MetaMapR: pathway independent metabolomic network analysis incorporating unknowns

Metabolic network mapping is a widely used approach for integration of metabolomic experimental results with biological domain knowledge. However, current approaches can be limited by biochemical domain or pathway knowledge which results in sparse disconnected graphs for real world metabolomic exper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2015-08, Vol.31 (16), p.2757-2760
Hauptverfasser: Grapov, Dmitry, Wanichthanarak, Kwanjeera, Fiehn, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2760
container_issue 16
container_start_page 2757
container_title Bioinformatics
container_volume 31
creator Grapov, Dmitry
Wanichthanarak, Kwanjeera
Fiehn, Oliver
description Metabolic network mapping is a widely used approach for integration of metabolomic experimental results with biological domain knowledge. However, current approaches can be limited by biochemical domain or pathway knowledge which results in sparse disconnected graphs for real world metabolomic experiments. MetaMapR integrates enzymatic transformations with metabolite structural similarity, mass spectral similarity and empirical associations to generate richly connected metabolic networks. This open source, web-based or desktop software, written in the R programming language, leverages KEGG and PubChem databases to derive associations between metabolites even in cases where biochemical domain or molecular annotations are unknown. Network calculation is enhanced through an interface to the Chemical Translation System, which allows metabolite identifier translation between >200 common biochemical databases. Analysis results are presented as interactive visualizations or can be exported as high-quality graphics and numerical tables which can be imported into common network analysis and visualization tools. Freely available at http://dgrapov.github.io/MetaMapR/. Requires R and a modern web browser. Installation instructions, tutorials and application examples are available at http://dgrapov.github.io/MetaMapR/. ofiehn@ucdavis.edu.
doi_str_mv 10.1093/bioinformatics/btv194
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4528626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709168634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-a2a6206d21b3e35e875d55dc288562134119d97505d6db699300063b22c2faab3</originalsourceid><addsrcrecordid>eNqNkV1PwjAUhhujEUV_gmaX3kz6sXabFyaG-JVAjEavm64rUNna2W4Q_r0lIJE7bnranPe8fU5eAK4QvEUwJ4NCW20m1tWi1dIPinaB8uQInCHC0jjJEDre3SHpgXPvvyGEFFJ2CnqYZkkaXmfgfaxaMRbNx13UiHa2FKtIm1I1KhymjerQLWxlay0jo9qldfNIGFGtvPZBKK1rrAsEZhp1Zm7s0vgLcDIRlVeX29oHX0-Pn8OXePT2_Dp8GMWSJqSNBRYMQ1ZiVBBFqMpSWlJaSpxllGFEEoTyMk8DcMnKguU5CfiMFBhLPBGiIH1wv_FtuqJWpQy4TlS8cboWbsWt0Hy_Y_SMT-2CJxRnDLNgcLM1cPanU77ltfZSVZUwynaeozR8mTCC8wOkMEcsYyQ5RIoZpSRdu9KNVDrrvVOTHTyCfB0y3w-Zb0IOc9f_N99N_aVKfgHYFqnz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1702655379</pqid></control><display><type>article</type><title>MetaMapR: pathway independent metabolomic network analysis incorporating unknowns</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Grapov, Dmitry ; Wanichthanarak, Kwanjeera ; Fiehn, Oliver</creator><creatorcontrib>Grapov, Dmitry ; Wanichthanarak, Kwanjeera ; Fiehn, Oliver</creatorcontrib><description>Metabolic network mapping is a widely used approach for integration of metabolomic experimental results with biological domain knowledge. However, current approaches can be limited by biochemical domain or pathway knowledge which results in sparse disconnected graphs for real world metabolomic experiments. MetaMapR integrates enzymatic transformations with metabolite structural similarity, mass spectral similarity and empirical associations to generate richly connected metabolic networks. This open source, web-based or desktop software, written in the R programming language, leverages KEGG and PubChem databases to derive associations between metabolites even in cases where biochemical domain or molecular annotations are unknown. Network calculation is enhanced through an interface to the Chemical Translation System, which allows metabolite identifier translation between &gt;200 common biochemical databases. Analysis results are presented as interactive visualizations or can be exported as high-quality graphics and numerical tables which can be imported into common network analysis and visualization tools. Freely available at http://dgrapov.github.io/MetaMapR/. Requires R and a modern web browser. Installation instructions, tutorials and application examples are available at http://dgrapov.github.io/MetaMapR/. ofiehn@ucdavis.edu.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>EISSN: 1460-2059</identifier><identifier>DOI: 10.1093/bioinformatics/btv194</identifier><identifier>PMID: 25847005</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Applications Notes ; Biochemistry ; Metabolic Networks and Pathways ; Metabolites ; Metabolomics - methods ; Network analysis ; Networks ; Pathways ; Similarity ; Software ; Visualization ; Web Browser</subject><ispartof>Bioinformatics, 2015-08, Vol.31 (16), p.2757-2760</ispartof><rights>The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.</rights><rights>The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-a2a6206d21b3e35e875d55dc288562134119d97505d6db699300063b22c2faab3</citedby><cites>FETCH-LOGICAL-c543t-a2a6206d21b3e35e875d55dc288562134119d97505d6db699300063b22c2faab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528626/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528626/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25847005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grapov, Dmitry</creatorcontrib><creatorcontrib>Wanichthanarak, Kwanjeera</creatorcontrib><creatorcontrib>Fiehn, Oliver</creatorcontrib><title>MetaMapR: pathway independent metabolomic network analysis incorporating unknowns</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Metabolic network mapping is a widely used approach for integration of metabolomic experimental results with biological domain knowledge. However, current approaches can be limited by biochemical domain or pathway knowledge which results