Atomic view of the histidine environment stabilizing higher-pH conformations of pH-dependent proteins

External stimuli are powerful tools that naturally control protein assemblies and functions. For example, during viral entry and exit changes in pH are known to trigger large protein conformational changes. However, the molecular features stabilizing the higher pH structures remain unclear. Here we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2015-07, Vol.6 (1), p.7771-7771, Article 7771
Hauptverfasser: Valéry, Céline, Deville-Foillard, Stéphanie, Lefebvre, Christelle, Taberner, Nuria, Legrand, Pierre, Meneau, Florian, Meriadec, Cristelle, Delvaux, Camille, Bizien, Thomas, Kasotakis, Emmanouil, Lopez-Iglesias, Carmen, Gall, Andrew, Bressanelli, Stéphane, Le Du, Marie-Hélène, Paternostre, Maïté, Artzner, Franck
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7771
container_issue 1
container_start_page 7771
container_title Nature communications
container_volume 6
creator Valéry, Céline
Deville-Foillard, Stéphanie
Lefebvre, Christelle
Taberner, Nuria
Legrand, Pierre
Meneau, Florian
Meriadec, Cristelle
Delvaux, Camille
Bizien, Thomas
Kasotakis, Emmanouil
Lopez-Iglesias, Carmen
Gall, Andrew
Bressanelli, Stéphane
Le Du, Marie-Hélène
Paternostre, Maïté
Artzner, Franck
description External stimuli are powerful tools that naturally control protein assemblies and functions. For example, during viral entry and exit changes in pH are known to trigger large protein conformational changes. However, the molecular features stabilizing the higher pH structures remain unclear. Here we elucidate the conformational change of a self-assembling peptide that forms either small or large nanotubes dependent on the pH. The sub-angstrom high-pH peptide structure reveals a globular conformation stabilized through a strong histidine-serine H-bond and a tight histidine-aromatic packing. Lowering the pH induces histidine protonation, disrupts these interactions and triggers a large change to an extended β-sheet-based conformation. Re-visiting available structures of proteins with pH-dependent conformations reveals both histidine-containing aromatic pockets and histidine-serine proximity as key motifs in higher pH structures. The mechanism discovered in this study may thus be generally used by pH-dependent proteins and opens new prospects in the field of nanomaterials. In biological systems, large pH-induced conformational changes can be observed in certain proteins, a phenomenon poorly understood at the molecular level. Here the authors describe a peptide with the ability to self-organize into either small or large nanotubes in a pH-dependent manner and detail the mechanism driving the transition.
doi_str_mv 10.1038/ncomms8771
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4518280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1698962595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-3ca589c0f0402191d5128c4a205f59ebb8a80de8478ad10dd20a29c92456da463</originalsourceid><addsrcrecordid>eNplkUtr3DAUhUVpaEKaTX9AMXTTB271tKVNYAhppzCQTbsWGul6rGBLruSZ0v76aJgknSbaSHC_e-65Ogi9IfgzwUx-CTaOY5ZtS16gM4o5qUlL2cuj9ym6yPkWl8MUkZy_Qqe0IQqztj1DsJjj6G218_C7il0191D1Ps_e-QAVhJ1PMYwQ5irPZu0H_9eHTSE2PaR6WlY2hi6m0cw-hrwXmJa1gwmC2_dMKc7gQ36NTjozZLi4v8_Rz6_XP66W9erm2_erxaq2vG3mmlkjpLK4wxxToogThErLDcWiEwrWa2kkdiB5K40j2DmKDVVWUS4aZ3jDztHlQXfarkdwtnhIZtBT8qNJf3Q0Xv9fCb7Xm7jTXBBJJS4CHw4C_ZO25WKlLRiNCcXFmdiRwr6_H5biry3kWY8-WxgGEyBusyaNkqqhQomCvnuC3sZtCuUr9lRLKWOKFerjgbIp5pyge3RAsN6Hrf-FXeC3x6s-og_RFuDTAcilFDaQjmY-l7sDueK1Sw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1697223393</pqid></control><display><type>article</type><title>Atomic view of the histidine environment stabilizing higher-pH conformations of pH-dependent