Correcting Neuromuscular Deficits With Gene Therapy in Pompe Disease

Objective We have recently reported on the pathology of the neuromuscular junction (NMJ) in Pompe disease, reflecting disruption of neuronal and muscle homeostasis as a result of glycogen accumulation. The aim of this study was to examine how the alteration of NMJ physiology contributes to Pompe dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of neurology 2015-08, Vol.78 (2), p.222-234
Hauptverfasser: Todd, Adrian G., McElroy, Jessica A., Grange, Robert W., Fuller, David D., Walter, Glenn A., Byrne, Barry J., Falk, Darin J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 234
container_issue 2
container_start_page 222
container_title Annals of neurology
container_volume 78
creator Todd, Adrian G.
McElroy, Jessica A.
Grange, Robert W.
Fuller, David D.
Walter, Glenn A.
Byrne, Barry J.
Falk, Darin J.
description Objective We have recently reported on the pathology of the neuromuscular junction (NMJ) in Pompe disease, reflecting disruption of neuronal and muscle homeostasis as a result of glycogen accumulation. The aim of this study was to examine how the alteration of NMJ physiology contributes to Pompe disease pathology; we performed molecular, physiological, and histochemical analyses of NMJ‐related measures of the tibialis anterior muscles of young‐, mid‐, and late‐stage alpha‐glucosidase (GAA)‐deficient mice. Methods We performed intramuscular injection of an adeno‐associated virus (AAV)9 vector expressing GAA (AAV9‐hGAA) into the tibialis anterior muscle of Gaa–/– mice at early, mid, and severe pathological time points. We analyzed expression of NMJ‐related genes, in situ muscle force production, and clearance of glycogen in conjunction with histological assessment of the NMJ. Results Our data demonstrate that AAV9‐hGAA is able to replace GAA to the affected tissue and modify AChR mRNA expression, muscle force production, motor endplate area, and innervation status. Importantly, the degree of restoration for these outcomes is limited by severity of disease. Early restoration of GAA activity was most effective, whereas late correction of GAA expression was not effective in modifying parameters reflecting NMJ structure and function nor in force restoration despite resolution of glycogen storage in muscle. Interpretation Our data provide new mechanistic insight into the pathology of Pompe disease and suggest that early systemic correction to both neural and muscle tissues may be essential for successful correction of neuromuscular function in Pompe disease. Ann Neurol 2015;78:222–234
doi_str_mv 10.1002/ana.24433
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4520217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3751715601</sourcerecordid><originalsourceid>FETCH-LOGICAL-i5103-ff02a630a38607bdee6008769f2f7a5a718b9695fb15c7b8be26fbd0961607f3</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxS0EoqFw4B9AK3Hhsu3YXn_sBSkkEJBKKFKkcLO8m3Hjsh_B3gXy3-MmJQIunGak-b2np3mEPKdwQQHYpe3sBSsKzh-QCRWc5poV5UMyAS6LXFBenJEnMd4CQCkpPCZnTJRMKCYnZD7rQ8B68N1NtsQx9O0Y67GxIZuj87UfYrb2wzZbYIfZaovB7vaZ77Lrvt1hNvcRbcSn5JGzTcRn9_OcrN69Xc3e51efFh9m06vcCwo8dw6YlRws1xJUtUGUAFrJ0jGnrLCK6qqUpXAVFbWqdIVMumpzFzrxjp-T10fb3Vi1uKmxG4JtzC741oa96a03f186vzU3_XdTCAaMqmTw6t4g9N9GjINpfayxaWyH_RgNVSBAqhTx_6gsdSm0LmhCX_6D3vZj6NIjDhRoQRVL1Is_w59S_64iAZdH4IdvcH-6UzB3HZvUsTl0bKbL6WFJivyo8HHAnyeFDV-NVFwJs14uzJtruv7y8fPccP4L-6qmyQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1698085172</pqid></control><display><type>article</type><title>Correcting Neuromuscular Deficits With Gene Therapy in Pompe Disease</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Todd, Adrian G. ; McElroy, Jessica A. ; Grange, Robert W. ; Fuller, David D. ; Walter, Glenn A. ; Byrne, Barry J. ; Falk, Darin J.</creator><creatorcontrib>Todd, Adrian G. ; McElroy, Jessica A. ; Grange, Robert W. ; Fuller, David D. ; Walter, Glenn A. ; Byrne, Barry J. ; Falk, Darin J.