Connexin43 modulates neutrophil recruitment to the lung

Transmigration of neutrophils through the microvascular endothelium is a cardinal event of acute inflammation. It has been suggested that gap junctions made of connexin43 (Cx43) may serve as a conducting pathway to spread inflammatory signals within the lung capillary network. To determine whether C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular and molecular medicine 2009-11, Vol.13 (11-12), p.4560-4570
Hauptverfasser: Sarieddine, Maya Z. Richani, Scheckenbach, K. E. Ludwig, Foglia, Bernard, Maass, Karen, Garcia, Irène, Kwak, Brenda R., Chanson, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4570
container_issue 11-12
container_start_page 4560
container_title Journal of cellular and molecular medicine
container_volume 13
creator Sarieddine, Maya Z. Richani
Scheckenbach, K. E. Ludwig
Foglia, Bernard
Maass, Karen
Garcia, Irène
Kwak, Brenda R.
Chanson, Marc
description Transmigration of neutrophils through the microvascular endothelium is a cardinal event of acute inflammation. It has been suggested that gap junctions made of connexin43 (Cx43) may serve as a conducting pathway to spread inflammatory signals within the lung capillary network. To determine whether Cx43 contributes to neutrophil transmigration in vivo, the number of transmigrated neutrophils was monitored in lungs of Cx43 mouse models subjected to inflammation by intratracheal instillations of Pseudomonas aeruginosa lipopolysaccharide (LPS). Cx43 was detected in inflamed lungs independently of neutrophil recruitment, whereas Cx43 up‐regulation was not detected in mice genetically protected from inflammation. Mice heterozygous for the Cx43 gene (gja1) showed a 56% (P < 0.01) reduction in airway neutrophil count. In contrast, increased (P < 0.05) neutrophil recruitment in response to LPS was observed in a mouse model expressing a mutant Cx43 with enhanced channel conductivity. In vitro adhesion assays showed that reduced conductivity of Cx43 channels with 43Gap26, a Cx43 blocking peptide, decreased adhesion of neutrophils to endothelial cells. Finally, we found that instillation of 43Gap26 in inflamed lungs reduced neutrophil transmigration by 65% (P < 0.05). These results indicate that inflammatory mediators up‐regulate alveolar Cx43 to promote neutrophil recruitment to the airspace. Cx43 may therefore represent a pharmacological target in lung diseases characterized by excessive neutrophil recruitment to the airways.
doi_str_mv 10.1111/j.1582-4934.2008.00654.x
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4515071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733890234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5944-71cd0a104944ea24fbab3a21ce50945af498aa256db5f6230adeac707629ea513</originalsourceid><addsrcrecordid>eNqNkVtr3DAQhUVoSdIkfyGY9KFP645uvjy0UEybpGzoS_IsZHu8a2NLG8luN_--cnbJDQoVAo2Ybw5nOIREFGIazucupjJjC5FzETOALAZIpIi3B-T4qfFuX9OMZ0fkg_cdAE8ozw_JEc1pkohMHJO0sMbgtjWCR4Otp16P6COD0-jsZt32kcPKTe04oBmj0UbjGqN-MqtT8r7Rvcez_XtC7n58vy2uFstfl9fFt-WikrkQi5RWNWgKInxQM9GUuuSa0Qol5ELqRuSZ1kwmdSmbhHHQNeoqhTRhOWpJ-Qn5utPdTOWAdRVsON2rjWsH7R6U1a163THtWq3sbyUklZDOAp_2As7eT-hHNbS-wr7XBu3kVcp5lgPjIpAf35CdnZwJ2ylOuYRwYaYu_kUxmtKUi0fX2Q6qnPXeYfNkmIKaE1SdmsNRc1BqTlA9Jqi2YfT85cLPg_vIAvBlB_xpe3z4b2H1s7i5CRX_C_hMqUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3135035004</pqid></control><display><type>article</type><title>Connexin43 modulates neutrophil recruitment to the lung</title><source>Wiley Online Library Open Access</source><creator>Sarieddine, Maya Z. Richani ; Scheckenbach, K. E. Ludwig ; Foglia, Bernard ; Maass, Karen ; Garcia, Irène ; Kwak, Brenda R. ; Chanson, Marc</creator><creatorcontrib>Sarieddine, Maya Z. Richani ; Scheckenbach, K. E. Ludwig ; Foglia, Bernard ; Maass, Karen ; Garcia, Irène ; Kwak, Brenda