Substrate stress relaxation regulates cell spreading
Studies of cellular mechanotransduction have converged upon the idea that cells sense extracellular matrix (ECM) elasticity by gauging resistance to the traction forces they exert on the ECM. However, these studies typically utilize purely elastic materials as substrates, whereas physiological ECMs...
Gespeichert in:
Veröffentlicht in: | Nature communications 2015-02, Vol.6 (1), p.6364-6364, Article 6365 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6364 |
---|---|
container_issue | 1 |
container_start_page | 6364 |
container_title | Nature communications |
container_volume | 6 |
creator | Chaudhuri, Ovijit Gu, Luo Darnell, Max Klumpers, Darinka Bencherif, Sidi A. Weaver, James C. Huebsch, Nathaniel Mooney, David J. |
description | Studies of cellular mechanotransduction have converged upon the idea that cells sense extracellular matrix (ECM) elasticity by gauging resistance to the traction forces they exert on the ECM. However, these studies typically utilize purely elastic materials as substrates, whereas physiological ECMs are viscoelastic, and exhibit stress relaxation, so that cellular traction forces exerted by cells remodel the ECM. Here we investigate the influence of ECM stress relaxation on cell behaviour through computational modelling and cellular experiments. Surprisingly, both our computational model and experiments find that spreading for cells cultured on soft substrates that exhibit stress relaxation is greater than cells spreading on elastic substrates of the same modulus, but similar to that of cells spreading on stiffer elastic substrates. These findings challenge the current view of how cells sense and respond to the ECM.
Studies of cellular mechanotransduction commonly use elastic substrates, whereas biological substrates are viscoelastic, exhibiting stress relaxation. Here, the authors show through computational modelling and experiments that viscoelastic substrates can stimulate cell spreading to a greater extent than purely elastic substrates with the same initial stiffness. |
doi_str_mv | 10.1038/ncomms7365 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4518451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1657318409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-a86cc3e8d1e611c4f3194a0e50ec1df90281feb87a1b6f7266ae3d9a11bff9053</originalsourceid><addsrcrecordid>eNplkU1Lw0AQhhdRbKm9-AOk4EWU6E72I8lFkOIXCB7U87LZTGpKkq27iei_d0trrbqXGZiHd995h5BDoOdAWXrRGts0PmFS7JBhTDlEkMRsd6sfkLH3cxoeyyDlfJ8MYiEzISAeEv7U575zusNJKOj9xGGtP3RX2Ta0s74OIz8xWNcTv3Coi6qdHZC9Utcex-s6Ii8318_Tu-jh8fZ-evUQGc7jLtKpNIZhWgBKAMNLBhnXFAVFA0WZ0TiFEvM00ZDLMoml1MiKTAPkZZgKNiKXK91FnzdYGGyD01otXNVo96msrtTvSVu9qpl9V1yERQUEgZO1gLNvPfpONZVf7qJbtL1XIEXCAkqzgB7_Qee2d21Yb0lJKkGELEfkdEUZZ713WG7MAFXLe6ifewT4aNv-Bv1OPwBnKyAkG2JFt_Xnf7kvOYeWZw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1656061572</pqid></control><display><type>article</type><title>Substrate stress relaxation regulates cell spreading</title><source>Springer Nature OA Free Journals</source><creator>Chaudhuri, Ovijit ; Gu, Luo ; Darnell, Max ; Klumpers, Darinka ; Bencherif, Sidi A. ; Weaver, James C. ; Huebsch, Nathaniel ; Mooney, David J.</creator><creatorcontrib>Chaudhuri, Ovijit ; Gu, Luo ; Darnell, Max ; Klumpers, Darinka ; Bencherif, Sidi A. ; Weaver, James C. ; Huebsch, Nathaniel ; Mooney, David J.</creatorcontrib><description>Studies of cellular mechanotransduction have converged upon the idea that cells sense extracellular matrix (ECM) elasticity by gauging resistance to the traction forces they exert on the ECM. However, these studies typically utilize purely elastic materials as substrates, whereas physiological ECMs are viscoelastic, and exhibit stress relaxation, so that cellular traction forces exerted by cells remodel the ECM. Here we investigate the influence of ECM stress relaxation on cell behaviour through computational modelling and cellular experiments. Surprisingly, both our computational model and experiments find that spreading for cells cultured on soft substrates that exhibit stress relaxation is greater than cells spreading on elastic substrates of the same modulus, but similar to that of cells spreading on stiffer elastic substrates. These findings challenge the current view of how cells sense and respond to the ECM.
