Differentiation and enrichment of expandable chondrogenic cells from human embryonic stem cells in vitro

Human embryonic stem cells (hESCs) are considered as useful tools for pre‐clinical studies in regenerative medicine. Although previous reports have shown direct chondrogenic differentiation of mouse and hESCs, low yield and cellular heterogenicity of the resulting cell population impairs the generat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular and molecular medicine 2009-09, Vol.13 (9b), p.3570-3590
Hauptverfasser: Toh, Wei Seong, Guo, Xi‐Min, Choo, Andre B., Lu, Kai, Lee, Eng Hin, Cao, Tong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3590
container_issue 9b
container_start_page 3570
container_title Journal of cellular and molecular medicine
container_volume 13
creator Toh, Wei Seong
Guo, Xi‐Min
Choo, Andre B.
Lu, Kai
Lee, Eng Hin
Cao, Tong
description Human embryonic stem cells (hESCs) are considered as useful tools for pre‐clinical studies in regenerative medicine. Although previous reports have shown direct chondrogenic differentiation of mouse and hESCs, low yield and cellular heterogenicity of the resulting cell population impairs the generation of sufficient numbers of differentiated cells for further testing and applications. Based on our previously established high‐density micromass model system to study hESC chondrogenesis, we evaluated the effects of transforming growth factor (TGF)‐β1 and bone morphogenetic protein‐2 on early stages of chondrogenic differentiation and commitment by hESCs. Significant chondrogenic induction of hESCs, as determined by quantitative measurements of cartilage‐related gene expression and matrix protein synthesis, was achieved in the presence of TGF‐β1. By means of selective growth factor combination (TGF‐β1, FGF‐2 and platelet‐derived growth factor‐bb) and plating on extracellular matrix substratum, we report here the reproducible isolation of a highly expandable, homogenous and unipotent chondrogenic cell population, TC1, from chondrogenically committed hESCs. Like primary chondrocytes, TC1 rapidly dedifferentiates upon isolation and monolayer expansion but retains the chondrogenic differentiation potential and responds to TGF‐β1 for cartilaginous tissue formation both in vitro and in vivo. In addition, TC1 displays a somatic cell cycle kinetics, a normal karyotype and does not produce teratoma in vivo. Thus, TC1 may provide a potential source of chondrogenic cells for drug testing, gene therapy and cell‐based therapy.
doi_str_mv 10.1111/j.1582-4934.2009.00762.x
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4516509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1957935341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5662-a303df4f54b909915320a6231384e0d50d69b6697452a2e1578fc8b5866f29103</originalsourceid><addsrcrecordid>eNqNkUtPxCAUhYnR-P4LhrifyqPQstDEjO9o3Oia0BYskxZG2hln_r3UaXzsZMPNPYfDhQ8AiFGC4zqbJZjlZJIKmiYEIZEglHGSrLbA_rewPdY4p_keOOi6GUKUYyp2wR4WKeFR3Qf1lTVGB-16q3rrHVSugtoFW9ZtbEJvoF7NY1MVjYZl7V0V_Jt2toSlbpoOmuBbWC9a5aBui7D2g9T1uh116-DS9sEfgR2jmk4fj_sheL25fpneTR6fb--nl4-TknFOJooiWpnUsLQQSAjMKEGKE4ppnmpUMVRxUXAuspQRRTRmWW7KvGA554YIjOghuNjkzhdFq6syPiKoRs6DbVVYS6-s_Ks4W8s3v5Qpw5whEQNOx4Dg3xe66-XML4KLM0uCM5zxCCCa8o2pDL7rgjbfF2AkB0RyJofflwMJOSCSX4jkKh49-T3gz8GRSTScbwwfttHrfwfLh-nTU6zoJ9mqoPo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217176111</pqid></control><display><type>article</type><title>Differentiation and enrichment of expandable chondrogenic cells from human embryonic stem cells in vitro</title><source>Wiley Online Library Open Access</source><creator>Toh, Wei Seong ; Guo, Xi‐Min ; Choo, Andre B. ; Lu, Kai ; Lee, Eng Hin ; Cao, Tong</creator><creatorcontrib>Toh, Wei Seong ; Guo, Xi‐Min ; Choo, Andre B. ; Lu, Kai ; Lee, Eng Hin ; Cao, Tong</creatorcontrib><description>Human embryonic stem cells (hESCs) are considered as useful tools for pre‐clinical studies in regenerative medicine. Although previous reports have shown direct chondrogenic differentiation of mouse and hESCs, low yield and cellular heterogenicity of the resulting cell population impairs the generation