R. ; Chanson, Marc</creatorcontrib><description>Transmigration of neutrophils through the microvascular endothelium is a cardinal event of acute inflammation. It has been suggested that gap junctions made of connexin43 (Cx43) may serve as a conducting pathway to spread inflammatory signals within the lung capillary network. To determine whether Cx43 contributes to neutrophil transmigration in vivo, the number of transmigrated neutrophils was monitored in lungs of Cx43 mouse models subjected to inflammation by intratracheal instillations of Pseudomonas aeruginosa lipopolysaccharide (LPS). Cx43 was detected in inflamed lungs independently of neutrophil recruitment, whereas Cx43 up‐regulation was not detected in mice genetically protected from inflammation. Mice heterozygous for the Cx43 gene (gja1) showed a 56% (P &lt; 0.01) reduction in airway neutrophil count. In contrast, increased (P &lt; 0.05) neutrophil recruitment in response to LPS was observed in a mouse model expressing a mutant Cx43 with enhanced channel conductivity. In vitro adhesion assays showed that reduced conductivity of Cx43 channels with 43Gap26, a Cx43 blocking peptide, decreased adhesion of neutrophils to endothelial cells. Finally, we found that instillation of 43Gap26 in inflamed lungs reduced neutrophil transmigration by 65% (P &lt; 0.05). These results indicate that inflammatory mediators up‐regulate alveolar Cx43 to promote neutrophil recruitment to the airspace. Cx43 may therefore represent a pharmacological target in lung diseases characterized by excessive neutrophil recruitment to the airways.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/j.1582-4934.2008.00654.x</identifier><identifier>PMID: 19166484</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Alveoli ; Amino acids ; Animal models ; Animals ; Antibodies ; blocking peptide ; Bronchoalveolar Lavage Fluid ; Cell Adhesion - drug effects ; Cell Communication - drug effects ; Cell Line ; connexin ; Connexin 43 ; Connexin 43 - metabolism ; Cytokines ; Cytokines - metabolism ; Endothelial cells ; Endothelium ; Experiments ; Gap junctions ; Genes ; Genetics ; Humans ; Inflammation ; Inflammation - immunology ; Inflammation - pathology ; Inflammation Mediators - metabolism ; Laboratories ; Leukocytes ; Leukocytes (neutrophilic) ; Lipopolysaccharides ; Lipopolysaccharides - administration &amp; dosage ; Lipopolysaccharides - pharmacology ; Lung - drug effects ; Lung - immunology ; Lung - pathology ; Lung diseases ; lung inflammation ; Lungs ; Lymphocyte Count ; Mice ; Microvasculature ; mouse models ; Mutation ; Neutrophil Infiltration - drug effects ; Neutrophil Infiltration - immunology ; neutrophil recruitment ; Neutrophils ; Peptides ; Peptides - pharmacology ; Proteins ; Pulmonary Alveoli - drug effects ; Pulmonary Alveoli - metabolism ; Pulmonary Alveoli - pathology ; Rodents ; Trachea ; Tumor necrosis factor-TNF</subject><ispartof>Journal of cellular and molecular medicine, 2009-11, Vol.13 (11-12), p.4560-4570</ispartof><rights>2009 The Authors Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd</rights><rights>Copyright Blackwell Publishing Ltd. Nov/Dec 2009</rights><rights>2009. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2009 The Authors Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5944-71cd0a104944ea24fbab3a21ce50945af498aa256db5f6230adeac707629ea513</citedby><cites>FETCH-LOGICAL-c5944-71cd0a104944ea24fbab3a21ce50945af498aa256db5f6230adeac707629ea513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4515071/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4515071/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1582-4934.2008.00654.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19166484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sarieddine, Maya Z. Richani</creatorcontrib><creatorcontrib>Scheckenbach, K. E. Ludwig</creatorcontrib><creatorcontrib>Foglia, Bernard</creatorcontrib><creatorcontrib>Maass, Karen</creatorcontrib><creatorcontrib>Garcia, Irène</creatorcontrib><creatorcontrib>Kwak, Brenda R.