OpenMx 2.0: Extended Structural Equation and Statistical Modeling

The new software package OpenMx 2.0 for structural equation and other statistical modeling is introduced and its features are described. OpenMx is evolving in a modular direction and now allows a mix-and-match computational approach that separates model expectations from fit functions and optimizers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychometrika 2016-06, Vol.81 (2), p.535-549
Hauptverfasser: Neale, Michael C., Hunter, Michael D., Pritikin, Joshua N., Zahery, Mahsa, Brick, Timothy R., Kirkpatrick, Robert M., Estabrook, Ryne, Bates, Timothy C., Maes, Hermine H., Boker, Steven M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 549
container_issue 2
container_start_page 535
container_title Psychometrika
container_volume 81
creator Neale, Michael C.
Hunter, Michael D.
Pritikin, Joshua N.
Zahery, Mahsa
Brick, Timothy R.
Kirkpatrick, Robert M.
Estabrook, Ryne
Bates, Timothy C.
Maes, Hermine H.
Boker, Steven M.
description The new software package OpenMx 2.0 for structural equation and other statistical modeling is introduced and its features are described. OpenMx is evolving in a modular direction and now allows a mix-and-match computational approach that separates model expectations from fit functions and optimizers. Major backend architectural improvements include a move to swappable open-source optimizers such as the newly written CSOLNP. Entire new methodologies such as item factor analysis and state space modeling have been implemented. New model expectation functions including support for the expression of models in LISREL syntax and a simplified multigroup expectation function are available. Ease-of-use improvements include helper functions to standardize model parameters and compute their Jacobian-based standard errors, access to model components through standard R $ mechanisms, and improved tab completion from within the R Graphical User Interface.
doi_str_mv 10.1007/s11336-014-9435-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4516707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808729262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-b4ab848cd361347217ee20b67d799a1f2f7aa1c45e7b0cd533e912e417232d3e3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EotvCD-CCInHhkjLjcWKHA1JVbQGpVQ-Fs-U4s0uqrLO1E9T--3q1pSpIqCdbft-8Gc8T4h3CMQLoTwmRqC4BVdkoqkrzQizQ1FBCY-ClWAAQlYSSDsRhStcA0KAxr8WBrGopG9ksxMnllsPFbSGP4XOxvJ04dNwVV1Oc_TRHNxTLm9lN_RgKF3bv-Z6m3mfhYux46MP6jXi1ckPitw_nkfh5tvxx-q08v_z6_fTkvPQV0FS2yrVGGd9RjaS0RM0soa11p5vG4UqutHPoVcW6Bd9VRNygZIVakuyI6Uh82ftu53bDnecw5fnsNvYbF-_s6Hr7txL6X3Y9_raqwlqDzgYfHwzieDNzmuymT56HwQUe52TRgNF5K7V8HtWNJE2gVEY__INej3MMeRM7Ku-eoKoyhXvKxzGlyKvHuRHsLku7z9LmLO0uS2tyzfunH36s-BNeBuQeSFkKa45PWv_X9R6s1afx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1791233055</pqid></control><display><type>article</type><title>OpenMx 2.0: Extended Structural Equation and Statistical Modeling</title><source>MEDLINE</source><source>Education Source</source><source>Springer Nature - Complete Springer Journals</source><creator>Neale, Michael C. ; Hunter, Michael D. ; Pritikin, Joshua N. ; Zahery, Mahsa ; Brick, Timothy R. ; Kirkpatrick, Robert M. ; Estabrook, Ryne ; Bates, Timothy C. ; Maes, Hermine H. ; Boker, Steven M.</creator><creatorcontrib>Neale, Michael C. ; Hunter, Michael D. ; Pritikin, Joshua N. ; Zahery, Mahsa ; Brick, Timothy R. ; Kirkpatrick, Robert M. ; Estabrook, Ryne ; Bates, Timothy C. ; Maes, Hermine H. ; Boker, Steven M.</creatorcontrib><description>The new software package OpenMx 2.0 for structural equation and other statistical modeling is introduced and its features are described. OpenMx is evolving in a modular direction and now allows a mix-and-match computational approach that separates model expectations from fit functions and optimizers. Major backend architectural improvements include a move to swappable open-source optimizers such as the newly written CSOLNP. Entire new methodologies such as item factor analysis and state space modeling have been implemented. New model expectation functions including support for the expression of models in LISREL syntax and a simplified multigroup expectation function are available. Ease-of-use improvements include helper functions to standardize model parameters and compute their Jacobian-based standard errors, access to model components through standard R $ mechanisms, and improved tab completion from within the R Graphical User Interface.