STIM1 accelerates cell senescence in a remodeled microenvironment but enhances the epithelial-to-mesenchymal transition in prostate cancer

The importance of store-operated Ca 2+ entry (SOCE) and the role of its key molecular regulators, STIM1 and ORAI1, in the development of cancer are emerging. Here, we report an unexpected dual function of SOCE in prostate cancer progression by revealing a decrease in the expression of STIM1 in human...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2015-08, Vol.5 (1), p.11754-11754, Article 11754
Hauptverfasser: Xu, Yingxi, Zhang, Shu, Niu, Haiying, Ye, Yujie, Hu, Fen, Chen, Si, Li, Xuefei, Luo, Xiaohe, Jiang, Shan, Liu, Yanhua, Chen, Yanan, Li, Junying, Xiang, Rong, Li, Na
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11754
container_issue 1
container_start_page 11754
container_title Scientific reports
container_volume 5
creator Xu, Yingxi
Zhang, Shu
Niu, Haiying
Ye, Yujie
Hu, Fen
Chen, Si
Li, Xuefei
Luo, Xiaohe
Jiang, Shan
Liu, Yanhua
Chen, Yanan
Li, Junying
Xiang, Rong
Li, Na
description The importance of store-operated Ca 2+ entry (SOCE) and the role of its key molecular regulators, STIM1 and ORAI1, in the development of cancer are emerging. Here, we report an unexpected dual function of SOCE in prostate cancer progression by revealing a decrease in the expression of STIM1 in human hyperplasia and tumor tissues of high histological grade and by demonstrating that STIM1 and ORAI1 inhibit cell growth by arresting the G0/G1 phase and enhancing cell senescence in human prostate cancer cells. In addition, STIM1 and ORAI1 inhibited NF-κB signaling and remodeled the tumor microenvironment by reducing the formation of M2 phenotype macrophages, possibly creating an unfavorable tumor microenvironment and inhibiting cancer development. However, STIM1 also promoted cell migration and the epithelial-to-mesenchymal transition by activating TGF-β, Snail and Wnt/β-Catenin pathways. Thus, our study revealed novel regulatory effects and the mechanisms by which STIM1 affects cell senescence, tumor migration and the tumor microenvironment, revealing that STIM1 has multiple functions in prostate cancer cells.
doi_str_mv 10.1038/srep11754
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4530453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899718541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-e9a0fdbf7fb28ac14ee7e3b063ae739f706756f7176e3f49a62d0a8f1943ebaa3</originalsourceid><addsrcrecordid>eNplkctq3TAQhk1paUKSRV-gCLppC050s2VvCiX0EkjJoulayPIoR8GWXEkO5BX61J3DSQ-nrTYzMJ_-ufxV9YrRc0ZFd5ETLIypRj6rjjmVTc0F588P8qPqLOd7iq_hvWT9y-qIt7xRVLXH1a_vt1ffGDHWwgTJFMgEs4lkCJAtBAvEB2JIgjmOiIxk9jZFCA8-xTBDKGRYC4GwMchmUjZAYPEYJm-musR6BtSym8fZTKQkE7IvPoat6pJiLtiS2O3fdFq9cGbKcPYUT6ofnz_dXn6tr2--XF1-vK6tFF2poTfUjYNTbuCdsUwCKBADbYUBJXqnaKua1immWhBO9qblIzWdY70UMBgjTqoPO91lHWYYcUkca9JL8rNJjzoar_-uBL_Rd_FBy0bgTQUKvH0SSPHnCrno2eft1UyAuGbNFBVcStVTRN_8g97HNQVcT7Ou7xXrGsmQerej8LIZ_XT7YRjVW5P13mRkXx9Ovyf_WIrA-x2QsRTuIB20_E_tN-07tLc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899718541</pqid></control><display><type>article</type><title>STIM1 accelerates cell senescence in a remodeled microenvironment but enhances the epithelial-to-mesenchymal transition in prostate cancer</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Xu, Yingxi ; Zhang, Shu ; Niu, Haiying ; Ye, Yujie ; Hu, Fen ; Chen, Si ; Li, Xuefei ; Luo, Xiaohe ; Jiang, Shan ; Liu, Yanhua ; Chen, Yanan ; Li, Junying ; Xiang, Rong ; Li, Na</creator><creatorcontrib>Xu, Yingxi ; Zhang, Shu ; Niu, Haiying ; Ye, Yujie ; Hu, Fen ; Chen, Si ; Li, Xuefei ; Luo, Xiaohe ; Jiang, Shan ; Liu, Yanhua ; Chen, Yanan ; Li, Junying ; Xiang, Rong ; Li, Na</creatorcontrib><description>The importance of store-operated Ca 2+ entry (SOCE) and