Presynaptic Na+ Channels: Locus, Development, and Recovery from Inactivation at a High-Fidelity Synapse
Na+ channel recovery from inactivation limits the maximal rate of neuronal firing. However, the properties of presynaptic Na+ channels are not well established because of the small size of most CNS boutons. Here we study the Na+ currents of the rat calyx of Held terminal and compare them with those...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2005-04, Vol.25 (14), p.3724-3738 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3738 |
---|---|
container_issue | 14 |
container_start_page | 3724 |
container_title | The Journal of neuroscience |
container_volume | 25 |
creator | Leao, Ricardo M Kushmerick, Christopher Pinaud, Raphael Renden, Robert Li, Geng-Lin Taschenberger, Holger Spirou, George Levinson, S. Rock von Gersdorff, Henrique |
description | Na+ channel recovery from inactivation limits the maximal rate of neuronal firing. However, the properties of presynaptic Na+ channels are not well established because of the small size of most CNS boutons. Here we study the Na+ currents of the rat calyx of Held terminal and compare them with those of postsynaptic cells. We find that presynaptic Na+ currents recover from inactivation with a fast, single-exponential time constant (24 degrees C, tau of 1.4-1.8 ms; 35 degrees C, tau of 0.5 ms), and their inactivation rate accelerates twofold during development, which may contribute to the shortening of the action potential as the terminal matures. In contrast, recordings from postsynaptic cells in brainstem slices, and acutely dissociated, reveal that their Na+ currents recover from inactivation with a double-exponential time course (tau(fast) of 1.2-1.6 ms; tau(slow) of 80-125 ms; 24 degrees C). Surprisingly, confocal immunofluorescence revealed that Na+ channels are mostly absent from the calyx terminal but are instead highly concentrated in an unusually long (approximately 20-40 microm) unmyelinated axonal heminode. Outside-out patch recordings confirmed this segregation. Expression of Na(v)1.6 alpha-subunit increased during development, whereas the Na(v)1.2alpha-subunit was not present. Serial EM reconstructions also revealed a long pre-calyx heminode, and biophysical modeling showed that exclusion of Na+ channels from the calyx terminal produces an action potential waveform with a shorter half-width. We propose that the high density and polarized locus of Na+ channels on a long heminode are critical design features that allow the mature calyx of Held terminal to fire reliably at frequencies near 1 kHz. |
doi_str_mv | 10.1523/JNEUROSCI.3983-04.2005 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4511161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15814803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-1c9f9465fb01f8a1b74c6af699af1e679316808818adbe63bd3f35d02f2840ee3</originalsourceid><addsrcrecordid>eNpVkMtOIzEQRa0RaMgw_ALybhbQoartdrtZIKEMj6AIRjzWltttJx71I7KbRPl7OgrisapF3XuqdAg5RhhjlrKzu_url8eHp8l0zArJEuDjFCD7QUbDtkhSDrhHRpDmkAie8wPyK8b_AJAD5j_JAWYSuQQ2IvN_wcZNq5e9N_Ren9DJQretreM5nXXmNZ7Sv3Zl627Z2LY_pbqt6KM13cqGDXWha-i01ab3K937rqW6p5re-vkiufaVrX2_oU9beLS_yb7TdbRH7_OQvFxfPU9uk9nDzXRyOUtMJlifoClcwUXmSkAnNZY5N0I7URTaoRV5wVBIkBKlrkorWFkxx7IKUpdKDtayQ3Kx4y5fy8ZWZvg66Fotg2902KhOe_V90_qFmncrxTNEFDgAxA5gQhdjsO6ji6C26tWHerVVr4CrrfqhePz18mft3fUQ-LMLLAZBax-sio2u6yGOar1ep5lCrliecvYGqe6P5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Presynaptic Na+ Channels: Locus, Development, and Recovery from Inactivation at a High-Fidelity Synapse</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Leao, Ricardo M ; Kushmerick, Christopher ; Pinaud, Raphael ; Renden, Robert ; Li, Geng-Lin ; Taschenberger, Holger ; Spirou, George ; Levinson, S. Rock ; von Gersdorff, Henrique</creator><creatorcontrib>Leao, Ricardo M ; Kushmerick, Christopher ; Pinaud, Raphael ; Renden, Robert ; Li, Geng-Lin ; Taschenberger, Holger ; Spirou, George ; Levinson, S. Rock ; von Gersdorff, Henrique</creatorcontrib><description>Na+ channel