</creatorcontrib><creatorcontrib>Chanson, Marc</creatorcontrib><title>Connexin43 modulates neutrophil recruitment to the lung</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Transmigration of neutrophils through the microvascular endothelium is a cardinal event of acute inflammation. It has been suggested that gap junctions made of connexin43 (Cx43) may serve as a conducting pathway to spread inflammatory signals within the lung capillary network. To determine whether Cx43 contributes to neutrophil transmigration in vivo, the number of transmigrated neutrophils was monitored in lungs of Cx43 mouse models subjected to inflammation by intratracheal instillations of Pseudomonas aeruginosa lipopolysaccharide (LPS). Cx43 was detected in inflamed lungs independently of neutrophil recruitment, whereas Cx43 up‐regulation was not detected in mice genetically protected from inflammation. Mice heterozygous for the Cx43 gene (gja1) showed a 56% (P &lt; 0.01) reduction in airway neutrophil count. In contrast, increased (P &lt; 0.05) neutrophil recruitment in response to LPS was observed in a mouse model expressing a mutant Cx43 with enhanced channel conductivity. In vitro adhesion assays showed that reduced conductivity of Cx43 channels with 43Gap26, a Cx43 blocking peptide, decreased adhesion of neutrophils to endothelial cells. Finally, we found that instillation of 43Gap26 in inflamed lungs reduced neutrophil transmigration by 65% (P &lt; 0.05). These results indicate that inflammatory mediators up‐regulate alveolar Cx43 to promote neutrophil recruitment to the airspace. Cx43 may therefore represent a pharmacological target in lung diseases characterized by excessive neutrophil recruitment to the airways.</description><subject>Alveoli</subject><subject>Amino acids</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antibodies</subject><subject>blocking peptide</subject><subject>Bronchoalveolar Lavage Fluid</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Communication - drug effects</subject><subject>Cell Line</subject><subject>connexin</subject><subject>Connexin 43</subject><subject>Connexin 43 - metabolism</subject><subject>Cytokines</subject><subject>Cytokines - metabolism</subject><subject>Endothelial cells</subject><subject>Endothelium</subject><subject>Experiments</subject><subject>Gap junctions</subject><subject>Genes</subject><subject>Genetics</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Inflammation - immunology</subject><subject>Inflammation - pathology</subject><subject>Inflammation Mediators - metabolism</subject><subject>Laboratories</subject><subject>Leukocytes</subject><subject>Leukocytes (neutrophilic)</subject><subject>Lipopolysaccharides</subject><subject>Lipopolysaccharides - administration &amp; dosage</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Lung - drug effects</subject><subject>Lung - immunology</subject><subject>Lung - pathology</subject><subject>Lung diseases</subject><subject>lung inflammation</subject><subject>Lungs</subject><subject>Lymphocyte Count</subject><subject>Mice</subject><subject>Microvasculature</subject><subject>mouse models</subject><subject>Mutation</subject><subject>Neutrophil Infiltration - drug effects</subject><subject>Neutrophil Infiltration - immunology</subject><subject>neutrophil recruitment</subject><subject>Neutrophils</subject><subject>Peptides</subject><subject>Peptides - pharmacology</subject><subject>Proteins</subject><subject>Pulmonary Alveoli - drug effects</subject><subject>Pulmonary Alveoli - metabolism</subject><subject>Pulmonary Alveoli - pathology</subject><subject>Rodents</subject><subject>Trachea</subject><subject>Tumor