the role of its key molecular regulators, STIM1 and ORAI1, in the development of cancer are emerging. Here, we report an unexpected dual function of SOCE in prostate cancer progression by revealing a decrease in the expression of STIM1 in human hyperplasia and tumor tissues of high histological grade and by demonstrating that STIM1 and ORAI1 inhibit cell growth by arresting the G0/G1 phase and enhancing cell senescence in human prostate cancer cells. In addition, STIM1 and ORAI1 inhibited NF-κB signaling and remodeled the tumor microenvironment by reducing the formation of M2 phenotype macrophages, possibly creating an unfavorable tumor microenvironment and inhibiting cancer development. However, STIM1 also promoted cell migration and the epithelial-to-mesenchymal transition by activating TGF-β, Snail and Wnt/β-Catenin pathways. Thus, our study revealed novel regulatory effects and the mechanisms by which STIM1 affects cell senescence, tumor migration and the tumor microenvironment, revealing that STIM1 has multiple functions in prostate cancer cells.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep11754</identifier><identifier>PMID: 26257076</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/105 ; 13/2 ; 13/21 ; 13/95 ; 14 ; 14/35 ; 631/67/2329 ; 631/67/327 ; 631/67/581 ; 631/67/589/466 ; 82/79 ; 96 ; Androgens ; Animals ; beta Catenin - metabolism ; Calcium channels ; Calcium Channels - genetics ; Calcium Channels - metabolism ; Calcium influx ; Cell adhesion &amp; migration ; Cell Line, Tumor ; Cell Movement ; Cell Proliferation ; Cellular Senescence ; Down-Regulation ; Epithelial-Mesenchymal Transition ; G1 phase ; G1 Phase Cell Cycle Checkpoints ; Humanities and Social Sciences ; Humans ; Hyperplasia ; Leukocyte migration ; Macrophages ; Macrophages - cytology ; Macrophages - immunology ; Male ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mesenchyme ; Mice ; Mice, Inbred NOD ; Mice, SCID ; multidisciplinary ; Neoplasm Proteins - genetics ; Neoplasm Proteins - metabolism ; NF-kappa B - metabolism ; ORAI1 Protein ; Prostate cancer ; Prostatic Neoplasms - metabolism ; Prostatic Neoplasms - pathology ; Science ; Senescence ; Signal Transduction ; Snail Family Transcription Factors ; STIM1 protein ; Stromal Interaction Molecule 1 ; Transcription Factors - metabolism ; Transforming Growth Factor beta - metabolism ; Transplantation, Heterologous ; Tumor Microenvironment ; Wnt protein ; Wnt Proteins - metabolism ; β-Catenin</subject><ispartof>Scientific reports, 2015-08, Vol.5 (1), p.11754-11754, Article 11754</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Aug 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-e9a0fdbf7fb28ac14ee7e3b063ae739f706756f7176e3f49a62d0a8f1943ebaa3</citedby><cites>FETCH-LOGICAL-c438t-e9a0fdbf7fb28ac14ee7e3b063ae739f706756f7176e3f49a62d0a8f1943ebaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530453/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530453/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26257076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Yingxi</creatorcontrib><creatorcontrib>Zhang, Shu</creatorcontrib><creatorcontrib>Niu, Haiying</creatorcontrib><creatorcontrib>Ye, Yujie</creatorcontrib><creatorcontrib>Hu, Fen</creatorcontrib><creatorcontrib>Chen, Si</creatorcontrib><creatorcontrib>Li, Xuefei</creatorcontrib><creatorcontrib>Luo, Xiaohe</creatorcontrib><creatorcontrib>Jiang, Shan</creatorcontrib><creatorcontrib>Liu, Yanhua</creatorcontrib><creatorcontrib>Chen, Yanan</creatorcontrib><creatorcontrib>Li, Junying</creatorcontrib><creatorcontrib>Xiang, Rong</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><title>STIM1 accelerates cell senescence in a remodeled microenvironment but enhances the epithelial-to-mesenchymal