transfer and Low-Barrier Hydrogen Bond Revealed by X‑ray Crystallography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ligand-Induced%20Proton%20Transfer%20and%20Low-Barrier%20Hydrogen%20Bond%20Revealed%20by%20X%E2%80%91ray%20Crystallography&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Nichols,%20Derek%20A&rft.date=2015-07-01&rft.volume=137&rft.issue=25&rft.spage=8086&rft.epage=8095&rft.pages=8086-8095&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.5b00749&rft_dat=%3Cproquest_pubme%3E1693187956%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1693187956&rft_id=info:pmid/26057252&rfr_iscdi=true