of sufficient numbers of differentiated cells for further testing and applications. Based on our previously established high‐density micromass model system to study hESC chondrogenesis, we evaluated the effects of transforming growth factor (TGF)‐β1 and bone morphogenetic protein‐2 on early stages of chondrogenic differentiation and commitment by hESCs. Significant chondrogenic induction of hESCs, as determined by quantitative measurements of cartilage‐related gene expression and matrix protein synthesis, was achieved in the presence of TGF‐β1. By means of selective growth factor combination (TGF‐β1, FGF‐2 and platelet‐derived growth factor‐bb) and plating on extracellular matrix substratum, we report here the reproducible isolation of a highly expandable, homogenous and unipotent chondrogenic cell population, TC1, from chondrogenically committed hESCs. Like primary chondrocytes, TC1 rapidly dedifferentiates upon isolation and monolayer expansion but retains the chondrogenic differentiation potential and responds to TGF‐β1 for cartilaginous tissue formation both in vitro and in vivo. In addition, TC1 displays a somatic cell cycle kinetics, a normal karyotype and does not produce teratoma in vivo. Thus, TC1 may provide a potential source of chondrogenic cells for drug testing, gene therapy and cell‐based therapy.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/j.1582-4934.2009.00762.x</identifier><identifier>PMID: 19426158</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; BMP‐2 ; Bone Morphogenetic Protein 2 - metabolism ; Bones ; Cartilage - cytology ; Cartilage, Articular - cytology ; Cell Culture Techniques ; Cell cycle ; Cell Differentiation ; Chondrocytes - cytology ; chondrogenesis ; Culture Media, Serum-Free - metabolism ; DNA Primers - genetics ; embryonic stem cells ; Embryonic Stem Cells - cytology ; FGF‐2 ; Gene expression ; Humans ; Impact analysis ; In Situ Hybridization, Fluorescence ; Karyotyping ; Kinetics ; Mice ; Morphology ; PDGFbb ; Proteins ; Stem cells ; TGF‐β1 ; Tissue Remodeling/Regeneration ; Transforming Growth Factor beta1 - metabolism</subject><ispartof>Journal of cellular and molecular medicine, 2009-09, Vol.13 (9b), p.3570-3590</ispartof><rights>2009 The Authors Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd</rights><rights>Copyright Blackwell Publishing Ltd. Sep 2009</rights><rights>2009 The Authors Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5662-a303df4f54b909915320a6231384e0d50d69b6697452a2e1578fc8b5866f29103</citedby><cites>FETCH-LOGICAL-c5662-a303df4f54b909915320a6231384e0d50d69b6697452a2e1578fc8b5866f29103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516509/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516509/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,11542,27903,27904,45553,45554,46030,46454,53769,53771</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1582-4934.2009.00762.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19426158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Toh, Wei Seong</creatorcontrib><creatorcontrib>Guo, Xi‐Min</creatorcontrib><creatorcontrib>Choo, Andre B.</creatorcontrib><creatorcontrib>Lu, Kai</creatorcontrib><creatorcontrib>Lee, Eng Hin</creatorcontrib><creatorcontrib>Cao, Tong</creatorcontrib><title>Differentiation and enrichment of expandable chondrogenic cells from human embryonic stem cells in vitro</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Human embryonic stem cells (hESCs) are considered as useful tools for pre‐clinical studies in regenerative medicine. Although previous reports have shown direct chondrogenic differentiation of mouse and hESCs, low yield and cellular heterogenicity of the resulting cell population impairs the generation of sufficient numbers of differentiated cells for further testing and applications. Based on our previously established high‐density micromass model system to study hESC chondrogenesis, we evaluated the effects of transforming growth factor (TGF)‐β1 and bone morphogenetic protein‐2 on early stages of chondrogenic differentiation and commitment by hESCs. Significant chondrogenic