Studies of cellular mechanotransduction commonly use elastic substrates, whereas biological substrates are viscoelastic, exhibiting stress relaxation. Here, the authors show through computational modelling and experiments that viscoelastic substrates can stimulate cell spreading to a greater extent than purely elastic substrates with the same initial stiffness.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms7365</identifier><identifier>PMID: 25695512</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 13/51 ; 14/3 ; 3T3 Cells ; 631/57/343/1361 ; 631/80/79/750 ; 631/80/86/2366 ; Alginates ; Animals ; Cell Adhesion ; Cell Culture Techniques ; Cell Line, Tumor ; Cell Shape ; Extracellular Matrix - physiology ; Glucuronic Acid ; Hexuronic Acids ; Humanities and Social Sciences ; Humans ; Hydrogels ; Mechanotransduction, Cellular ; Mice ; Models, Biological ; multidisciplinary ; Science ; Science (multidisciplinary) ; Stress, Mechanical ; Viscoelastic Substances</subject><ispartof>Nature communications, 2015-02, Vol.6 (1), p.6364-6364, Article 6365</ispartof><rights>Springer Nature Limited 2015</rights><rights>Copyright Nature Publishing Group Feb 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-a86cc3e8d1e611c4f3194a0e50ec1df90281feb87a1b6f7266ae3d9a11bff9053</citedby><cites>FETCH-LOGICAL-c442t-a86cc3e8d1e611c4f3194a0e50ec1df90281feb87a1b6f7266ae3d9a11bff9053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4518451/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4518451/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27911,27912,41107,42176,51563,53778,53780</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms7365$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25695512$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chaudhuri, Ovijit</creatorcontrib><creatorcontrib>Gu, Luo</creatorcontrib><creatorcontrib>Darnell, Max</creatorcontrib><creatorcontrib>Klumpers, Darinka</creatorcontrib><creatorcontrib>Bencherif, Sidi A.</creatorcontrib><creatorcontrib>Weaver, James C.</creatorcontrib><creatorcontrib>Huebsch, Nathaniel</creatorcontrib><creatorcontrib>Mooney, David J.</creatorcontrib><title>Substrate stress relaxation regulates cell spreading</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Studies of cellular mechanotransduction have converged upon the idea that cells sense extracellular matrix (ECM) elasticity by gauging resistance to the traction forces they exert on the ECM. However, these studies typically utilize purely elastic materials as substrates, whereas physiological ECMs are viscoelastic, and exhibit stress relaxation, so that cellular traction forces exerted by cells remodel the ECM. Here we investigate the influence of ECM stress relaxation on cell behaviour through computational modelling and cellular experiments. Surprisingly, both our computational model and experiments find that spreading for cells cultured on soft substrates that exhibit stress relaxation is greater than cells spreading on elastic substrates of the same modulus, but similar to that of cells spreading on stiffer elastic substrates. These findings challenge the current view of how cells sense and respond to the ECM.
Studies of cellular mechanotransduction commonly use elastic substrates, whereas biological substrates are viscoelastic, exhibiting stress relaxation. Here, the authors show through computational modelling and experiments that viscoelastic substrates can stimulate cell spreading to a greater extent than purely elastic substrates with the same initial stiffness.</description><subject>13/106</subject><subject>13/51</subject><subject>14/3</subject><subject>3T3 Cells</subject><subject>631/57/343/1361</subject><subject>631/80/79/750</subject><subject>631/80/86/2366</subject><subject>Alginates</subject><subject>Animals</subject><subject>Cell Adhesion</subject><subject>Cell Culture Techniques</subject><subject>Cell Line, Tumor</subject><subject>Cell Shape</subject><subject>Extracellular Matrix - physiology</subject><subject>Glucuronic Acid</subject><subject>Hexuronic Acids</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Mechanotransduction, Cellular</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stress, Mechanical</subject><subject>Viscoelastic Substances</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkU1Lw0AQhhdRbKm9-AOk4EWU6E72I8lFkOIXCB7U87LZTGpKkq27iei_d0trrbqXGZiHd995h5BDoOdAWXrRGts0PmFS7JBhTDlEkMRsd6sfkLH3cxoeyyDlfJ8MYiEzISAeEv7U575zusNJKOj9xGGtP3RX2Ta0s74OIz8xWNcTv3Coi6qdHZC9Utcex-s6Ii8318_Tu-jh8fZ-evUQGc7jLtKpNIZhWgBKAMNLBhnXFAVFA0WZ0TiFEvM00ZDLMoml1MiKTAPkZZgKNiKXK91FnzdYGGyD01otXNVo96msrtTvSVu9qpl9V1yERQUEgZO1gLNvPfpONZVf7qJbtL1XIEXCAkqzgB7_Qee2d21Yb0lJKkGELEfkdEUZZ713WG7MAFXLe6ifewT4aNv-Bv1OPwBnKyAkG2JFt_Xnf7kvOYeWZw</recordid><startdate>20150219</startdate><enddate>20150219</enddate><creator>Chaudhuri, Ovijit</creator><creator>Gu, Luo</creator><creator>Darnell, Max</creator><creator>Klumpers, Darinka</creator><creator>Bencherif, Sidi A.