recovery from inactivation limits the maximal rate of neuronal firing. However, the properties of presynaptic Na+ channels are not well established because of the small size of most CNS boutons. Here we study the Na+ currents of the rat calyx of Held terminal and compare them with those of postsynaptic cells. We find that presynaptic Na+ currents recover from inactivation with a fast, single-exponential time constant (24 degrees C, tau of 1.4-1.8 ms; 35 degrees C, tau of 0.5 ms), and their inactivation rate accelerates twofold during development, which may contribute to the shortening of the action potential as the terminal matures. In contrast, recordings from postsynaptic cells in brainstem slices, and acutely dissociated, reveal that their Na+ currents recover from inactivation with a double-exponential time course (tau(fast) of 1.2-1.6 ms; tau(slow) of 80-125 ms; 24 degrees C). Surprisingly, confocal immunofluorescence revealed that Na+ channels are mostly absent from the calyx terminal but are instead highly concentrated in an unusually long (approximately 20-40 microm) unmyelinated axonal heminode. Outside-out patch recordings confirmed this segregation. Expression of Na(v)1.6 alpha-subunit increased during development, whereas the Na(v)1.2alpha-subunit was not present. Serial EM reconstructions also revealed a long pre-calyx heminode, and biophysical modeling showed that exclusion of Na+ channels from the calyx terminal produces an action potential waveform with a shorter half-width. We propose that the high density and polarized locus of Na+ channels on a long heminode are critical design features that allow the mature calyx of Held terminal to fire reliably at frequencies near 1 kHz.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.3983-04.2005</identifier><identifier>PMID: 15814803</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Action Potentials - physiology ; Action Potentials - radiation effects ; Afferent Pathways - physiology ; Afferent Pathways - radiation effects ; Age Factors ; Animals ; Animals, Newborn ; Brain Stem - cytology ; Brain Stem - growth & development ; Cadmium Chloride - pharmacology ; Cellular/Molecular ; Dose-Response Relationship, Radiation ; Electric Stimulation - methods ; Fluorescent Antibody Technique - methods ; In Vitro Techniques ; Membrane Potentials - drug effects ; Membrane Potentials - physiology ; Membrane Potentials - radiation effects ; Microscopy, Confocal - methods ; Microscopy, Electron, Transmission - methods ; Models, Neurological ; NAV1.6 Voltage-Gated Sodium Channel ; Neurons - cytology ; Neurons - drug effects ; Neurons - physiology ; Neurons - ultrastructure ; Patch-Clamp Techniques - methods ; Potassium Channel Blockers - pharmacology ; Presynaptic Terminals - drug effects ; Presynaptic Terminals - metabolism ; Presynaptic Terminals - ultrastructure ; Protein Subunits - metabolism ; Rats ; Rats, Sprague-Dawley ; Reaction Time - physiology ; Sodium Channel Blockers - pharmacology ; Sodium Channels - metabolism ; Sodium Channels - physiology ; Synapses - drug effects ; Synapses - physiology ; Synapses - ultrastructure ; Tetraethylammonium - pharmacology ; Tetrodotoxin - pharmacology</subject><ispartof>The Journal of neuroscience, 2005-04, Vol.25 (14), p.3724-3738</ispartof><rights>Copyright © 2005 Society for Neuroscience 0270-6474/05/253724-15.00/0 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c563t-1c9f9465fb01f8a1b74c6af699af1e679316808818adbe63bd3f35d02f2840ee3</citedby><cites>FETCH-LOGICAL-c563t-1c9f9465fb01f8a1b74c6af699af1e679316808818adbe63bd3f35d02f2840ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4511161/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4511161/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15814803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leao, Ricardo M</creatorcontrib><creatorcontrib>Kushmerick, Christopher</creatorcontrib><creatorcontrib>Pinaud, Raphael</creatorcontrib><creatorcontrib>Renden, Robert</creatorcontrib><creatorcontrib>Li, Geng-Lin</creatorcontrib><creatorcontrib>Taschenberger, Holger</creatorcontrib><creatorcontrib>Spirou, George</creatorcontrib><creatorcontrib>Levinson, S. Rock</creatorcontrib><creatorcontrib>von