in sparse disconnected graphs for real world metabolomic experiments. MetaMapR integrates enzymatic transformations with metabolite structural similarity, mass spectral similarity and empirical associations to generate richly connected metabolic networks. This open source, web-based or desktop software, written in the R programming language, leverages KEGG and PubChem databases to derive associations between metabolites even in cases where biochemical domain or molecular annotations are unknown. Network calculation is enhanced through an interface to the Chemical Translation System, which allows metabolite identifier translation between &gt;200 common biochemical databases. Analysis results are presented as interactive visualizations or can be exported as high-quality graphics and numerical tables which can be imported into common network analysis and visualization tools. Freely available at http://dgrapov.github.io/MetaMapR/. Requires R and a modern web browser. Installation instructions, tutorials and application examples are available at http://dgrapov.github.io/MetaMapR/. ofiehn@ucdavis.edu.</description><subject>Applications Notes</subject><subject>Biochemistry</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolites</subject><subject>Metabolomics - methods</subject><subject>Network analysis</subject><subject>Networks</subject><subject>Pathways</subject><subject>Similarity</subject><subject>Software</subject><subject>Visualization</subject><subject>Web Browser</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1460-2059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV1PwjAUhhujEUV_gmaX3kz6sXabFyaG-JVAjEavm64rUNna2W4Q_r0lIJE7bnranPe8fU5eAK4QvEUwJ4NCW20m1tWi1dIPinaB8uQInCHC0jjJEDre3SHpgXPvvyGEFFJ2CnqYZkkaXmfgfaxaMRbNx13UiHa2FKtIm1I1KhymjerQLWxlay0jo9qldfNIGFGtvPZBKK1rrAsEZhp1Zm7s0vgLcDIRlVeX29oHX0-Pn8OXePT2_Dp8GMWSJqSNBRYMQ1ZiVBBFqMpSWlJaSpxllGFEEoTyMk8DcMnKguU5CfiMFBhLPBGiIH1wv_FtuqJWpQy4TlS8cboWbsWt0Hy_Y_SMT-2CJxRnDLNgcLM1cPanU77ltfZSVZUwynaeozR8mTCC8wOkMEcsYyQ5RIoZpSRdu9KNVDrrvVOTHTyCfB0y3w-Zb0IOc9f_N99N_aVKfgHYFqnz</recordid><startdate>20150815</startdate><enddate>20150815</enddate><creator>Grapov, Dmitry</creator><creator>Wanichthanarak, Kwanjeera</creator><creator>Fiehn, Oliver</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>5PM</scope></search><sort><creationdate>20150815</creationdate><title>MetaMapR: pathway independent metabolomic network analysis incorporating unknowns</title><author>Grapov, Dmitry ; Wanichthanarak, Kwanjeera ; Fiehn, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-a2a6206d21b3e35e875d55dc288562134119d97505d6db699300063b22c2faab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applications Notes</topic><topic>Biochemistry</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolites</topic><topic>Metabolomics - methods</topic><topic>Network analysis</topic><topic>Networks</topic><topic>Pathways</topic><topic>Similarity</topic><topic>Software</topic><topic>Visualization</topic><topic>Web Browser</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grapov, Dmitry</creatorcontrib><creatorcontrib>Wanichthanarak, Kwanjeera</creatorcontrib><creatorcontrib>Fiehn, Oliver</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grapov, Dmitry</au><au>Wanichthanarak, Kwanjeera</au><au>Fiehn, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MetaMapR: pathway independent metabolomic network analysis incorporating unknowns</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2015-08-15</date><risdate>2015</risdate><volume>31</volume><issue>16</issue><spage>2757</spage><epage>2760</epage><pages>2757-2760</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><eissn>1460-2059</eissn><abstract>Metabolic network mapping is a widely used approach for integration of metabolomic experimental results with biological domain knowledge. However, current approaches can be limited by biochemical domain or pathway knowledge which results in sparse disconnected graphs for real world metabolomic experiments. MetaMapR integrates enzymatic transformations with metabolite structural similarity, mass spectral similarity and empirical associations to generate richly connected metabolic networks. This open source, web-based or desktop software, written in the R programming language, leverages KEGG and PubChem databases to derive associations between metabolites even in cases where biochemical domain or molecular annotations are unknown. Network calculation is enhanced through an interface to the Chemical Translation System, which allows metabolite identifier translation between &gt;200 common biochemical databases. Analysis results are presented as interactive visualizations or can be exported as high-quality graphics and numerical tables which can be imported into common network analysis and visualization tools. Freely available at http://dgrapov.github.io/MetaMapR/. Requires R and a modern web browser. Installation instructions, tutorials and application examples are available at http://dgrapov.github.io/MetaMapR/. ofiehn@ucdavis.edu.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>25847005</pmid><doi>10.1093/bioinformatics/btv194</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2015-08, Vol.31 (16), p.2757-2760
issn 1367-4803
1367-4811
1460-2059
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4528626
source MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Applications Notes
Biochemistry
Metabolic Networks and Pathways
Metabolites
Metabolomics - methods
Network analysis
Networks
Pathways
Similarity
Software
Visualization
Web Browser
title MetaMapR: pathway independent metabolomic network analysis incorporating unknowns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A39%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MetaMapR:%20pathway%20independent%20metabolomic%20network%20analysis%20incorporating%20unknowns&rft.jtitle=Bioinformatics&rft.au=Grapov,%20Dmitry&rft.date=2015-08-15&rft.volume=31&rft.issue=16&rft.spage=2757&rft.epage=2760&rft.pages=2757-2760&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btv194&rft_dat=%3Cproquest_pubme%3E1709168634%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1702655379&rft_id=info:pmid/25847005&rfr_iscdi=true