Differentiation and enrichment of expandable chondrogenic cells from human embryonic stem cells in vitro
Human embryonic stem cells (hESCs) are considered as useful tools for pre‐clinical studies in regenerative medicine. Although previous reports have shown direct chondrogenic differentiation of mouse and hESCs, low yield and cellular heterogenicity of the resulting cell population impairs the generat...
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2009-09, Vol.13 (9b), p.3570-3590 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3590 |
---|---|
container_issue | 9b |
container_start_page | 3570 |
container_title | Journal of cellular and molecular medicine |
container_volume | 13 |
creator | Toh, Wei Seong Guo, Xi‐Min Choo, Andre B. Lu, Kai Lee, Eng Hin Cao, Tong |
description | Human embryonic stem cells (hESCs) are considered as useful tools for pre‐clinical studies in regenerative medicine. Although previous reports have shown direct chondrogenic differentiation of mouse and hESCs, low yield and cellular heterogenicity of the resulting cell population impairs the generation of sufficient numbers of differentiated cells for further testing and applications. Based on our previously established high‐density micromass model system to study hESC chondrogenesis, we evaluated the effects of transforming growth factor (TGF)‐β1 and bone morphogenetic protein‐2 on early stages of chondrogenic differentiation and commitment by hESCs. Significant chondrogenic induction of hESCs, as determined by quantitative measurements of cartilage‐related gene expression and matrix protein synthesis, was achieved in the presence of TGF‐β1. By means of selective growth factor combination (TGF‐β1, FGF‐2 and platelet‐derived growth factor‐bb) and plating on extracellular matrix substratum, we report here the reproducible isolation of a highly expandable, homogenous and unipotent chondrogenic cell population, TC1, from chondrogenically committed hESCs. Like primary chondrocytes, TC1 rapidly dedifferentiates upon isolation and monolayer expansion but retains the chondrogenic differentiation potential and responds to TGF‐β1 for cartilaginous tissue formation both in vitro and in vivo. In addition, TC1 displays a somatic cell cycle kinetics, a normal karyotype and does not produce teratoma in vivo. Thus, TC1 may provide a potential source of chondrogenic cells for drug testing, gene therapy and cell‐based therapy. |
doi_str_mv | 10.1111/j.1582-4934.2009.00762.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4516509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1957935341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5662-a303df4f54b909915320a6231384e0d50d69b6697452a2e1578fc8b5866f29103</originalsourceid><addsrcrecordid>eNqNkUtPxCAUhYnR-P4LhrifyqPQstDEjO9o3Oia0BYskxZG2hln_r3UaXzsZMPNPYfDhQ8AiFGC4zqbJZjlZJIKmiYEIZEglHGSrLbA_rewPdY4p_keOOi6GUKUYyp2wR4WKeFR3Qf1lTVGB-16q3rrHVSugtoFW9ZtbEJvoF7NY1MVjYZl7V0V_Jt2toSlbpoOmuBbWC9a5aBui7D2g9T1uh116-DS9sEfgR2jmk4fj_sheL25fpneTR6fb--nl4-TknFOJooiWpnUsLQQSAjMKEGKE4ppnmpUMVRxUXAuspQRRTRmWW7KvGA554YIjOghuNjkzhdFq6syPiKoRs6DbVVYS6-s_Ks4W8s3v5Qpw5whEQNOx4Dg3xe66-XML4KLM0uCM5zxCCCa8o2pDL7rgjbfF2AkB0RyJofflwMJOSCSX4jkKh49-T3gz8GRSTScbwwfttHrfwfLh-nTU6zoJ9mqoPo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217176111</pqid></control><display><type>article</type><title>Differentiation and enrichment of expandable chondrogenic cells from human embryonic stem cells in vitro</title><source>Wiley Online Library Open Access</source><creator>Toh, Wei Seong ; Guo, Xi‐Min ; Choo, Andre B. ; Lu, Kai ; Lee, Eng Hin ; Cao, Tong</creator><creatorcontrib>Toh, Wei Seong ; Guo, Xi‐Min ; Choo, Andre B. ; Lu, Kai ; Lee, Eng Hin ; Cao, Tong</creatorcontrib><description>Human embryonic stem cells (hESCs) are considered as useful tools for pre‐clinical studies in regenerative medicine. Although previous reports have shown direct chondrogenic differentiation of mouse and hESCs, low yield and cellular heterogenicity of the resulting cell population impairs the generation of sufficient numbers of differentiated cells