proteins</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Valéry, Céline ; Deville-Foillard, Stéphanie ; Lefebvre, Christelle ; Taberner, Nuria ; Legrand, Pierre ; Meneau, Florian ; Meriadec, Cristelle ; Delvaux, Camille ; Bizien, Thomas ; Kasotakis, Emmanouil ; Lopez-Iglesias, Carmen ; Gall, Andrew ; Bressanelli, Stéphane ; Le Du, Marie-Hélène ; Paternostre, Maïté ; Artzner, Franck</creator><creatorcontrib>Valéry, Céline ; Deville-Foillard, Stéphanie ; Lefebvre, Christelle ; Taberner, Nuria ; Legrand, Pierre ; Meneau, Florian ; Meriadec, Cristelle ; Delvaux, Camille ; Bizien, Thomas ; Kasotakis, Emmanouil ; Lopez-Iglesias, Carmen ; Gall, Andrew ; Bressanelli, Stéphane ; Le Du, Marie-Hélène ; Paternostre, Maïté ; Artzner, Franck</creatorcontrib><description>External stimuli are powerful tools that naturally control protein assemblies and functions. For example, during viral entry and exit changes in pH are known to trigger large protein conformational changes. However, the molecular features stabilizing the higher pH structures remain unclear. Here we elucidate the conformational change of a self-assembling peptide that forms either small or large nanotubes dependent on the pH. The sub-angstrom high-pH peptide structure reveals a globular conformation stabilized through a strong histidine-serine H-bond and a tight histidine-aromatic packing. Lowering the pH induces histidine protonation, disrupts these interactions and triggers a large change to an extended β-sheet-based conformation. Re-visiting available structures of proteins with pH-dependent conformations reveals both histidine-containing aromatic pockets and histidine-serine proximity as key motifs in higher pH structures. The mechanism discovered in this study may thus be generally used by pH-dependent proteins and opens new prospects in the field of nanomaterials. In biological systems, large pH-induced conformational changes can be observed in certain proteins, a phenomenon poorly understood at the molecular level. Here the authors describe a peptide with the ability to self-organize into either small or large nanotubes in a pH-dependent manner and detail the mechanism driving the transition.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms8771</identifier><identifier>PMID: 26190377</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/133 ; 631/45/535 ; 631/57/2272/2273 ; 631/92/470 ; Crystallography, X-Ray ; Histidine - chemistry ; Histidine - metabolism ; Humanities and Social Sciences ; Hydrogen-Ion Concentration ; Life Sciences ; Models, Molecular ; multidisciplinary ; Nanotubes, Peptide - chemistry ; Optical Imaging ; Physics ; Protein Conformation ; Protein Structure, Secondary ; Science ; Science (multidisciplinary) ; Spectroscopy, Fourier Transform Infrared ; Spectrum Analysis, Raman ; Triptorelin Pamoate - chemistry ; Triptorelin Pamoate - metabolism</subject><ispartof>Nature communications, 2015-07, Vol.6 (1), p.7771-7771, Article 7771</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Jul 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-3ca589c0f0402191d5128c4a205f59ebb8a80de8478ad10dd20a29c92456da463</citedby><cites>FETCH-LOGICAL-c476t-3ca589c0f0402191d5128c4a205f59ebb8a80de8478ad10dd20a29c92456da463</cites><orcidid>0000-0003-2431-2255 ; 0000000324312255 ; 0000-0002-3303-8959 ; 0000-0002-5613-576X ; 0000-0002-0921-6727 ; 0000-0003-3557-7451 ; 0000-0003-1902-4187 ; 