necrosis factor-TNF</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkVtr3DAQhUVoSdIkfyGY9KFP645uvjy0UEybpGzoS_IsZHu8a2NLG8luN_--cnbJDQoVAo2Ybw5nOIREFGIazucupjJjC5FzETOALAZIpIi3B-T4qfFuX9OMZ0fkg_cdAE8ozw_JEc1pkohMHJO0sMbgtjWCR4Otp16P6COD0-jsZt32kcPKTe04oBmj0UbjGqN-MqtT8r7Rvcez_XtC7n58vy2uFstfl9fFt-WikrkQi5RWNWgKInxQM9GUuuSa0Qol5ELqRuSZ1kwmdSmbhHHQNeoqhTRhOWpJ-Qn5utPdTOWAdRVsON2rjWsH7R6U1a163THtWq3sbyUklZDOAp_2As7eT-hHNbS-wr7XBu3kVcp5lgPjIpAf35CdnZwJ2ylOuYRwYaYu_kUxmtKUi0fX2Q6qnPXeYfNkmIKaE1SdmsNRc1BqTlA9Jqi2YfT85cLPg_vIAvBlB_xpe3z4b2H1s7i5CRX_C_hMqUA</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Sarieddine, Maya Z. Richani</creator><creator>Scheckenbach, K. E. Ludwig</creator><creator>Foglia, Bernard</creator><creator>Maass, Karen</creator><creator>Garcia, Irène</creator><creator>Kwak, Brenda R.</creator><creator>Chanson, Marc</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><general>John Wiley &amp; Sons, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200911</creationdate><title>Connexin43 modulates neutrophil recruitment to the lung</title><author>Sarieddine, Maya Z. Richani ; Scheckenbach, K. E. Ludwig ; Foglia, Bernard ; Maass, Karen ; Garcia, Irène ; Kwak, Brenda R. ; Chanson, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5944-71cd0a104944ea24fbab3a21ce50945af498aa256db5f6230adeac707629ea513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Alveoli</topic><topic>Amino acids</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antibodies</topic><topic>blocking peptide</topic><topic>Bronchoalveolar Lavage Fluid</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Communication - drug effects</topic><topic>Cell Line</topic><topic>connexin</topic><topic>Connexin 43</topic><topic>Connexin 43 - metabolism</topic><topic>Cytokines</topic><topic>Cytokines - metabolism</topic><topic>Endothelial cells</topic><topic>Endothelium</topic><topic>Experiments</topic><topic>Gap junctions</topic><topic>Genes</topic><topic>Genetics</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Inflammation - immunology</topic><topic>Inflammation - pathology</topic><topic>Inflammation Mediators - metabolism</topic><topic>Laboratories</topic><topic>Leukocytes</topic><topic>Leukocytes (neutrophilic)</topic><topic>Lipopolysaccharides</topic><topic>Lipopolysaccharides - administration &amp; dosage</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Lung - drug effects</topic><topic>Lung - immunology</topic><topic>Lung - pathology</topic><topic>Lung diseases</topic><topic>lung inflammation</topic><topic>Lungs</topic><topic>Lymphocyte Count</topic><topic>Mice</topic><topic>Microvasculature</topic><topic>mouse models</topic><topic>Mutation</topic><topic>Neutrophil Infiltration - drug effects</topic><topic>Neutrophil Infiltration - immunology</topic><topic>neutrophil recruitment</topic><topic>Neutrophils</topic><topic>Peptides</topic><topic>Peptides - pharmacology</topic><topic>Proteins</topic><topic>Pulmonary Alveoli - drug effects</topic><topic>Pulmonary Alveoli - metabolism</topic><topic>Pulmonary Alveoli - pathology</topic><topic>Rodents</topic><topic>Trachea</topic><topic>Tumor necrosis factor-TNF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarieddine, Maya Z. Richani</creatorcontrib><creatorcontrib>Scheckenbach, K. E. Ludwig</creatorcontrib><creatorcontrib>Foglia, Bernard</creatorcontrib><creatorcontrib>Maass, Karen</creatorcontrib><creatorcontrib>Garcia, Irène</creatorcontrib><creatorcontrib>Kwak, Brenda R.</creatorcontrib><creatorcontrib>Chanson, Marc</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sarieddine, Maya Z. Richani</au><au>Scheckenbach, K. E. Ludwig</au><au>Foglia, Bernard</au><au>Maass, Karen</au><au>Garcia, Irène</au><au>Kwak, Brenda R.