</description><identifier>ISSN: 0033-3123</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/s11336-014-9435-8</identifier><identifier>PMID: 25622929</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Assessment ; Behavioral Science and Psychology ; Data Analysis ; Discriminant analysis ; Factor Analysis ; Factor Analysis, Statistical ; Humanities ; Humans ; Law ; Maximum Likelihood Statistics ; Models, Statistical ; Operating systems ; Optimization ; Psychology ; Psychometrics ; Software ; Statistical Theory and Methods ; Statistics as Topic ; Statistics for Social Sciences ; Structural equation modeling ; Structural Equation Models ; Testing and Evaluation</subject><ispartof>Psychometrika, 2016-06, Vol.81 (2), p.535-549</ispartof><rights>The Psychometric Society 2015</rights><rights>The Psychometric Society 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-b4ab848cd361347217ee20b67d799a1f2f7aa1c45e7b0cd533e912e417232d3e3</citedby><cites>FETCH-LOGICAL-c503t-b4ab848cd361347217ee20b67d799a1f2f7aa1c45e7b0cd533e912e417232d3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11336-014-9435-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11336-014-9435-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25622929$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Neale, Michael C.</creatorcontrib><creatorcontrib>Hunter, Michael D.</creatorcontrib><creatorcontrib>Pritikin, Joshua N.</creatorcontrib><creatorcontrib>Zahery, Mahsa</creatorcontrib><creatorcontrib>Brick, Timothy R.</creatorcontrib><creatorcontrib>Kirkpatrick, Robert M.</creatorcontrib><creatorcontrib>Estabrook, Ryne</creatorcontrib><creatorcontrib>Bates, Timothy C.</creatorcontrib><creatorcontrib>Maes, Hermine H.</creatorcontrib><creatorcontrib>Boker, Steven M.</creatorcontrib><title>OpenMx 2.0: Extended Structural Equation and Statistical Modeling</title><title>Psychometrika</title><addtitle>Psychometrika</addtitle><addtitle>Psychometrika</addtitle><description>The new software package OpenMx 2.0 for structural equation and other statistical modeling is introduced and its features are described. OpenMx is evolving in a modular direction and now allows a mix-and-match computational approach that separates model expectations from fit functions and optimizers. Major backend architectural improvements include a move to swappable open-source optimizers such as the newly written CSOLNP. Entire new methodologies such as item factor analysis and state space modeling have been implemented. New model expectation functions including support for the expression of models in LISREL syntax and a simplified multigroup expectation function are available. Ease-of-use improvements include helper functions to standardize model parameters and compute their Jacobian-based standard errors, access to model components through standard R $ mechanisms, and improved tab completion from within the R Graphical User Interface.</description><subject>Assessment</subject><subject>Behavioral Science and Psychology</subject><subject>Data Analysis</subject><subject>Discriminant analysis</subject><subject>Factor Analysis</subject><subject>Factor Analysis, Statistical</subject><subject>Humanities</subject><subject>Humans</subject><subject>Law</subject><subject>Maximum Likelihood Statistics</subject><subject>Models, Statistical</subject><subject>Operating systems</subject><subject>Optimization</subject><subject>Psychology</subject><subject>Psychometrics</subject><subject>Software</subject><subject>Statistical Theory and Methods</subject><subject>Statistics as Topic</subject><subject>Statistics for Social Sciences</subject><subject>Structural equation modeling</subject><subject>Structural Equation Models</subject><subject>Testing and Evaluation</subject><issn>0033-3123</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkUFv1DAQhS0EotvCD-CCInHhkjLjcWKHA1JVbQGpVQ-Fs-U4s0uqrLO1E9T--3q1pSpIqCdbft-8Gc8T4h3CMQLoTwmRqC4BVdkoqkrzQizQ1FBCY-ClWAAQlYSSDsRhStcA0KAxr8WBrGopG9ksxMnllsPFbSGP4XOxvJ04dNwVV1Oc_TRHNxTLm9lN_RgKF3bv-Z6m3mfhYux46MP6jXi1ckPitw_nkfh5tvxx-q08v_z6_fTkvPQV0FS2yrVGGd9RjaS0RM0soa11p5vG4UqutHPoVcW6Bd9VRNygZIVakuyI6Uh82ftu53bDnecw5fnsNvYbF-_s6Hr7txL6X3Y9_raqwlqDzgYfHwzieDNzmuymT56HwQUe52TRgNF5K7V8HtWNJE2gVEY__INej3MMeRM7Ku-eoKoyhXvKxzGlyKvHuRHsLku7z9LmLO0uS2tyzfunH36s-BNeBuQeSFkKa45PWv_X9R6s1afx</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Neale, Michael C.</creator><creator>Hunter, Michael D.</creator><creator>Pritikin, Joshua N.</creator><creator>Zahery, Mahsa</creator><creator>Brick, Timothy R.</creator><creator>Kirkpatrick, Robert M.</creator><creator>Estabrook, Ryne</creator><creator>Bates, Timothy C.</creator><creator>Maes, Hermine H.