transition in prostate cancer</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The importance of store-operated Ca 2+ entry (SOCE) and the role of its key molecular regulators, STIM1 and ORAI1, in the development of cancer are emerging. Here, we report an unexpected dual function of SOCE in prostate cancer progression by revealing a decrease in the expression of STIM1 in human hyperplasia and tumor tissues of high histological grade and by demonstrating that STIM1 and ORAI1 inhibit cell growth by arresting the G0/G1 phase and enhancing cell senescence in human prostate cancer cells. In addition, STIM1 and ORAI1 inhibited NF-κB signaling and remodeled the tumor microenvironment by reducing the formation of M2 phenotype macrophages, possibly creating an unfavorable tumor microenvironment and inhibiting cancer development. However, STIM1 also promoted cell migration and the epithelial-to-mesenchymal transition by activating TGF-β, Snail and Wnt/β-Catenin pathways. Thus, our study revealed novel regulatory effects and the mechanisms by which STIM1 affects cell senescence, tumor migration and the tumor microenvironment, revealing that STIM1 has multiple functions in prostate cancer cells.</description><subject>13/1</subject><subject>13/105</subject><subject>13/2</subject><subject>13/21</subject><subject>13/95</subject><subject>14</subject><subject>14/35</subject><subject>631/67/2329</subject><subject>631/67/327</subject><subject>631/67/581</subject><subject>631/67/589/466</subject><subject>82/79</subject><subject>96</subject><subject>Androgens</subject><subject>Animals</subject><subject>beta Catenin - metabolism</subject><subject>Calcium channels</subject><subject>Calcium Channels - genetics</subject><subject>Calcium Channels - metabolism</subject><subject>Calcium influx</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement</subject><subject>Cell Proliferation</subject><subject>Cellular Senescence</subject><subject>Down-Regulation</subject><subject>Epithelial-Mesenchymal Transition</subject><subject>G1 phase</subject><subject>G1 Phase Cell Cycle Checkpoints</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hyperplasia</subject><subject>Leukocyte migration</subject><subject>Macrophages</subject><subject>Macrophages - cytology</subject><subject>Macrophages - immunology</subject><subject>Male</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mesenchyme</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Mice, SCID</subject><subject>multidisciplinary</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>NF-kappa B - metabolism</subject><subject>ORAI1 Protein</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - metabolism</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Science</subject><subject>Senescence</subject><subject>Signal Transduction</subject><subject>Snail Family Transcription Factors</subject><subject>STIM1 protein</subject><subject>Stromal Interaction Molecule 1</subject><subject>Transcription Factors - metabolism</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>Transplantation, Heterologous</subject><subject>Tumor Microenvironment</subject><subject>Wnt protein</subject><subject>Wnt Proteins - metabolism</subject><subject>β-Catenin</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkctq3TAQhk1paUKSRV-gCLppC050s2VvCiX0EkjJoulayPIoR8GWXEkO5BX61J3DSQ-nrTYzMJ_-ufxV9YrRc0ZFd5ETLIypRj6rjjmVTc0F588P8qPqLOd7iq_hvWT9y-qIt7xRVLXH1a_vt1ffGDHWwgTJFMgEs4lkCJAtBAvEB2JIgjmOiIxk9jZFCA8-xTBDKGRYC4GwMchmUjZAYPEYJm-musR6BtSym8fZTKQkE7IvPoat6pJiLtiS2O3fdFq9cGbKcPYUT6ofnz_dXn6tr2--XF1-vK6tFF2poTfUjYNTbuCdsUwCKBADbYUBJXqnaKua1immWhBO9qblIzWdY70UMBgjTqoPO91lHWYYcUkca9JL8rNJjzoar_-uBL_Rd_FBy0bgTQUKvH0SSPHnCrno2eft1UyAuGbNFBVcStVTRN_8g97HNQVcT7Ou7xXrGsmQerej8LIZ_XT7YRjVW5P13mRkXx9Ovyf_WIrA-x2QsRTuIB20_E_tN-07tLc</recordid><startdate>20150810</startdate><enddate>20150810</enddate><creator>Xu, Yingxi</creator><creator>Zhang, Shu</creator><creator>Niu, Haiying</creator><creator>Ye, Yujie</creator><creator>Hu, Fen</creator><creator>Chen, Si</creator><creator>Li, Xuefei</creator><creator>Luo, Xiaohe</creator><creator>Jiang, Shan</creator><creator>Liu, Yanhua</creator><creator>Chen, Yanan</creator><creator>Li, Junying</creator><creator>Xiang, Rong</creator><creator>Li, Na</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150810</creationdate><title>STIM1 