Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory
Electret and organic floating-gate memories are next-generation flash storage mediums for printed organic complementary circuits. While each flash memory can be easily fabricated using solution processes on flexible plastic substrates, promising their potential for on-chip memory organization is lim...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2015-07, Vol.5 (1), p.12299-12299, Article 12299 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12299 |
---|---|
container_issue | 1 |
container_start_page | 12299 |
container_title | Scientific reports |
container_volume | 5 |
creator | Kang, Minji Khim, Dongyoon Park, Won-Tae Kim, Jihong Kim, Juhwan Noh, Yong-Young Baeg, Kang-Jun Kim, Dong-Yu |
description | Electret and organic floating-gate memories are next-generation flash storage mediums for printed organic complementary circuits. While each flash memory can be easily fabricated using solution processes on flexible plastic substrates, promising their potential for on-chip memory organization is limited by unreliable bit operation and high write loads. We here report that new architecture could improve the overall performance of organic memory and especially meet high storage for multi-level operation. Our concept depends on synergistic effect of electrical characterization in combination with a polymer electret (poly(2-vinyl naphthalene) (PVN)) and metal nanoparticles (Copper). It is distinguished from mostly organic nano-floating-gate memories by using the electret dielectric instead of general tunneling dielectric for additional charge storage. The uniform stacking of organic layers including various dielectrics and poly(3-hexylthiophene) (P3HT) as an organic semiconductor, followed by thin-film coating using orthogonal solvents, greatly improve device precision despite easy and fast manufacture. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] as high-k blocking dielectric also allows reduction of programming voltage. The reported synergistic organic memory devices represent low power consumption, high cycle endurance, high thermal stability and suitable retention time, compared to electret and organic nano-floating-gate memory devices. |
doi_str_mv | 10.1038/srep12299 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4511867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1699490421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-baade7025a93010e3ab8026ff1fdde8b3e682a4ff94f336ac607768045ac13773</originalsourceid><addsrcrecordid>eNplkU1LJDEQhoO4qLge_APSsBdX6N189UcuwjI4q6B4cPUaqnsqPZFMZ0y6xfn3Zhh3mHVzSaCePFXFS8gpoz8YFfXPGHDJOFdqjxxxKoucC873d96H5CTGZ5pOwZVk6oAc8pJTVsnqiDw9rHoMnY2DbbNr282zyRxCh_nD4AN0mE1gCa0dVpnxIbsb3WBzh6_osqnDN9s4zO5DB336PXUQ59kdLnxYfSVfDLiIJx_3MXmcXv2ZXOe3979vJr9u87agcsgbgBlWlBegBGUUBTQ15aUxzMxmWDcCy5qDNEZJI0QJbUmrqqzTZtAyUVXimFxuvMuxWeCsxX4I4PQy2AWElfZg9b-V3s5151-1LBiry7Xg_EMQ_MuIcdALG1t0Dnr0Y9SsVEoqKjlL6LdP6LMfQ5_W06xeU5yptfD7hmqDjykbsx2GUb0OTG8DS-zZ7vRb8m88CbjYADGV-g7DTsv_bO_xiJ-H</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899492197</pqid></control><display><type>article</type><title>Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory</title><source>Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kang, Minji ; Khim, Dongyoon ; Park, Won-Tae ; Kim, Jihong ; Kim, Juhwan ; Noh, Yong-Young ; Baeg, Kang-Jun ; Kim, Dong-Yu</creator><creatorcontrib>Kang, Minji ; Khim, Dongyoon ; Park, Won-Tae ; Kim, Jihong ; Kim, Juhwan ; Noh, Yong-Young ; Baeg, Kang-Jun ; Kim, Dong-Yu</creatorcontrib><description>Electret and organic floating-gate memories are next-generation flash storage mediums for printed organic complementary circuits. While each flash memory can be easily fabricated using solution processes on flexible plastic substrates, promising their potential for on-chip memory organization is limited by unreliable bit operation and high write loads. We here report that new architecture could improve the overall performance of organic memory and especially meet high storage for multi-level operation. Our concept depends on synergistic effect of electrical characterization in combination with a polymer electret (poly(2-vinyl naphthalene) (PVN)) and metal nanoparticles (Copper). It is distinguished from mostly organic nano-floating-gate memories by using the electret dielectric instead of general tunneling dielectric for additional charge storage. The uniform stacking of organic layers including various dielectrics and poly(3-hexylthiophene) (P3HT) as an organic semiconductor, followed by thin-film coating using orthogonal solvents, greatly improve device precision despite easy and fast manufacture. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] as high-k blocking dielectric also allows reduction of programming voltage. The reported synergistic organic memory devices represent low power consumption, high cycle endurance, high thermal stability and suitable retention time, compared to electret and organic nano-floating-gate memory devices.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep12299</identifier><identifier>PMID: 26201747</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1007 ; 639/301/1005/1008 ; Bending stresses ; Circuits ; Electric fields ; Engineering ; Fluorides ; Humanities and Social Sciences ; Materials science ; multidisciplinary ; Nanoparticles ; Naphthalene ; Plastics ; Polymers ; Power consumption ; Retention ; Retention time ; Science ; Solvents ; Storage capacity ; Synergistic effect ; Textiles ; Thermal stability ; Thin films ; Transistors</subject><ispartof>Scientific reports, 2015-07, Vol.5 (1), p.12299-12299, Article 12299</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Jul 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-baade7025a93010e3ab8026ff1fdde8b3e682a4ff94f336ac607768045ac13773</citedby><cites>FETCH-LOGICAL-c504t-baade7025a93010e3ab8026ff1fdde8b3e682a4ff94f336ac607768045ac13773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4511867/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4511867/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26201747$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Minji</creatorcontrib><creatorcontrib>Khim, Dongyoon</creatorcontrib><creatorcontrib>Park, Won-Tae</creatorcontrib><creatorcontrib>Kim, Jihong</creatorcontrib><creatorcontrib>Kim, Juhwan</creatorcontrib><creatorcontrib>Noh, Yong-Young</creatorcontrib><creatorcontrib>Baeg, Kang-Jun</creatorcontrib><creatorcontrib>Kim, Dong-Yu</creatorcontrib><title>Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Electret and organic floating-gate memories are next-generation flash storage mediums for printed organic complementary circuits. While each flash memory can be easily fabricated using solution processes on flexible plastic substrates, promising their potential for on-chip memory organization is limited by unreliable bit operation and high write loads. We here report that new architecture could improve the overall performance of organic memory and especially meet high storage for multi-level operation. Our concept depends on synergistic effect of electrical characterization in combination with a polymer electret (poly(2-vinyl naphthalene) (PVN)) and metal nanoparticles (Copper). It is distinguished from mostly organic nano-floating-gate memories by using the electret dielectric instead of general tunneling dielectric for additional charge storage. The uniform stacking of organic layers including various dielectrics and poly(3-hexylthiophene) (P3HT) as an organic semiconductor, followed by thin-film coating using orthogonal solvents, greatly improve device precision despite easy and fast manufacture. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] as high-k blocking dielectric also allows reduction of programming voltage. The reported synergistic organic memory devices represent low power consumption, high cycle endurance, high thermal stability and suitable retention time, compared to electret and organic nano-floating-gate memory devices.</description><subject>639/301/1005/1007</subject><subject>639/301/1005/1008</subject><subject>Bending stresses</subject><subject>Circuits</subject><subject>Electric fields</subject><subject>Engineering</subject><subject>Fluorides</subject><subject>Humanities and Social Sciences</subject><subject>Materials science</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Naphthalene</subject><subject>Plastics</subject><subject>Polymers</subject><subject>Power consumption</subject><subject>Retention</subject><subject>Retention time</subject><subject>Science</subject><subject>Solvents</subject><subject>Storage capacity</subject><subject>Synergistic effect</subject><subject>Textiles</subject><subject>Thermal stability</subject><subject>Thin films</subject><subject>Transistors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkU1LJDEQhoO4qLge_APSsBdX6N189UcuwjI4q6B4cPUaqnsqPZFMZ0y6xfn3Zhh3mHVzSaCePFXFS8gpoz8YFfXPGHDJOFdqjxxxKoucC873d96H5CTGZ5pOwZVk6oAc8pJTVsnqiDw9rHoMnY2DbbNr282zyRxCh_nD4AN0mE1gCa0dVpnxIbsb3WBzh6_osqnDN9s4zO5DB336PXUQ59kdLnxYfSVfDLiIJx_3MXmcXv2ZXOe3979vJr9u87agcsgbgBlWlBegBGUUBTQ15aUxzMxmWDcCy5qDNEZJI0QJbUmrqqzTZtAyUVXimFxuvMuxWeCsxX4I4PQy2AWElfZg9b-V3s5151-1LBiry7Xg_EMQ_MuIcdALG1t0Dnr0Y9SsVEoqKjlL6LdP6LMfQ5_W06xeU5yptfD7hmqDjykbsx2GUb0OTG8DS-zZ7vRb8m88CbjYADGV-g7DTsv_bO_xiJ-H</recordid><startdate>20150723</startdate><enddate>20150723</enddate><creator>Kang, Minji</creator><creator>Khim, Dongyoon</creator><creator>Park, Won-Tae</creator><creator>Kim, Jihong</creator><creator>Kim, Juhwan</creator><creator>Noh, Yong-Young</creator><creator>Baeg, Kang-Jun</creator><creator>Kim, Dong-Yu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150723</creationdate><title>Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory</title><author>Kang, Minji ; Khim, Dongyoon ; Park, Won-Tae ; Kim, Jihong ; Kim, Juhwan ; Noh, Yong-Young ; Baeg, Kang-Jun ; Kim, Dong-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-baade7025a93010e3ab8026ff1fdde8b3e682a4ff94f336ac607768045ac13773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/301/1005/1007</topic><topic>639/301/1005/1008</topic><topic>Bending stresses</topic><topic>Circuits</topic><topic>Electric fields</topic><topic>Engineering</topic><topic>Fluorides</topic><topic>Humanities and Social Sciences</topic><topic>Materials science</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Naphthalene</topic><topic>Plastics</topic><topic>Polymers</topic><topic>Power consumption</topic><topic>Retention</topic><topic>Retention time</topic><topic>Science</topic><topic>Solvents</topic><topic>Storage capacity</topic><topic>Synergistic effect</topic><topic>Textiles</topic><topic>Thermal stability</topic><topic>Thin films</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Minji</creatorcontrib><creatorcontrib>Khim, Dongyoon</creatorcontrib><creatorcontrib>Park, Won-Tae</creatorcontrib><creatorcontrib>Kim, Jihong</creatorcontrib><creatorcontrib>Kim, Juhwan</creatorcontrib><creatorcontrib>Noh, Yong-Young</creatorcontrib><creatorcontrib>Baeg, Kang-Jun</creatorcontrib><creatorcontrib>Kim, Dong-Yu</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Minji</au><au>Khim, Dongyoon</au><au>Park, Won-Tae</au><au>Kim, Jihong</au><au>Kim, Juhwan</au><au>Noh, Yong-Young</au><au>Baeg, Kang-Jun</au><au>Kim, Dong-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-07-23</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>12299</spage><epage>12299</epage><pages>12299-12299</pages><artnum>12299</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Electret and organic floating-gate memories are next-generation flash storage mediums for printed organic complementary circuits. While each flash memory can be easily fabricated using solution processes on flexible plastic substrates, promising their potential for on-chip memory organization is limited by unreliable bit operation and high write loads. We here report that new architecture could improve the overall performance of organic memory and especially meet high storage for multi-level operation. Our concept depends on synergistic effect of electrical characterization in combination with a polymer electret (poly(2-vinyl naphthalene) (PVN)) and metal nanoparticles (Copper). It is distinguished from mostly organic nano-floating-gate memories by using the electret dielectric instead of general tunneling dielectric for additional charge storage. The uniform stacking of organic layers including various dielectrics and poly(3-hexylthiophene) (P3HT) as an organic semiconductor, followed by thin-film coating using orthogonal solvents, greatly improve device precision despite easy and fast manufacture. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] as high-k blocking dielectric also allows reduction of programming voltage. The reported synergistic organic memory devices represent low power consumption, high cycle endurance, high thermal stability and suitable retention time, compared to electret and organic nano-floating-gate memory devices.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26201747</pmid><doi>10.1038/srep12299</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2015-07, Vol.5 (1), p.12299-12299, Article 12299 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4511867 |
source | Nature Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 639/301/1005/1007 639/301/1005/1008 Bending stresses Circuits Electric fields Engineering Fluorides Humanities and Social Sciences Materials science multidisciplinary Nanoparticles Naphthalene Plastics Polymers Power consumption Retention Retention time Science Solvents Storage capacity Synergistic effect Textiles Thermal stability Thin films Transistors |
title | Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A27%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20High%20Charge-Storage%20Capacity%20for%20Multi-level%20Flexible%20Organic%20Flash%20Memory&rft.jtitle=Scientific%20reports&rft.au=Kang,%20Minji&rft.date=2015-07-23&rft.volume=5&rft.issue=1&rft.spage=12299&rft.epage=12299&rft.pages=12299-12299&rft.artnum=12299&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep12299&rft_dat=%3Cproquest_pubme%3E1699490421%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899492197&rft_id=info:pmid/26201747&rfr_iscdi=true |