</creator><creator>Boker, Steven M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7TK</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88B</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0P</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160601</creationdate><title>OpenMx 2.0: Extended Structural Equation and Statistical Modeling</title><author>Neale, Michael C. ; Hunter, Michael D. ; Pritikin, Joshua N. ; Zahery, Mahsa ; Brick, Timothy R. ; Kirkpatrick, Robert M. ; Estabrook, Ryne ; Bates, Timothy C. ; Maes, Hermine H. ; Boker, Steven M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-b4ab848cd361347217ee20b67d799a1f2f7aa1c45e7b0cd533e912e417232d3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Assessment</topic><topic>Behavioral Science and Psychology</topic><topic>Data Analysis</topic><topic>Discriminant analysis</topic><topic>Factor Analysis</topic><topic>Factor Analysis, Statistical</topic><topic>Humanities</topic><topic>Humans</topic><topic>Law</topic><topic>Maximum Likelihood Statistics</topic><topic>Models, Statistical</topic><topic>Operating systems</topic><topic>Optimization</topic><topic>Psychology</topic><topic>Psychometrics</topic><topic>Software</topic><topic>Statistical Theory and Methods</topic><topic>Statistics as Topic</topic><topic>Statistics for Social Sciences</topic><topic>Structural equation modeling</topic><topic>Structural Equation Models</topic><topic>Testing and Evaluation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neale, Michael C.</creatorcontrib><creatorcontrib>Hunter, Michael D.</creatorcontrib><creatorcontrib>Pritikin, Joshua N.</creatorcontrib><creatorcontrib>Zahery, Mahsa</creatorcontrib><creatorcontrib>Brick, Timothy R.</creatorcontrib><creatorcontrib>Kirkpatrick, Robert M.</creatorcontrib><creatorcontrib>Estabrook, Ryne</creatorcontrib><creatorcontrib>Bates, Timothy C.</creatorcontrib><creatorcontrib>Maes, Hermine H.</creatorcontrib><creatorcontrib>Boker, Steven M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Education Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neale, Michael C.</au><au>Hunter, Michael D.</au><au>Pritikin, Joshua N.</au><au>Zahery, Mahsa</au><au>Brick, Timothy R.</au><au>Kirkpatrick, Robert M.</au><au>Estabrook, Ryne</au><au>Bates, Timothy C.</au><au>Maes, Hermine H.</au><au>Boker, Steven M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OpenMx 2.0: Extended Structural Equation and Statistical Modeling</atitle><jtitle>Psychometrika</jtitle><stitle>Psychometrika</stitle><addtitle>Psychometrika</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>81</volume><issue>2</issue><spage>535</spage><epage>549</epage><pages>535-549</pages><issn>0033-3123</issn><eissn>1860-0980</eissn><abstract>The new software package OpenMx 2.0 for structural equation and other statistical modeling is introduced and its features are described. OpenMx is evolving in a modular direction and now allows a mix-and-match computational approach that separates model expectations from fit functions and optimizers. Major backend architectural improvements include a move to swappable open-source optimizers such as the newly written CSOLNP. Entire new methodologies such as item factor analysis and state space modeling have been implemented. New model expectation functions including support for the expression of models in LISREL syntax and a simplified multigroup expectation function are available. Ease-of-use improvements include helper functions to standardize model parameters and compute their Jacobian-based standard errors, access to model components through standard R $ mechanisms, and improved tab completion from within the R Graphical User Interface.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>25622929</pmid><doi>10.1007/s11336-014-9435-8</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0033-3123
ispartof Psychometrika, 2016-06, Vol.81 (2), p.535-549
issn 0033-3123
1860-0980
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4516707
source MEDLINE; Education Source; Springer Nature - Complete Springer Journals
subjects Assessment
Behavioral Science and Psychology
Data Analysis
Discriminant analysis
Factor Analysis
Factor Analysis, Statistical
Humanities
Humans
Law
Maximum Likelihood Statistics
Models, Statistical
Operating systems
Optimization
Psychology
Psychometrics
Software
Statistical Theory and Methods
Statistics as Topic
Statistics for Social Sciences
Structural equation modeling
Structural Equation Models
Testing and Evaluation
title OpenMx 2.0: Extended Structural Equation and Statistical Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A52%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OpenMx%202.0:%20Extended%20Structural%20Equation%20and%20Statistical%20Modeling&rft.jtitle=Psychometrika&rft.au=Neale,%20Michael%20C.&rft.date=2016-06-01&rft.volume=81&rft.issue=2&rft.spage=535&rft.epage=549&rft.pages=535-549&rft.issn=0033-3123&rft.eissn=1860-0980&rft_id=info:doi/10.1007/s11336-014-9435-8&rft_dat=%3Cproquest_pubme%3E1808729262%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1791233055&rft_id=info:pmid/25622929&rfr_iscdi=true