accelerates cell senescence in a remodeled microenvironment but enhances the epithelial-to-mesenchymal transition in prostate cancer</title><author>Xu, Yingxi ; Zhang, Shu ; Niu, Haiying ; Ye, Yujie ; Hu, Fen ; Chen, Si ; Li, Xuefei ; Luo, Xiaohe ; Jiang, Shan ; Liu, Yanhua ; Chen, Yanan ; Li, Junying ; Xiang, Rong ; Li, Na</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-e9a0fdbf7fb28ac14ee7e3b063ae739f706756f7176e3f49a62d0a8f1943ebaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13/1</topic><topic>13/105</topic><topic>13/2</topic><topic>13/21</topic><topic>13/95</topic><topic>14</topic><topic>14/35</topic><topic>631/67/2329</topic><topic>631/67/327</topic><topic>631/67/581</topic><topic>631/67/589/466</topic><topic>82/79</topic><topic>96</topic><topic>Androgens</topic><topic>Animals</topic><topic>beta Catenin - metabolism</topic><topic>Calcium channels</topic><topic>Calcium Channels - genetics</topic><topic>Calcium Channels - metabolism</topic><topic>Calcium influx</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement</topic><topic>Cell Proliferation</topic><topic>Cellular Senescence</topic><topic>Down-Regulation</topic><topic>Epithelial-Mesenchymal Transition</topic><topic>G1 phase</topic><topic>G1 Phase Cell Cycle Checkpoints</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hyperplasia</topic><topic>Leukocyte migration</topic><topic>Macrophages</topic><topic>Macrophages - cytology</topic><topic>Macrophages - immunology</topic><topic>Male</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mesenchyme</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Mice, SCID</topic><topic>multidisciplinary</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>NF-kappa B - metabolism</topic><topic>ORAI1 Protein</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - metabolism</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Science</topic><topic>Senescence</topic><topic>Signal Transduction</topic><topic>Snail Family Transcription Factors</topic><topic>STIM1 protein</topic><topic>Stromal Interaction Molecule 1</topic><topic>Transcription Factors - metabolism</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>Transplantation, Heterologous</topic><topic>Tumor Microenvironment</topic><topic>Wnt protein</topic><topic>Wnt Proteins - metabolism</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yingxi</creatorcontrib><creatorcontrib>Zhang, Shu</creatorcontrib><creatorcontrib>Niu, Haiying</creatorcontrib><creatorcontrib>Ye, Yujie</creatorcontrib><creatorcontrib>Hu, Fen</creatorcontrib><creatorcontrib>Chen, Si</creatorcontrib><creatorcontrib>Li, Xuefei</creatorcontrib><creatorcontrib>Luo, Xiaohe</creatorcontrib><creatorcontrib>Jiang, Shan</creatorcontrib><creatorcontrib>Liu, Yanhua</creatorcontrib><creatorcontrib>Chen, Yanan</creatorcontrib><creatorcontrib>Li, Junying</creatorcontrib><creatorcontrib>Xiang, Rong</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yingxi</au><au>Zhang, Shu</au><au>Niu, Haiying</au><au>Ye, Yujie</au><au>Hu, Fen</au><au>Chen, Si</au><au>Li, Xuefei</au><au>Luo, Xiaohe</au><au>Jiang, Shan</au><au>Liu, Yanhua</au><au>Chen, Yanan</au><au>Li, Junying</au><au>Xiang, Rong</au><au>Li, Na</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STIM1 