for further testing and applications. Based on our previously established high‐density micromass model system to study hESC chondrogenesis, we evaluated the effects of transforming growth factor (TGF)‐β1 and bone morphogenetic protein‐2 on early stages of chondrogenic differentiation and commitment by hESCs. Significant chondrogenic induction of hESCs, as determined by quantitative measurements of cartilage‐related gene expression and matrix protein synthesis, was achieved in the presence of TGF‐β1. By means of selective growth factor combination (TGF‐β1, FGF‐2 and platelet‐derived growth factor‐bb) and plating on extracellular matrix substratum, we report here the reproducible isolation of a highly expandable, homogenous and unipotent chondrogenic cell population, TC1, from chondrogenically committed hESCs. Like primary chondrocytes, TC1 rapidly dedifferentiates upon isolation and monolayer expansion but retains the chondrogenic differentiation potential and responds to TGF‐β1 for cartilaginous tissue formation both in vitro and in vivo. In addition, TC1 displays a somatic cell cycle kinetics, a normal karyotype and does not produce teratoma in vivo. Thus, TC1 may provide a potential source of chondrogenic cells for drug testing, gene therapy and cell‐based therapy.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/j.1582-4934.2009.00762.x</identifier><identifier>PMID: 19426158</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; BMP‐2 ; Bone Morphogenetic Protein 2 - metabolism ; Bones ; Cartilage - cytology ; Cartilage, Articular - cytology ; Cell Culture Techniques ; Cell cycle ; Cell Differentiation ; Chondrocytes - cytology ; chondrogenesis ; Culture Media, Serum-Free - metabolism ; DNA Primers - genetics ; embryonic stem cells ; Embryonic Stem Cells - cytology ; FGF‐2 ; Gene expression ; Humans ; Impact analysis ; In Situ Hybridization, Fluorescence ; Karyotyping ; Kinetics ; Mice ; Morphology ; PDGFbb ; Proteins ; Stem cells ; TGF‐β1 ; Tissue Remodeling/Regeneration ; Transforming Growth Factor beta1 - metabolism</subject><ispartof>Journal of cellular and molecular medicine, 2009-09, Vol.13 (9b), p.3570-3590</ispartof><rights>2009 The Authors Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd</rights><rights>Copyright Blackwell Publishing Ltd. Sep 2009</rights><rights>2009 The Authors Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5662-a303df4f54b909915320a6231384e0d50d69b6697452a2e1578fc8b5866f29103</citedby><cites>FETCH-LOGICAL-c5662-a303df4f54b909915320a6231384e0d50d69b6697452a2e1578fc8b5866f29103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516509/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516509/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,11542,27903,27904,45553,45554,46030,46454,53769,53771</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1582-4934.2009.00762.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19426158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Toh, Wei Seong</creatorcontrib><creatorcontrib>Guo, Xi‐Min</creatorcontrib><creatorcontrib>Choo, Andre B.</creatorcontrib><creatorcontrib>Lu, Kai</creatorcontrib><creatorcontrib>Lee, Eng Hin</creatorcontrib><creatorcontrib>Cao, Tong</creatorcontrib><title>Differentiation and enrichment of expandable chondrogenic cells from human embryonic stem cells in vitro</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Human embryonic stem cells (hESCs) are considered as useful tools for pre‐clinical studies in regenerative medicine. Although previous reports have shown direct chondrogenic differentiation of mouse and hESCs, low yield and cellular heterogenicity of the resulting cell population impairs the generation of sufficient numbers of differentiated cells for further testing and applications. Based on our previously established high‐density micromass model system to study hESC chondrogenesis, we evaluated the effects of transforming growth factor (TGF)‐β1 and bone morphogenetic protein‐2 on early stages of chondrogenic differentiation and commitment by hESCs. Significant chondrogenic induction of