</au><au>Chanson, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connexin43 modulates neutrophil recruitment to the lung</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2009-11</date><risdate>2009</risdate><volume>13</volume><issue>11-12</issue><spage>4560</spage><epage>4570</epage><pages>4560-4570</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Transmigration of neutrophils through the microvascular endothelium is a cardinal event of acute inflammation. It has been suggested that gap junctions made of connexin43 (Cx43) may serve as a conducting pathway to spread inflammatory signals within the lung capillary network. To determine whether Cx43 contributes to neutrophil transmigration in vivo, the number of transmigrated neutrophils was monitored in lungs of Cx43 mouse models subjected to inflammation by intratracheal instillations of Pseudomonas aeruginosa lipopolysaccharide (LPS). Cx43 was detected in inflamed lungs independently of neutrophil recruitment, whereas Cx43 up‐regulation was not detected in mice genetically protected from inflammation. Mice heterozygous for the Cx43 gene (gja1) showed a 56% (P &lt; 0.01) reduction in airway neutrophil count. In contrast, increased (P &lt; 0.05) neutrophil recruitment in response to LPS was observed in a mouse model expressing a mutant Cx43 with enhanced channel conductivity. In vitro adhesion assays showed that reduced conductivity of Cx43 channels with 43Gap26, a Cx43 blocking peptide, decreased adhesion of neutrophils to endothelial cells. Finally, we found that instillation of 43Gap26 in inflamed lungs reduced neutrophil transmigration by 65% (P &lt; 0.05). These results indicate that inflammatory mediators up‐regulate alveolar Cx43 to promote neutrophil recruitment to the airspace. Cx43 may therefore represent a pharmacological target in lung diseases characterized by excessive neutrophil recruitment to the airways.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>19166484</pmid><doi>10.1111/j.1582-4934.2008.00654.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1582-1838
ispartof Journal of cellular and molecular medicine, 2009-11, Vol.13 (11-12), p.4560-4570
issn 1582-1838
1582-4934
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4515071
source Wiley Online Library Open Access
subjects Alveoli
Amino acids
Animal models
Animals
Antibodies
blocking peptide
Bronchoalveolar Lavage Fluid
Cell Adhesion - drug effects
Cell Communication - drug effects
Cell Line
connexin
Connexin 43
Connexin 43 - metabolism
Cytokines
Cytokines - metabolism
Endothelial cells
Endothelium
Experiments
Gap junctions
Genes
Genetics
Humans
Inflammation
Inflammation - immunology
Inflammation - pathology
Inflammation Mediators - metabolism
Laboratories
Leukocytes
Leukocytes (neutrophilic)
Lipopolysaccharides
Lipopolysaccharides - administration & dosage
Lipopolysaccharides - pharmacology
Lung - drug effects
Lung - immunology
Lung - pathology
Lung diseases
lung inflammation
Lungs
Lymphocyte Count
Mice
Microvasculature
mouse models
Mutation
Neutrophil Infiltration - drug effects
Neutrophil Infiltration - immunology
neutrophil recruitment
Neutrophils
Peptides
Peptides - pharmacology
Proteins
Pulmonary Alveoli - drug effects
Pulmonary Alveoli - metabolism
Pulmonary Alveoli - pathology
Rodents
Trachea
Tumor necrosis factor-TNF
title Connexin43 modulates neutrophil recruitment to the lung
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A17%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connexin43%20modulates%20neutrophil%20recruitment%20to%20the%20lung&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Sarieddine,%20Maya%20Z.%20Richani&rft.date=2009-11&rft.volume=13&rft.issue=11-12&rft.spage=4560&rft.epage=4570&rft.pages=4560-4570&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/j.1582-4934.2008.00654.x&rft_dat=%3Cproquest_24P%3E733890234%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3135035004&rft_id=info:pmid/19166484&rfr_iscdi=true