</creator><creator>Weaver, James C.</creator><creator>Huebsch, Nathaniel</creator><creator>Mooney, David J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150219</creationdate><title>Substrate stress relaxation regulates cell spreading</title><author>Chaudhuri, Ovijit ; Gu, Luo ; Darnell, Max ; Klumpers, Darinka ; Bencherif, Sidi A. ; Weaver, James C. ; Huebsch, Nathaniel ; Mooney, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-a86cc3e8d1e611c4f3194a0e50ec1df90281feb87a1b6f7266ae3d9a11bff9053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13/106</topic><topic>13/51</topic><topic>14/3</topic><topic>3T3 Cells</topic><topic>631/57/343/1361</topic><topic>631/80/79/750</topic><topic>631/80/86/2366</topic><topic>Alginates</topic><topic>Animals</topic><topic>Cell Adhesion</topic><topic>Cell Culture Techniques</topic><topic>Cell Line, Tumor</topic><topic>Cell Shape</topic><topic>Extracellular Matrix - physiology</topic><topic>Glucuronic Acid</topic><topic>Hexuronic Acids</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Mechanotransduction, Cellular</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stress, Mechanical</topic><topic>Viscoelastic Substances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaudhuri, Ovijit</creatorcontrib><creatorcontrib>Gu, Luo</creatorcontrib><creatorcontrib>Darnell, Max</creatorcontrib><creatorcontrib>Klumpers, Darinka</creatorcontrib><creatorcontrib>Bencherif, Sidi A.</creatorcontrib><creatorcontrib>Weaver, James C.</creatorcontrib><creatorcontrib>Huebsch, Nathaniel</creatorcontrib><creatorcontrib>Mooney, David J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chaudhuri, Ovijit</au><au>Gu, Luo</au><au>Darnell, Max</au><au>Klumpers, Darinka</au><au>Bencherif, Sidi A.</au><au>Weaver, James C.</au><au>Huebsch, Nathaniel</au><au>Mooney, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substrate stress relaxation regulates cell spreading</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-02-19</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>6364</spage><epage>6364</epage><pages>6364-6364</pages><artnum>6365</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Studies of cellular mechanotransduction have converged upon the idea that cells sense extracellular matrix (ECM) elasticity by gauging resistance to the traction forces they exert on the ECM. However, these studies typically utilize purely elastic materials as substrates, whereas physiological ECMs are viscoelastic, and exhibit stress relaxation, so that cellular traction forces exerted by cells remodel the ECM. Here we investigate the influence of ECM stress relaxation on cell behaviour through computational modelling and cellular experiments. Surprisingly, both our computational model and experiments find that spreading for cells cultured on soft substrates that exhibit stress relaxation is greater than cells spreading on elastic substrates of the same modulus, but similar to that of cells spreading on stiffer elastic substrates. These findings challenge the current view of how cells sense and respond to the ECM.
Studies of cellular mechanotransduction commonly use elastic substrates, whereas biological substrates are viscoelastic, exhibiting stress relaxation. Here, the authors show through computational modelling and experiments that viscoelastic substrates can stimulate cell spreading to a greater extent than purely elastic substrates with the same initial stiffness.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25695512</pmid><doi>10.1038/ncomms7365</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2015-02, Vol.6 (1), p.6364-6364, Article 6365 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4518451 |
source | Springer Nature OA Free Journals |
subjects | 13/106 13/51 14/3 3T3 Cells 631/57/343/1361 631/80/79/750 631/80/86/2366 Alginates Animals Cell Adhesion Cell Culture Techniques Cell Line, Tumor Cell Shape Extracellular Matrix - physiology Glucuronic Acid Hexuronic Acids Humanities and Social Sciences Humans Hydrogels Mechanotransduction, Cellular Mice Models, Biological multidisciplinary Science Science (multidisciplinary) Stress, Mechanical Viscoelastic Substances |
title | Substrate stress relaxation regulates cell spreading |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substrate%20stress%20relaxation%20regulates%20cell%20spreading&rft.jtitle=Nature%20communications&rft.au=Chaudhuri,%20Ovijit&rft.date=2015-02-19&rft.volume=6&rft.issue=1&rft.spage=6364&rft.epage=6364&rft.pages=6364-6364&rft.artnum=6365&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms7365&rft_dat=%3Cproquest_C6C%3E1657318409%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1656061572&rft_id=info:pmid/25695512&rfr_iscdi=true |