induction of hESCs, as determined by quantitative measurements of cartilage‐related gene expression and matrix protein synthesis, was achieved in the presence of TGF‐β1. By means of selective growth factor combination (TGF‐β1, FGF‐2 and platelet‐derived growth factor‐bb) and plating on extracellular matrix substratum, we report here the reproducible isolation of a highly expandable, homogenous and unipotent chondrogenic cell population, TC1, from chondrogenically committed hESCs. Like primary chondrocytes, TC1 rapidly dedifferentiates upon isolation and monolayer expansion but retains the chondrogenic differentiation potential and responds to TGF‐β1 for cartilaginous tissue formation both in vitro and in vivo. In addition, TC1 displays a somatic cell cycle kinetics, a normal karyotype and does not produce teratoma in vivo. Thus, TC1 may provide a potential source of chondrogenic cells for drug testing, gene therapy and cell‐based therapy.</description><subject>Animals</subject><subject>BMP‐2</subject><subject>Bone Morphogenetic Protein 2 - metabolism</subject><subject>Bones</subject><subject>Cartilage - cytology</subject><subject>Cartilage, Articular - cytology</subject><subject>Cell Culture Techniques</subject><subject>Cell cycle</subject><subject>Cell Differentiation</subject><subject>Chondrocytes - cytology</subject><subject>chondrogenesis</subject><subject>Culture Media, Serum-Free - metabolism</subject><subject>DNA Primers - genetics</subject><subject>embryonic stem cells</subject><subject>Embryonic Stem Cells - cytology</subject><subject>FGF‐2</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Impact analysis</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Karyotyping</subject><subject>Kinetics</subject><subject>Mice</subject><subject>Morphology</subject><subject>PDGFbb</subject><subject>Proteins</subject><subject>Stem cells</subject><subject>TGF‐β1</subject><subject>Tissue Remodeling/Regeneration</subject><subject>Transforming Growth Factor beta1 - metabolism</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtPxCAUhYnR-P4LhrifyqPQstDEjO9o3Oia0BYskxZG2hln_r3UaXzsZMPNPYfDhQ8AiFGC4zqbJZjlZJIKmiYEIZEglHGSrLbA_rewPdY4p_keOOi6GUKUYyp2wR4WKeFR3Qf1lTVGB-16q3rrHVSugtoFW9ZtbEJvoF7NY1MVjYZl7V0V_Jt2toSlbpoOmuBbWC9a5aBui7D2g9T1uh116-DS9sEfgR2jmk4fj_sheL25fpneTR6fb--nl4-TknFOJooiWpnUsLQQSAjMKEGKE4ppnmpUMVRxUXAuspQRRTRmWW7KvGA554YIjOghuNjkzhdFq6syPiKoRs6DbVVYS6-s_Ks4W8s3v5Qpw5whEQNOx4Dg3xe66-XML4KLM0uCM5zxCCCa8o2pDL7rgjbfF2AkB0RyJofflwMJOSCSX4jkKh49-T3gz8GRSTScbwwfttHrfwfLh-nTU6zoJ9mqoPo</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Toh, Wei Seong</creator><creator>Guo, Xi‐Min</creator><creator>Choo, Andre B.</creator><creator>Lu, Kai</creator><creator>Lee, Eng Hin</creator><creator>Cao, Tong</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>5PM</scope></search><sort><creationdate>200909</creationdate><title>Differentiation and enrichment of expandable chondrogenic cells from human embryonic stem cells in vitro</title><author>Toh, Wei Seong ; Guo, Xi‐Min ; Choo, Andre B. ; Lu, Kai ; Lee, Eng Hin ; Cao, Tong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5662-a303df4f54b909915320a6231384e0d50d69b6697452a2e1578fc8b5866f29103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>BMP‐2</topic><topic>Bone Morphogenetic Protein 2 - metabolism</topic><topic>Bones</topic><topic>Cartilage - cytology</topic><topic>Cartilage, Articular - cytology</topic><topic>Cell Culture Techniques</topic><topic>Cell cycle</topic><topic>Cell Differentiation</topic><topic>Chondrocytes - cytology</topic><topic>chondrogenesis</topic><topic>Culture Media, Serum-Free - metabolism</topic><topic>DNA Primers - genetics</topic><topic>embryonic stem cells</topic><topic>Embryonic Stem Cells - cytology</topic><topic>FGF‐2</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Impact analysis</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Karyotyping</topic><topic>Kinetics</topic><topic>Mice</topic><topic>Morphology</topic><topic>PDGFbb</topic><topic>Proteins</topic><topic>Stem cells</topic><topic>TGF‐β1</topic><topic>Tissue Remodeling/Regeneration</topic><topic>Transforming Growth Factor beta1 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toh, Wei Seong</creatorcontrib><creatorcontrib>Guo, Xi‐Min</creatorcontrib><creatorcontrib>Choo, Andre B.