hESCs, as determined by quantitative measurements of cartilage‐related gene expression and matrix protein synthesis, was achieved in the presence of TGF‐β1. By means of selective growth factor combination (TGF‐β1, FGF‐2 and platelet‐derived growth factor‐bb) and plating on extracellular matrix substratum, we report here the reproducible isolation of a highly expandable, homogenous and unipotent chondrogenic cell population, TC1, from chondrogenically committed hESCs. Like primary chondrocytes, TC1 rapidly dedifferentiates upon isolation and monolayer expansion but retains the chondrogenic differentiation potential and responds to TGF‐β1 for cartilaginous tissue formation both in vitro and in vivo. In addition, TC1 displays a somatic cell cycle kinetics, a normal karyotype and does not produce teratoma in vivo. Thus, TC1 may provide a potential source of chondrogenic cells for drug testing, gene therapy and cell‐based therapy.</description><subject>Animals</subject><subject>BMP‐2</subject><subject>Bone Morphogenetic Protein 2 - metabolism</subject><subject>Bones</subject><subject>Cartilage - cytology</subject><subject>Cartilage, Articular - cytology</subject><subject>Cell Culture Techniques</subject><subject>Cell cycle</subject><subject>Cell Differentiation</subject><subject>Chondrocytes - cytology</subject><subject>chondrogenesis</subject><subject>Culture Media, Serum-Free - metabolism</subject><subject>DNA Primers - genetics</subject><subject>embryonic stem cells</subject><subject>Embryonic Stem Cells - cytology</subject><subject>FGF‐2</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Impact analysis</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Karyotyping</subject><subject>Kinetics</subject><subject>Mice</subject><subject>Morphology</subject><subject>PDGFbb</subject><subject>Proteins</subject><subject>Stem cells</subject><subject>TGF‐β1</subject><subject>Tissue Remodeling/Regeneration</subject><subject>Transforming Growth Factor beta1 - metabolism</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtPxCAUhYnR-P4LhrifyqPQstDEjO9o3Oia0BYskxZG2hln_r3UaXzsZMPNPYfDhQ8AiFGC4zqbJZjlZJIKmiYEIZEglHGSrLbA_rewPdY4p_keOOi6GUKUYyp2wR4WKeFR3Qf1lTVGB-16q3rrHVSugtoFW9ZtbEJvoF7NY1MVjYZl7V0V_Jt2toSlbpoOmuBbWC9a5aBui7D2g9T1uh116-DS9sEfgR2jmk4fj_sheL25fpneTR6fb--nl4-TknFOJooiWpnUsLQQSAjMKEGKE4ppnmpUMVRxUXAuspQRRTRmWW7KvGA554YIjOghuNjkzhdFq6syPiKoRs6DbVVYS6-s_Ks4W8s3v5Qpw5whEQNOx4Dg3xe66-XML4KLM0uCM5zxCCCa8o2pDL7rgjbfF2AkB0RyJofflwMJOSCSX4jkKh49-T3gz8GRSTScbwwfttHrfwfLh-nTU6zoJ9mqoPo</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Toh, Wei Seong</creator><creator>Guo, Xi‐Min</creator><creator>Choo, Andre B.</creator><creator>Lu, Kai</creator><creator>Lee, Eng Hin</creator><creator>Cao, Tong</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>5PM</scope></search><sort><creationdate>200909</creationdate><title>Differentiation and enrichment of expandable chondrogenic cells from human embryonic stem cells in vitro</title><author>Toh, Wei Seong ; Guo, Xi‐Min ; Choo, Andre B. ; Lu, Kai ; Lee, Eng Hin ; Cao, Tong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5662-a303df4f54b909915320a6231384e0d50d69b6697452a2e1578fc8b5866f29103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>BMP‐2</topic><topic>Bone Morphogenetic Protein 2 - metabolism</topic><topic>Bones</topic><topic>Cartilage - cytology</topic><topic>Cartilage, Articular - cytology</topic><topic>Cell Culture Techniques</topic><topic>Cell cycle</topic><topic>Cell Differentiation</topic><topic>Chondrocytes - cytology</topic><topic>chondrogenesis</topic><topic>Culture Media, Serum-Free - metabolism</topic><topic>DNA Primers - genetics</topic><topic>embryonic stem cells</topic><topic>Embryonic Stem Cells - cytology</topic><topic>FGF‐2</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Impact analysis</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Karyotyping</topic><topic>Kinetics</topic><topic>Mice</topic><topic>Morphology</topic><topic>PDGFbb</topic><topic>Proteins</topic><topic>Stem cells</topic><topic>TGF‐β1</topic><topic>Tissue Remodeling/Regeneration</topic><topic>Transforming Growth Factor beta1 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toh, Wei Seong</creatorcontrib><creatorcontrib>Guo, Xi‐Min</creatorcontrib><creatorcontrib>Choo, Andre B.