0000-0002-8779-7897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4518280/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4518280/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26190377$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cea.hal.science/cea-01201915$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Valéry, Céline</creatorcontrib><creatorcontrib>Deville-Foillard, Stéphanie</creatorcontrib><creatorcontrib>Lefebvre, Christelle</creatorcontrib><creatorcontrib>Taberner, Nuria</creatorcontrib><creatorcontrib>Legrand, Pierre</creatorcontrib><creatorcontrib>Meneau, Florian</creatorcontrib><creatorcontrib>Meriadec, Cristelle</creatorcontrib><creatorcontrib>Delvaux, Camille</creatorcontrib><creatorcontrib>Bizien, Thomas</creatorcontrib><creatorcontrib>Kasotakis, Emmanouil</creatorcontrib><creatorcontrib>Lopez-Iglesias, Carmen</creatorcontrib><creatorcontrib>Gall, Andrew</creatorcontrib><creatorcontrib>Bressanelli, Stéphane</creatorcontrib><creatorcontrib>Le Du, Marie-Hélène</creatorcontrib><creatorcontrib>Paternostre, Maïté</creatorcontrib><creatorcontrib>Artzner, Franck</creatorcontrib><title>Atomic view of the histidine environment stabilizing higher-pH conformations of pH-dependent proteins</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>External stimuli are powerful tools that naturally control protein assemblies and functions. For example, during viral entry and exit changes in pH are known to trigger large protein conformational changes. However, the molecular features stabilizing the higher pH structures remain unclear. Here we elucidate the conformational change of a self-assembling peptide that forms either small or large nanotubes dependent on the pH. The sub-angstrom high-pH peptide structure reveals a globular conformation stabilized through a strong histidine-serine H-bond and a tight histidine-aromatic packing. Lowering the pH induces histidine protonation, disrupts these interactions and triggers a large change to an extended β-sheet-based conformation. Re-visiting available structures of proteins with pH-dependent conformations reveals both histidine-containing aromatic pockets and histidine-serine proximity as key motifs in higher pH structures. The mechanism discovered in this study may thus be generally used by pH-dependent proteins and opens new prospects in the field of nanomaterials. In biological systems, large pH-induced conformational changes can be observed in certain proteins, a phenomenon poorly understood at the molecular level. Here the authors describe a peptide with the ability to self-organize into either small or large nanotubes in a pH-dependent manner and detail the mechanism driving the transition.</description><subject>140/133</subject><subject>631/45/535</subject><subject>631/57/2272/2273</subject><subject>631/92/470</subject><subject>Crystallography, X-Ray</subject><subject>Histidine - chemistry</subject><subject>Histidine - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen-Ion Concentration</subject><subject>Life Sciences</subject><subject>Models, Molecular</subject><subject>multidisciplinary</subject><subject>Nanotubes, Peptide - chemistry</subject><subject>Optical Imaging</subject><subject>Physics</subject><subject>Protein Conformation</subject><subject>Protein Structure, Secondary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Spectrum Analysis, Raman</subject><subject>Triptorelin Pamoate - chemistry</subject><subject>Triptorelin Pamoate - metabolism</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkUtr3DAUhUVpaEKaTX9AMXTTB271tKVNYAhppzCQTbsWGul6rGBLruSZ0v76aJgknSbaSHC_e-65Ogi9IfgzwUx-CTaOY5ZtS16gM4o5qUlL2cuj9ym6yPkWl8MUkZy_Qqe0IQqztj1DsJjj6G218_C7il0191D1Ps_e-QAVhJ1PMYwQ5irPZu0H_9eHTSE2PaR6WlY2hi6m0cw-hrwXmJa1gwmC2_dMKc7gQ36NTjozZLi4v8_Rz6_XP66W9erm2_erxaq2vG3mmlkjpLK4wxxToogThErLDcWiEwrWa2kkdiB5K40j2DmKDVVWUS4aZ3jDztHlQXfarkdwtnhIZtBT8qNJf3Q0Xv9fCb7Xm7jTXBBJJS4CHw4C_ZO25WKlLRiNCcXFmdiRwr6_H5biry3kWY8-WxgGEyBusyaNkqqhQomCvnuC3sZtCuUr9lRLKWOKFerjgbIp5pyge3RAsN6Hrf-FXeC3x6s-og_RFuDTAcilFDaQjmY-l7sDueK1Sw</recordid><startdate>20150720</startdate><enddate>20150720</enddate><creator>Valéry, Céline</creator><creator>Deville-Foillard, Stéphanie</creator><creator>Lefebvre, Christelle</creator><creator>Taberner, Nuria</creator><creator>Legrand, Pierre</creator><creator>Meneau, Florian</creator><creator>Meriadec, Cristelle</creator><creator>Delvaux, Camille</creator><creator>Bizien, Thomas</creator><creator>Kasotakis, Emmanouil</creator><creator>Lopez-Iglesias, Carmen</creator><creator>Gall, Andrew</creator><creator>Bressanelli, Stéphane</creator><creator>Le