</creatorcontrib><creatorcontrib>Lu, Kai</creatorcontrib><creatorcontrib>Lee, Eng Hin</creatorcontrib><creatorcontrib>Cao, Tong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Toh, Wei Seong</au><au>Guo, Xi‐Min</au><au>Choo, Andre B.</au><au>Lu, Kai</au><au>Lee, Eng Hin</au><au>Cao, Tong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differentiation and enrichment of expandable chondrogenic cells from human embryonic stem cells in vitro</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2009-09</date><risdate>2009</risdate><volume>13</volume><issue>9b</issue><spage>3570</spage><epage>3590</epage><pages>3570-3590</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Human embryonic stem cells (hESCs) are considered as useful tools for pre‐clinical studies in regenerative medicine. Although previous reports have shown direct chondrogenic differentiation of mouse and hESCs, low yield and cellular heterogenicity of the resulting cell population impairs the generation of sufficient numbers of differentiated cells for further testing and applications. Based on our previously established high‐density micromass model system to study hESC chondrogenesis, we evaluated the effects of transforming growth factor (TGF)‐β1 and bone morphogenetic protein‐2 on early stages of chondrogenic differentiation and commitment by hESCs. Significant chondrogenic induction of hESCs, as determined by quantitative measurements of cartilage‐related gene expression and matrix protein synthesis, was achieved in the presence of TGF‐β1. By means of selective growth factor combination (TGF‐β1, FGF‐2 and platelet‐derived growth factor‐bb) and plating on extracellular matrix substratum, we report here the reproducible isolation of a highly expandable, homogenous and unipotent chondrogenic cell population, TC1, from chondrogenically committed hESCs. Like primary chondrocytes, TC1 rapidly dedifferentiates upon isolation and monolayer expansion but retains the chondrogenic differentiation potential and responds to TGF‐β1 for cartilaginous tissue formation both in vitro and in vivo. In addition, TC1 displays a somatic cell cycle kinetics, a normal karyotype and does not produce teratoma in vivo. Thus, TC1 may provide a potential source of chondrogenic cells for drug testing, gene therapy and cell‐based therapy.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>19426158</pmid><doi>10.1111/j.1582-4934.2009.00762.x</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1582-1838
ispartof Journal of cellular and molecular medicine, 2009-09, Vol.13 (9b), p.3570-3590
issn 1582-1838
1582-4934
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4516509
source Wiley Online Library Open Access
subjects Animals
BMP‐2
Bone Morphogenetic Protein 2 - metabolism
Bones
Cartilage - cytology
Cartilage, Articular - cytology
Cell Culture Techniques
Cell cycle
Cell Differentiation
Chondrocytes - cytology
chondrogenesis
Culture Media, Serum-Free - metabolism
DNA Primers - genetics
embryonic stem cells
Embryonic Stem Cells - cytology
FGF‐2
Gene expression
Humans
Impact analysis
In Situ Hybridization, Fluorescence
Karyotyping
Kinetics
Mice
Morphology
PDGFbb
Proteins
Stem cells
TGF‐β1
Tissue Remodeling/Regeneration
Transforming Growth Factor beta1 - metabolism
title Differentiation and enrichment of expandable chondrogenic cells from human embryonic stem cells in vitro
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differentiation%20and%20enrichment%20of%20expandable%20chondrogenic%20cells%20from%20human%20embryonic%20stem%20cells%20in%20vitro&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Toh,%20Wei%20Seong&rft.date=2009-09&rft.volume=13&rft.issue=9b&rft.spage=3570&rft.epage=3590&rft.pages=3570-3590&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/j.1582-4934.2009.00762.x&rft_dat=%3Cproquest_24P%3E1957935341%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217176111&rft_id=info:pmid/19426158&rfr_iscdi=true