</creatorcontrib><description>Objective We have recently reported on the pathology of the neuromuscular junction (NMJ) in Pompe disease, reflecting disruption of neuronal and muscle homeostasis as a result of glycogen accumulation. The aim of this study was to examine how the alteration of NMJ physiology contributes to Pompe disease pathology; we performed molecular, physiological, and histochemical analyses of NMJ‐related measures of the tibialis anterior muscles of young‐, mid‐, and late‐stage alpha‐glucosidase (GAA)‐deficient mice. Methods We performed intramuscular injection of an adeno‐associated virus (AAV)9 vector expressing GAA (AAV9‐hGAA) into the tibialis anterior muscle of Gaa–/– mice at early, mid, and severe pathological time points. We analyzed expression of NMJ‐related genes, in situ muscle force production, and clearance of glycogen in conjunction with histological assessment of the NMJ. Results Our data demonstrate that AAV9‐hGAA is able to replace GAA to the affected tissue and modify AChR mRNA expression, muscle force production, motor endplate area, and innervation status. Importantly, the degree of restoration for these outcomes is limited by severity of disease. Early restoration of GAA activity was most effective, whereas late correction of GAA expression was not effective in modifying parameters reflecting NMJ structure and function nor in force restoration despite resolution of glycogen storage in muscle. Interpretation Our data provide new mechanistic insight into the pathology of Pompe disease and suggest that early systemic correction to both neural and muscle tissues may be essential for successful correction of neuromuscular function in Pompe disease. Ann Neurol 2015;78:222–234</description><identifier>ISSN: 0364-5134</identifier><identifier>EISSN: 1531-8249</identifier><identifier>DOI: 10.1002/ana.24433</identifier><identifier>PMID: 25925726</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Adeno-associated virus ; alpha-Glucosidases - genetics ; Animals ; Dependovirus ; Disease Models, Animal ; Genetic Therapy ; Genetic Vectors ; Glycogen - metabolism ; Glycogen Storage Disease Type II - genetics ; Glycogen Storage Disease Type II - metabolism ; Glycogen Storage Disease Type II - physiopathology ; Hindlimb ; Injections, Intramuscular ; Isometric Contraction ; Mice ; Mice, Knockout ; Muscle Strength - physiology ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - pathology ; Muscle, Skeletal - physiopathology ; Neuromuscular Junction - metabolism ; Neuromuscular Junction - pathology ; Neuromuscular Junction - physiopathology ; Pathology ; Receptors, Cholinergic - genetics ; Receptors, Cholinergic - metabolism ; RNA, Messenger - metabolism ; Time Factors</subject><ispartof>Annals of neurology, 2015-08, Vol.78 (2), p.222-234</ispartof><rights>2015 American Neurological Association</rights><rights>2015 American Neurological Association.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fana.24433$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fana.24433$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25925726$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Todd, Adrian G.</creatorcontrib><creatorcontrib>McElroy, Jessica A.</creatorcontrib><creatorcontrib>Grange, Robert W.</creatorcontrib><creatorcontrib>Fuller, David D.</creatorcontrib><creatorcontrib>Walter, Glenn A.</creatorcontrib><creatorcontrib>Byrne, Barry J.</creatorcontrib><creatorcontrib>Falk, Darin J.</creatorcontrib><title>Correcting Neuromuscular Deficits With Gene Therapy in Pompe Disease</title><title>Annals of neurology</title><addtitle>Ann Neurol</addtitle><description>Objective We have recently reported on the pathology of the neuromuscular junction (NMJ) in Pompe disease, reflecting disruption of neuronal and muscle homeostasis as a result of glycogen accumulation. The aim of this study was to examine how the alteration of NMJ physiology contributes to Pompe disease pathology; we performed molecular, physiological, and histochemical analyses of NMJ‐related measures of the tibialis anterior muscles of young‐, mid‐, and late‐stage alpha‐glucosidase (GAA)‐deficient mice. Methods We performed intramuscular injection of an adeno‐associated virus (AAV)9 vector expressing GAA (AAV9‐hGAA) into the tibialis anterior muscle of Gaa–/– mice at early, mid, and severe pathological time points. We analyzed expression of NMJ‐related genes, in situ muscle force production, and clearance of glycogen in conjunction with histological assessment of the NMJ. Results Our data demonstrate that AAV9‐hGAA is able to replace GAA to the affected tissue and modify AChR mRNA