Du, Marie-Hélène</creator><creator>Paternostre, Maïté</creator><creator>Artzner, Franck</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2431-2255</orcidid><orcidid>https://orcid.org/0000000324312255</orcidid><orcidid>https://orcid.org/0000-0002-3303-8959</orcidid><orcidid>https://orcid.org/0000-0002-5613-576X</orcidid><orcidid>https://orcid.org/0000-0002-0921-6727</orcidid><orcidid>https://orcid.org/0000-0003-3557-7451</orcidid><orcidid>https://orcid.org/0000-0003-1902-4187</orcidid><orcidid>https://orcid.org/0000-0002-8779-7897</orcidid></search><sort><creationdate>20150720</creationdate><title>Atomic view of the histidine environment stabilizing higher-pH conformations of pH-dependent proteins</title><author>Valéry, Céline ; Deville-Foillard, Stéphanie ; Lefebvre, Christelle ; Taberner, Nuria ; Legrand, Pierre ; Meneau, Florian ; Meriadec, Cristelle ; Delvaux, Camille ; Bizien, Thomas ; Kasotakis, Emmanouil ; Lopez-Iglesias, Carmen ; Gall, Andrew ; Bressanelli, Stéphane ; Le Du, Marie-Hélène ; Paternostre, Maïté ; Artzner, Franck</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-3ca589c0f0402191d5128c4a205f59ebb8a80de8478ad10dd20a29c92456da463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>140/133</topic><topic>631/45/535</topic><topic>631/57/2272/2273</topic><topic>631/92/470</topic><topic>Crystallography, X-Ray</topic><topic>Histidine - chemistry</topic><topic>Histidine - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen-Ion Concentration</topic><topic>Life Sciences</topic><topic>Models, Molecular</topic><topic>multidisciplinary</topic><topic>Nanotubes, Peptide - chemistry</topic><topic>Optical Imaging</topic><topic>Physics</topic><topic>Protein Conformation</topic><topic>Protein Structure, Secondary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Spectrum Analysis, Raman</topic><topic>Triptorelin Pamoate - chemistry</topic><topic>Triptorelin Pamoate - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valéry, Céline</creatorcontrib><creatorcontrib>Deville-Foillard, Stéphanie</creatorcontrib><creatorcontrib>Lefebvre, Christelle</creatorcontrib><creatorcontrib>Taberner, Nuria</creatorcontrib><creatorcontrib>Legrand, Pierre</creatorcontrib><creatorcontrib>Meneau, Florian</creatorcontrib><creatorcontrib>Meriadec, Cristelle</creatorcontrib><creatorcontrib>Delvaux, Camille</creatorcontrib><creatorcontrib>Bizien, Thomas</creatorcontrib><creatorcontrib>Kasotakis, Emmanouil</creatorcontrib><creatorcontrib>Lopez-Iglesias, Carmen</creatorcontrib><creatorcontrib>Gall, Andrew</creatorcontrib><creatorcontrib>Bressanelli, Stéphane</creatorcontrib><creatorcontrib>Le Du, Marie-Hélène</creatorcontrib><creatorcontrib>Paternostre, Maïté</creatorcontrib><creatorcontrib>Artzner, Franck</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valéry, Céline</au><au>Deville-Foillard, Stéphanie</au><au>Lefebvre, Christelle</au><au>Taberner, Nuria</au><au>Legrand, Pierre</au><au>Meneau, Florian</au><au>Meriadec, Cristelle</au><au>Delvaux, Camille</au><au>Bizien, Thomas</au><au>Kasotakis, Emmanouil</au><au>Lopez-Iglesias, Carmen</au><au>Gall, Andrew</au><au>Bressanelli, Stéphane</au><au>Le Du, Marie-Hélène</au><au>Paternostre, Maïté</au><au>Artzner, Franck</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic view of the histidine environment stabilizing higher-pH conformations of pH-dependent proteins</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-07-20</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>7771</spage><epage>7771</epage><pages>7771-7771</pages><artnum>7771</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>External stimuli are powerful tools that naturally control protein assemblies and functions. For example, during viral entry and exit changes in pH are known to trigger large protein conformational changes. However, the molecular features stabilizing the higher pH structures remain unclear. Here we elucidate the conformational change of a self-assembling peptide that forms either small or large nanotubes dependent on the pH. The sub-angstrom high-pH peptide structure reveals a globular conformation stabilized through a strong histidine-serine H-bond and a tight histidine-aromatic packing. Lowering the pH induces histidine protonation, disrupts these interactions and triggers a large change to an extended β-sheet-based conformation. Re-visiting available structures of proteins with pH-dependent conformations reveals both histidine-containing aromatic pockets and histidine-serine proximity as key motifs in higher pH structures. The mechanism discovered in this study may thus be generally used by pH-dependent proteins and opens new prospects in the field of nanomaterials. In biological systems, large pH-induced conformational changes can be observed in certain proteins, a phenomenon poorly understood at the molecular level. Here the authors describe a peptide with the ability to self-organize into either small or large nanotubes in a pH-dependent manner and detail the mechanism driving the transition.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26190377</pmid><doi>10.1038/ncomms8771</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2431-2255</orcidid><orcidid>https://orcid.org/0000000324312255</orcidid><orcidid>https://orcid.org/0000-0002-3303-8959</orcidid><orcidid>https://orcid.org/0000-0002-5613-576X</orcidid><orcidid>https://orcid.org/0000-0002-0921-6727</orcidid><orcidid>https://orcid.org/0000-0003-3557-7451</orcidid><orcidid>https://orcid.org/0000-0003-1902-4187</orcidid><orcidid>https://orcid.org/0000-0002-8779-7897</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2015-07, Vol.6 (1), p.7771-7771, Article 7771
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4518280
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA Free Journals
subjects 140/133
631/45/535
631/57/2272/2273
631/92/470
Crystallography, X-Ray
Histidine - chemistry
Histidine - metabolism
Humanities and Social Sciences
Hydrogen-Ion Concentration
Life Sciences
Models, Molecular
multidisciplinary
Nanotubes, Peptide - chemistry
Optical Imaging
Physics
Protein Conformation
Protein Structure, Secondary
Science
Science (multidisciplinary)
Spectroscopy, Fourier Transform Infrared
Spectrum Analysis, Raman
Triptorelin Pamoate - chemistry
Triptorelin Pamoate - metabolism
title Atomic view of the histidine environment stabilizing higher-pH conformations of pH-dependent proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A01%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20view%20of%20the%20histidine%20environment%20stabilizing%20higher-pH%20conformations%20of%20pH-dependent%20proteins&rft.jtitle=Nature%20communications&rft.au=Val%C3%A9ry,%20C%C3%A9line&rft.date=2015-07-20&rft.volume=6&rft.issue=1&rft.spage=7771&rft.epage=7771&rft.pages=7771-7771&rft.artnum=7771&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms8771&rft_dat=%3Cproquest_pubme%3E1698962595%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1697223393&rft_id=info:pmid/26190377&rfr_iscdi=true