Gersdorff, Henrique</creatorcontrib><title>Presynaptic Na+ Channels: Locus, Development, and Recovery from Inactivation at a High-Fidelity Synapse</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Na+ channel recovery from inactivation limits the maximal rate of neuronal firing. However, the properties of presynaptic Na+ channels are not well established because of the small size of most CNS boutons. Here we study the Na+ currents of the rat calyx of Held terminal and compare them with those of postsynaptic cells. We find that presynaptic Na+ currents recover from inactivation with a fast, single-exponential time constant (24 degrees C, tau of 1.4-1.8 ms; 35 degrees C, tau of 0.5 ms), and their inactivation rate accelerates twofold during development, which may contribute to the shortening of the action potential as the terminal matures. In contrast, recordings from postsynaptic cells in brainstem slices, and acutely dissociated, reveal that their Na+ currents recover from inactivation with a double-exponential time course (tau(fast) of 1.2-1.6 ms; tau(slow) of 80-125 ms; 24 degrees C). Surprisingly, confocal immunofluorescence revealed that Na+ channels are mostly absent from the calyx terminal but are instead highly concentrated in an unusually long (approximately 20-40 microm) unmyelinated axonal heminode. Outside-out patch recordings confirmed this segregation. Expression of Na(v)1.6 alpha-subunit increased during development, whereas the Na(v)1.2alpha-subunit was not present. Serial EM reconstructions also revealed a long pre-calyx heminode, and biophysical modeling showed that exclusion of Na+ channels from the calyx terminal produces an action potential waveform with a shorter half-width. We propose that the high density and polarized locus of Na+ channels on a long heminode are critical design features that allow the mature calyx of Held terminal to fire reliably at frequencies near 1 kHz.</description><subject>Action Potentials - physiology</subject><subject>Action Potentials - radiation effects</subject><subject>Afferent Pathways - physiology</subject><subject>Afferent Pathways - radiation effects</subject><subject>Age Factors</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Brain Stem - cytology</subject><subject>Brain Stem - growth & development</subject><subject>Cadmium Chloride - pharmacology</subject><subject>Cellular/Molecular</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Electric Stimulation - methods</subject><subject>Fluorescent Antibody Technique - methods</subject><subject>In Vitro Techniques</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - physiology</subject><subject>Membrane Potentials - radiation effects</subject><subject>Microscopy, Confocal - methods</subject><subject>Microscopy, Electron, Transmission - methods</subject><subject>Models, Neurological</subject><subject>NAV1.6 Voltage-Gated Sodium Channel</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Neurons - ultrastructure</subject><subject>Patch-Clamp Techniques - methods</subject><subject>Potassium Channel Blockers - pharmacology</subject><subject>Presynaptic Terminals - drug effects</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Presynaptic Terminals - ultrastructure</subject><subject>Protein Subunits - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reaction Time - physiology</subject><subject>Sodium Channel Blockers - pharmacology</subject><subject>Sodium Channels - metabolism</subject><subject>Sodium Channels - physiology</subject><subject>Synapses - drug effects</subject><subject>Synapses - physiology</subject><subject>Synapses - ultrastructure</subject><subject>Tetraethylammonium - pharmacology</subject><subject>Tetrodotoxin - pharmacology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkMtOIzEQRa0RaMgw_ALybhbQoartdrtZIKEMj6AIRjzWltttJx71I7KbRPl7OgrisapF3XuqdAg5RhhjlrKzu_url8eHp8l0zArJEuDjFCD7QUbDtkhSDrhHRpDmkAie8wPyK8b_AJAD5j_JAWYSuQQ2IvN_wcZNq5e9N_Ren9DJQretreM5nXXmNZ7Sv3Zl627Z2LY_pbqt6KM13cqGDXWha-i01ab3K937rqW6p5re-vkiufaVrX2_oU9beLS_yb7TdbRH7_OQvFxfPU9uk9nDzXRyOUtMJlifoClcwUXmSkAnNZY5N0I7URTaoRV5wVBIkBKlrkorWFkxx7IKUpdKDtayQ3Kx4y5fy8ZWZvg66Fotg2902KhOe_V90_qFmncrxTNEFDgAxA5gQhdjsO6ji6C26tWHerVVr4CrrfqhePz18mft3fUQ-LMLLAZBax-sio2u6yGOar1ep5lCrliecvYGqe6P5Q</recordid><startdate>20050406</startdate><enddate>20050406</enddate><creator>Leao, Ricardo M</creator><creator>Kushmerick, Christopher</creator><creator>Pinaud, Raphael</creator><creator>Renden, Robert</creator><creator>Li, Geng-Lin</creator><creator>Taschenberger, Holger</creator><creator>Spirou, George</creator><creator>Levinson, S. Rock</creator><creator>von Gersdorff, Henrique</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20050406</creationdate><title>Presynaptic Na+ Channels: Locus, Development, and Recovery from Inactivation at a High-Fidelity Synapse</title><author>Leao, Ricardo M ; Kushmerick, Christopher ; Pinaud, Raphael ; Renden, Robert ; Li, Geng-Lin ; Taschenberger, Holger ; Spirou, George ; Levinson, S. Rock ; von Gersdorff, Henrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-1c9f9465fb01f8a1b74c6af699af1e679316808818adbe63bd3f35d02f2840ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Action Potentials - physiology</topic><topic>Action Potentials - radiation effects</topic><topic>Afferent Pathways - physiology</topic><topic>Afferent Pathways - radiation effects</topic><topic>Age Factors</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Brain Stem - cytology</topic><topic>Brain Stem - growth & development</topic><topic>Cadmium Chloride - pharmacology</topic><topic>Cellular/Molecular</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Electric Stimulation - methods</topic><topic>Fluorescent Antibody Technique - methods</topic><topic>In Vitro Techniques</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - physiology</topic><topic>Membrane Potentials - radiation effects</topic><topic>Microscopy, Confocal - methods</topic><topic>Microscopy, Electron, Transmission - methods</topic><topic>Models, Neurological</topic><topic>NAV1.6 Voltage-Gated Sodium Channel</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Neurons - ultrastructure</topic><topic>Patch-Clamp Techniques - methods</topic><topic>Potassium Channel Blockers - pharmacology</topic><topic>Presynaptic Terminals - drug effects</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Presynaptic Terminals - ultrastructure</topic><topic>Protein Subunits - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reaction Time - physiology</topic><topic>Sodium Channel Blockers - pharmacology</topic><topic>Sodium Channels - metabolism</topic><topic>Sodium Channels - physiology</topic><topic>Synapses - drug effects</topic><topic>Synapses - physiology</topic><topic>Synapses - ultrastructure</topic><topic>Tetraethylammonium - pharmacology</topic><topic>Tetrodotoxin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leao, Ricardo M</creatorcontrib><creatorcontrib>Kushmerick, Christopher</creatorcontrib><creatorcontrib>Pinaud, Raphael</creatorcontrib><creatorcontrib>Renden, Robert</creatorcontrib><creatorcontrib>Li, Geng-Lin</creatorcontrib><creatorcontrib>Taschenberger, Holger</creatorcontrib><creatorcontrib>Spirou, George</creatorcontrib><creatorcontrib>Levinson, S. Rock</creatorcontrib><creatorcontrib>von Gersdorff, Henrique</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leao, Ricardo M</au><au>Kushmerick, Christopher</au><au>Pinaud, Raphael</au><au>Renden, Robert</au><au>Li, Geng-Lin</au><au>Taschenberger, Holger</au><au>Spirou, George</au><au>Levinson, S. Rock</au><au>von Gersdorff, Henrique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Presynaptic Na+ Channels: Locus, Development, and Recovery from Inactivation at a High-Fidelity Synapse</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2005-04-06</date><risdate>2005</risdate><volume>25</volume><issue>14</issue><spage>3724</spage><epage>3738</epage><pages>3724-3738</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Na+ channel recovery from inactivation limits the maximal rate of neuronal firing. However, the properties of presynaptic Na+ channels are not well established because of the small size of most CNS boutons. Here we study the Na+ currents of the rat calyx of Held terminal and compare them with those of postsynaptic cells. We find that presynaptic Na+ currents recover from inactivation with a fast, single-exponential time constant (24 degrees C, tau of 1.4-1.8 ms; 35 degrees C, tau of 0.5 ms), and their inactivation rate accelerates twofold during development, which may contribute to the shortening of the action potential as the terminal matures. In contrast, recordings from postsynaptic cells in brainstem slices, and acutely dissociated, reveal that their Na+ currents recover from inactivation with a double-exponential time course (tau(fast) of 1.2-1.6 ms; tau(slow) of 80-125 ms; 24 degrees C). Surprisingly, confocal immunofluorescence revealed that Na+ channels are mostly absent from the calyx terminal but are instead highly concentrated in an unusually long (approximately 20-40 microm) unmyelinated axonal heminode. Outside-out patch recordings confirmed this segregation. Expression of Na(v)1.6 alpha-subunit increased during development, whereas the Na(v)1.2alpha-subunit was not present. Serial EM reconstructions also revealed a long pre-calyx heminode, and biophysical modeling showed that exclusion of Na+ channels from the calyx terminal produces an action potential waveform with a shorter half-width. We propose that the high density and polarized locus of Na+ channels on a long heminode are critical design features that allow the mature calyx of Held terminal to fire reliably at frequencies near 1 kHz.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>15814803</pmid><doi>10.1523/JNEUROSCI.3983-04.2005</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2005-04, Vol.25 (14), p.3724-3738 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4511161 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Action Potentials - physiology Action Potentials - radiation effects Afferent Pathways - physiology Afferent Pathways - radiation effects Age Factors Animals Animals, Newborn Brain Stem - cytology Brain Stem - growth & development Cadmium Chloride - pharmacology Cellular/Molecular Dose-Response Relationship, Radiation Electric Stimulation - methods Fluorescent Antibody Technique - methods In Vitro Techniques Membrane Potentials - drug effects Membrane Potentials - physiology Membrane Potentials - radiation effects Microscopy, Confocal - methods Microscopy, Electron, Transmission - methods Models, Neurological NAV1.6 Voltage-Gated Sodium Channel Neurons - cytology Neurons - drug effects Neurons - physiology Neurons - ultrastructure Patch-Clamp Techniques - methods Potassium Channel Blockers - pharmacology Presynaptic Terminals - drug effects Presynaptic Terminals - metabolism Presynaptic Terminals - ultrastructure Protein Subunits - metabolism Rats Rats, Sprague-Dawley Reaction Time - physiology Sodium Channel Blockers - pharmacology Sodium Channels - metabolism Sodium Channels - physiology Synapses - drug effects Synapses - physiology Synapses - ultrastructure Tetraethylammonium - pharmacology Tetrodotoxin - pharmacology |
title | Presynaptic Na+ Channels: Locus, Development, and Recovery from Inactivation at a High-Fidelity Synapse |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A48%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Presynaptic%20Na+%20Channels:%20Locus,%20Development,%20and%20Recovery%20from%20Inactivation%20at%20a%20High-Fidelity%20Synapse&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Leao,%20Ricardo%20M&rft.date=2005-04-06&rft.volume=25&rft.issue=14&rft.spage=3724&rft.epage=3738&rft.pages=3724-3738&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.3983-04.2005&rft_dat=%3Cpubmed_cross%3E15814803%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/15814803&rfr_iscdi=true |