expression, muscle force production, motor endplate area, and innervation status. Importantly, the degree of restoration for these outcomes is limited by severity of disease. Early restoration of GAA activity was most effective, whereas late correction of GAA expression was not effective in modifying parameters reflecting NMJ structure and function nor in force restoration despite resolution of glycogen storage in muscle. Interpretation Our data provide new mechanistic insight into the pathology of Pompe disease and suggest that early systemic correction to both neural and muscle tissues may be essential for successful correction of neuromuscular function in Pompe disease. Ann Neurol 2015;78:222–234</description><subject>Adeno-associated virus</subject><subject>alpha-Glucosidases - genetics</subject><subject>Animals</subject><subject>Dependovirus</subject><subject>Disease Models, Animal</subject><subject>Genetic Therapy</subject><subject>Genetic Vectors</subject><subject>Glycogen - metabolism</subject><subject>Glycogen Storage Disease Type II - genetics</subject><subject>Glycogen Storage Disease Type II - metabolism</subject><subject>Glycogen Storage Disease Type II - physiopathology</subject><subject>Hindlimb</subject><subject>Injections, Intramuscular</subject><subject>Isometric Contraction</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Muscle Strength - physiology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscle, Skeletal - physiopathology</subject><subject>Neuromuscular Junction - metabolism</subject><subject>Neuromuscular Junction - pathology</subject><subject>Neuromuscular Junction - physiopathology</subject><subject>Pathology</subject><subject>Receptors, Cholinergic - genetics</subject><subject>Receptors, Cholinergic - metabolism</subject><subject>RNA, Messenger - metabolism</subject><subject>Time Factors</subject><issn>0364-5134</issn><issn>1531-8249</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1vEzEQxS0EoqFw4B9AK3Hhsu3YXn_sBSkkEJBKKFKkcLO8m3Hjsh_B3gXy3-MmJQIunGak-b2np3mEPKdwQQHYpe3sBSsKzh-QCRWc5poV5UMyAS6LXFBenJEnMd4CQCkpPCZnTJRMKCYnZD7rQ8B68N1NtsQx9O0Y67GxIZuj87UfYrb2wzZbYIfZaovB7vaZ77Lrvt1hNvcRbcSn5JGzTcRn9_OcrN69Xc3e51efFh9m06vcCwo8dw6YlRws1xJUtUGUAFrJ0jGnrLCK6qqUpXAVFbWqdIVMumpzFzrxjp-T10fb3Vi1uKmxG4JtzC741oa96a03f186vzU3_XdTCAaMqmTw6t4g9N9GjINpfayxaWyH_RgNVSBAqhTx_6gsdSm0LmhCX_6D3vZj6NIjDhRoQRVL1Is_w59S_64iAZdH4IdvcH-6UzB3HZvUsTl0bKbL6WFJivyo8HHAnyeFDV-NVFwJs14uzJtruv7y8fPccP4L-6qmyQ</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Todd, Adrian G.</creator><creator>McElroy, Jessica A.</creator><creator>Grange, Robert W.</creator><creator>Fuller, David D.</creator><creator>Walter, Glenn A.</creator><creator>Byrne, Barry J.</creator><creator>Falk, Darin J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201508</creationdate><title>Correcting Neuromuscular Deficits With Gene Therapy in Pompe Disease</title><author>Todd, Adrian G. ; McElroy, Jessica A. ; Grange, Robert W. ; Fuller, David D. ; Walter, Glenn A. ; Byrne, Barry J. ; Falk, Darin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i5103-ff02a630a38607bdee6008769f2f7a5a718b9695fb15c7b8be26fbd0961607f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adeno-associated virus</topic><topic>alpha-Glucosidases - genetics</topic><topic>Animals</topic><topic>Dependovirus</topic><topic>Disease Models, Animal</topic><topic>Genetic Therapy</topic><topic>Genetic Vectors</topic><topic>Glycogen - metabolism</topic><topic>Glycogen Storage Disease Type II - genetics</topic><topic>Glycogen Storage Disease Type II - metabolism</topic><topic>Glycogen Storage Disease Type II - physiopathology</topic><topic>Hindlimb</topic><topic>Injections, Intramuscular</topic><topic>Isometric Contraction</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Muscle Strength - physiology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscle, Skeletal - physiopathology</topic><topic>Neuromuscular Junction - metabolism</topic><topic>Neuromuscular Junction - pathology</topic><topic>Neuromuscular Junction - physiopathology</topic><topic>Pathology</topic><topic>Receptors, Cholinergic - genetics</topic><topic>Receptors, Cholinergic - metabolism</topic><topic>RNA, Messenger - metabolism</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Todd, Adrian G.