accelerates cell senescence in a remodeled microenvironment but enhances the epithelial-to-mesenchymal transition in prostate cancer</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-08-10</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>11754</spage><epage>11754</epage><pages>11754-11754</pages><artnum>11754</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The importance of store-operated Ca 2+ entry (SOCE) and the role of its key molecular regulators, STIM1 and ORAI1, in the development of cancer are emerging. Here, we report an unexpected dual function of SOCE in prostate cancer progression by revealing a decrease in the expression of STIM1 in human hyperplasia and tumor tissues of high histological grade and by demonstrating that STIM1 and ORAI1 inhibit cell growth by arresting the G0/G1 phase and enhancing cell senescence in human prostate cancer cells. In addition, STIM1 and ORAI1 inhibited NF-κB signaling and remodeled the tumor microenvironment by reducing the formation of M2 phenotype macrophages, possibly creating an unfavorable tumor microenvironment and inhibiting cancer development. However, STIM1 also promoted cell migration and the epithelial-to-mesenchymal transition by activating TGF-β, Snail and Wnt/β-Catenin pathways. Thus, our study revealed novel regulatory effects and the mechanisms by which STIM1 affects cell senescence, tumor migration and the tumor microenvironment, revealing that STIM1 has multiple functions in prostate cancer cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26257076</pmid><doi>10.1038/srep11754</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2015-08, Vol.5 (1), p.11754-11754, Article 11754
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4530453
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 13/1
13/105
13/2
13/21
13/95
14
14/35
631/67/2329
631/67/327
631/67/581
631/67/589/466
82/79
96
Androgens
Animals
beta Catenin - metabolism
Calcium channels
Calcium Channels - genetics
Calcium Channels - metabolism
Calcium influx
Cell adhesion & migration
Cell Line, Tumor
Cell Movement
Cell Proliferation
Cellular Senescence
Down-Regulation
Epithelial-Mesenchymal Transition
G1 phase
G1 Phase Cell Cycle Checkpoints
Humanities and Social Sciences
Humans
Hyperplasia
Leukocyte migration
Macrophages
Macrophages - cytology
Macrophages - immunology
Male
Membrane Proteins - genetics
Membrane Proteins - metabolism
Mesenchyme
Mice
Mice, Inbred NOD
Mice, SCID
multidisciplinary
Neoplasm Proteins - genetics
Neoplasm Proteins - metabolism
NF-kappa B - metabolism
ORAI1 Protein
Prostate cancer
Prostatic Neoplasms - metabolism
Prostatic Neoplasms - pathology
Science
Senescence
Signal Transduction
Snail Family Transcription Factors
STIM1 protein
Stromal Interaction Molecule 1
Transcription Factors - metabolism
Transforming Growth Factor beta - metabolism
Transplantation, Heterologous
Tumor Microenvironment
Wnt protein
Wnt Proteins - metabolism
β-Catenin
title STIM1 accelerates cell senescence in a remodeled microenvironment but enhances the epithelial-to-mesenchymal transition in prostate cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A00%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STIM1%20accelerates%20cell%20senescence%20in%20a%20remodeled%20microenvironment%20but%20enhances%20the%20epithelial-to-mesenchymal%20transition%20in%20prostate%20cancer&rft.jtitle=Scientific%20reports&rft.au=Xu,%20Yingxi&rft.date=2015-08-10&rft.volume=5&rft.issue=1&rft.spage=11754&rft.epage=11754&rft.pages=11754-11754&rft.artnum=11754&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep11754&rft_dat=%3Cproquest_pubme%3E1899718541%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899718541&rft_id=info:pmid/26257076&rfr_iscdi=true