</creatorcontrib><creatorcontrib>Lu, Kai</creatorcontrib><creatorcontrib>Lee, Eng Hin</creatorcontrib><creatorcontrib>Cao, Tong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Toh, Wei Seong</au><au>Guo, Xi‐Min</au><au>Choo, Andre B.</au><au>Lu, Kai</au><au>Lee, Eng Hin</au><au>Cao, Tong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differentiation and enrichment of expandable chondrogenic cells from human embryonic stem cells in vitro</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2009-09</date><risdate>2009</risdate><volume>13</volume><issue>9b</issue><spage>3570</spage><epage>3590</epage><pages>3570-3590</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Human embryonic stem cells (hESCs) are considered as useful tools for pre‐clinical studies in regenerative medicine. Although previous reports have shown direct chondrogenic differentiation of mouse and hESCs, low yield and cellular heterogenicity of the resulting cell population impairs the generation of sufficient numbers of differentiated cells for further testing and applications. Based on our previously established high‐density micromass model system to study hESC chondrogenesis, we evaluated the effects of transforming growth factor (TGF)‐β1 and bone morphogenetic protein‐2 on early stages of chondrogenic differentiation and commitment by hESCs. Significant chondrogenic induction of hESCs, as determined by quantitative measurements of cartilage‐related gene expression and matrix protein synthesis, was achieved in the presence of TGF‐β1. By means of selective growth factor combination (TGF‐β1, FGF‐2 and platelet‐derived growth factor‐bb) and plating on extracellular matrix substratum, we report here the reproducible isolation of a highly expandable, homogenous and unipotent chondrogenic cell population, TC1, from chondrogenically committed hESCs. Like primary chondrocytes, TC1 rapidly dedifferentiates upon isolation and monolayer expansion but retains the chondrogenic differentiation potential and responds to TGF‐β1 for cartilaginous tissue formation both in vitro and in vivo. In addition, TC1 displays a somatic cell cycle kinetics, a normal karyotype and does not produce teratoma in vivo. Thus, TC1 may provide a potential source of chondrogenic cells for drug testing, gene therapy and cell‐based therapy.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>19426158</pmid><doi>10.1111/j.1582-4934.2009.00762.x</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2009-09, Vol.13 (9b), p.3570-3590 |
issn | 1582-1838 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4516509 |
source | Wiley Online Library Open Access |
subjects | Animals BMP‐2 Bone Morphogenetic Protein 2 - metabolism Bones Cartilage - cytology Cartilage, Articular - cytology Cell Culture Techniques Cell cycle Cell Differentiation Chondrocytes - cytology chondrogenesis Culture Media, Serum-Free - metabolism DNA Primers - genetics embryonic stem cells Embryonic Stem Cells - cytology FGF‐2 Gene expression Humans Impact analysis In Situ Hybridization, Fluorescence Karyotyping Kinetics Mice Morphology PDGFbb Proteins Stem cells TGF‐β1 Tissue Remodeling/Regeneration Transforming Growth Factor beta1 - metabolism |
title | Differentiation and enrichment of expandable chondrogenic cells from human embryonic stem cells in vitro |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differentiation%20and%20enrichment%20of%20expandable%20chondrogenic%20cells%20from%20human%20embryonic%20stem%20cells%20in%20vitro&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Toh,%20Wei%20Seong&rft.date=2009-09&rft.volume=13&rft.issue=9b&rft.spage=3570&rft.epage=3590&rft.pages=3570-3590&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/j.1582-4934.2009.00762.x&rft_dat=%3Cproquest_24P%3E1957935341%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217176111&rft_id=info:pmid/19426158&rfr_iscdi=true |