</creatorcontrib><creatorcontrib>McElroy, Jessica A.</creatorcontrib><creatorcontrib>Grange, Robert W.</creatorcontrib><creatorcontrib>Fuller, David D.</creatorcontrib><creatorcontrib>Walter, Glenn A.</creatorcontrib><creatorcontrib>Byrne, Barry J.</creatorcontrib><creatorcontrib>Falk, Darin J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Todd, Adrian G.</au><au>McElroy, Jessica A.</au><au>Grange, Robert W.</au><au>Fuller, David D.</au><au>Walter, Glenn A.</au><au>Byrne, Barry J.</au><au>Falk, Darin J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correcting Neuromuscular Deficits With Gene Therapy in Pompe Disease</atitle><jtitle>Annals of neurology</jtitle><addtitle>Ann Neurol</addtitle><date>2015-08</date><risdate>2015</risdate><volume>78</volume><issue>2</issue><spage>222</spage><epage>234</epage><pages>222-234</pages><issn>0364-5134</issn><eissn>1531-8249</eissn><abstract>Objective We have recently reported on the pathology of the neuromuscular junction (NMJ) in Pompe disease, reflecting disruption of neuronal and muscle homeostasis as a result of glycogen accumulation. The aim of this study was to examine how the alteration of NMJ physiology contributes to Pompe disease pathology; we performed molecular, physiological, and histochemical analyses of NMJ‐related measures of the tibialis anterior muscles of young‐, mid‐, and late‐stage alpha‐glucosidase (GAA)‐deficient mice. Methods We performed intramuscular injection of an adeno‐associated virus (AAV)9 vector expressing GAA (AAV9‐hGAA) into the tibialis anterior muscle of Gaa–/– mice at early, mid, and severe pathological time points. We analyzed expression of NMJ‐related genes, in situ muscle force production, and clearance of glycogen in conjunction with histological assessment of the NMJ. Results Our data demonstrate that AAV9‐hGAA is able to replace GAA to the affected tissue and modify AChR mRNA expression, muscle force production, motor endplate area, and innervation status. Importantly, the degree of restoration for these outcomes is limited by severity of disease. Early restoration of GAA activity was most effective, whereas late correction of GAA expression was not effective in modifying parameters reflecting NMJ structure and function nor in force restoration despite resolution of glycogen storage in muscle. Interpretation Our data provide new mechanistic insight into the pathology of Pompe disease and suggest that early systemic correction to both neural and muscle tissues may be essential for successful correction of neuromuscular function in Pompe disease. Ann Neurol 2015;78:222–234</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>25925726</pmid><doi>10.1002/ana.24433</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0364-5134
ispartof Annals of neurology, 2015-08, Vol.78 (2), p.222-234
issn 0364-5134
1531-8249
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4520217
source MEDLINE; Wiley Online Library All Journals
subjects Adeno-associated virus
alpha-Glucosidases - genetics
Animals
Dependovirus
Disease Models, Animal
Genetic Therapy
Genetic Vectors
Glycogen - metabolism
Glycogen Storage Disease Type II - genetics
Glycogen Storage Disease Type II - metabolism
Glycogen Storage Disease Type II - physiopathology
Hindlimb
Injections, Intramuscular
Isometric Contraction
Mice
Mice, Knockout
Muscle Strength - physiology
Muscle, Skeletal - metabolism
Muscle, Skeletal - pathology
Muscle, Skeletal - physiopathology
Neuromuscular Junction - metabolism
Neuromuscular Junction - pathology
Neuromuscular Junction - physiopathology
Pathology
Receptors, Cholinergic - genetics
Receptors, Cholinergic - metabolism
RNA, Messenger - metabolism
Time Factors
title Correcting Neuromuscular Deficits With Gene Therapy in Pompe Disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A33%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correcting%20Neuromuscular%20Deficits%20With%20Gene%20Therapy%20in%20Pompe%20Disease&rft.jtitle=Annals%20of%20neurology&rft.au=Todd,%20Adrian%20G.&rft.date=2015-08&rft.volume=78&rft.issue=2&rft.spage=222&rft.epage=234&rft.pages=222-234&rft.issn=0364-5134&rft.eissn=1531-8249&rft_id=info:doi/10.1002/ana.24433&rft_dat=%3Cproquest_pubme%3E3751715601%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1698085172&rft_id=info:pmid/25925726&rfr_iscdi=true