Presynaptic Na+ Channels: Locus, Development, and Recovery from Inactivation at a High-Fidelity Synapse

Na+ channel recovery from inactivation limits the maximal rate of neuronal firing. However, the properties of presynaptic Na+ channels are not well established because of the small size of most CNS boutons. Here we study the Na+ currents of the rat calyx of Held terminal and compare them with those...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2005-04, Vol.25 (14), p.3724-3738
Hauptverfasser: Leao, Ricardo M, Kushmerick, Christopher, Pinaud, Raphael, Renden, Robert, Li, Geng-Lin, Taschenberger, Holger, Spirou, George, Levinson, S. Rock, von Gersdorff, Henrique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3738
container_issue 14
container_start_page 3724
container_title The Journal of neuroscience
container_volume 25
creator Leao, Ricardo M
Kushmerick, Christopher
Pinaud, Raphael
Renden, Robert
Li, Geng-Lin
Taschenberger, Holger
Spirou, George
Levinson, S. Rock
von Gersdorff, Henrique
description Na+ channel recovery from inactivation limits the maximal rate of neuronal firing. However, the properties of presynaptic Na+ channels are not well established because of the small size of most CNS boutons. Here we study the Na+ currents of the rat calyx of Held terminal and compare them with those of postsynaptic cells. We find that presynaptic Na+ currents recover from inactivation with a fast, single-exponential time constant (24 degrees C, tau of 1.4-1.8 ms; 35 degrees C, tau of 0.5 ms), and their inactivation rate accelerates twofold during development, which may contribute to the shortening of the action potential as the terminal matures. In contrast, recordings from postsynaptic cells in brainstem slices, and acutely dissociated, reveal that their Na+ currents recover from inactivation with a double-exponential time course (tau(fast) of 1.2-1.6 ms; tau(slow) of 80-125 ms; 24 degrees C). Surprisingly, confocal immunofluorescence revealed that Na+ channels are mostly absent from the calyx terminal but are instead highly concentrated in an unusually long (approximately 20-40 microm) unmyelinated axonal heminode. Outside-out patch recordings confirmed this segregation. Expression of Na(v)1.6 alpha-subunit increased during development, whereas the Na(v)1.2alpha-subunit was not present. Serial EM reconstructions also revealed a long pre-calyx heminode, and biophysical modeling showed that exclusion of Na+ channels from the calyx terminal produces an action potential waveform with a shorter half-width. We propose that the high density and polarized locus of Na+ channels on a long heminode are critical design features that allow the mature calyx of Held terminal to fire reliably at frequencies near 1 kHz.
doi_str_mv 10.1523/JNEUROSCI.3983-04.2005
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4511161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15814803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-1c9f9465fb01f8a1b74c6af699af1e679316808818adbe63bd3f35d02f2840ee3</originalsourceid><addsrcrecordid>eNpVkMtOIzEQRa0RaMgw_ALybhbQoartdrtZIKEMj6AIRjzWltttJx71I7KbRPl7OgrisapF3XuqdAg5RhhjlrKzu_url8eHp8l0zArJEuDjFCD7QUbDtkhSDrhHRpDmkAie8wPyK8b_AJAD5j_JAWYSuQQ2IvN_wcZNq5e9N_Ren9DJQretreM5nXXmNZ7Sv3Zl627Z2LY_pbqt6KM13cqGDXWha-i01ab3K937rqW6p5re-vkiufaVrX2_oU9beLS_yb7TdbRH7_OQvFxfPU9uk9nDzXRyOUtMJlifoClcwUXmSkAnNZY5N0I7URTaoRV5wVBIkBKlrkorWFkxx7IKUpdKDtayQ3Kx4y5fy8ZWZvg66Fotg2902KhOe_V90_qFmncrxTNEFDgAxA5gQhdjsO6ji6C26tWHerVVr4CrrfqhePz18mft3fUQ-LMLLAZBax-sio2u6yGOar1ep5lCrliecvYGqe6P5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Presynaptic Na+ Channels: Locus, Development, and Recovery from Inactivation at a High-Fidelity Synapse</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Leao, Ricardo M ; Kushmerick, Christopher ; Pinaud, Raphael ; Renden, Robert ; Li, Geng-Lin ; Taschenberger, Holger ; Spirou, George ; Levinson, S. Rock ; von Gersdorff, Henrique</creator><creatorcontrib>Leao, Ricardo M ; Kushmerick, Christopher ; Pinaud, Raphael ; Renden, Robert ; Li, Geng-Lin ; Taschenberger, Holger ; Spirou, George ; Levinson, S. Rock ; von Gersdorff, Henrique</creatorcontrib><description>Na+ channel recovery from inactivation limits the maximal rate of neuronal firing. However, the properties of presynaptic Na+ channels are not well established because of the small size of most CNS boutons. Here we study the Na+ currents of the rat calyx of Held terminal and compare them with those of postsynaptic cells. We find that presynaptic Na+ currents recover from inactivation with a fast, single-exponential time constant (24 degrees C, tau of 1.4-1.8 ms; 35 degrees C, tau of 0.5 ms), and their inactivation rate accelerates twofold during development, which may contribute to the shortening of the action potential as the terminal matures. In contrast, recordings from postsynaptic cells in brainstem slices, and acutely dissociated, reveal that their Na+ currents recover from inactivation with a double-exponential time course (tau(fast) of 1.2-1.6 ms; tau(slow) of 80-125 ms; 24 degrees C). Surprisingly, confocal immunofluorescence revealed that Na+ channels are mostly absent from the calyx terminal but are instead highly concentrated in an unusually long (approximately 20-40 microm) unmyelinated axonal heminode. Outside-out patch recordings confirmed this segregation. Expression of Na(v)1.6 alpha-subunit increased during development, whereas the Na(v)1.2alpha-subunit was not present. Serial EM reconstructions also revealed a long pre-calyx heminode, and biophysical modeling showed that exclusion of Na+ channels from the calyx terminal produces an action potential waveform with a shorter half-width. We propose that the high density and polarized locus of Na+ channels on a long heminode are critical design features that allow the mature calyx of Held terminal to fire reliably at frequencies near 1 kHz.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.3983-04.2005</identifier><identifier>PMID: 15814803</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Action Potentials - physiology ; Action Potentials - radiation effects ; Afferent Pathways - physiology ; Afferent Pathways - radiation effects ; Age Factors ; Animals ; Animals, Newborn ; Brain Stem - cytology ; Brain Stem - growth &amp; development ; Cadmium Chloride - pharmacology ; Cellular/Molecular ; Dose-Response Relationship, Radiation ; Electric Stimulation - methods ; Fluorescent Antibody Technique - methods ; In Vitro Techniques ; Membrane Potentials - drug effects ; Membrane Potentials - physiology ; Membrane Potentials - radiation effects ; Microscopy, Confocal - methods ; Microscopy, Electron, Transmission - methods ; Models, Neurological ; NAV1.6 Voltage-Gated Sodium Channel ; Neurons - cytology ; Neurons - drug effects ; Neurons - physiology ; Neurons - ultrastructure ; Patch-Clamp Techniques - methods ; Potassium Channel Blockers - pharmacology ; Presynaptic Terminals - drug effects ; Presynaptic Terminals - metabolism ; Presynaptic Terminals - ultrastructure ; Protein Subunits - metabolism ; Rats ; Rats, Sprague-Dawley ; Reaction Time - physiology ; Sodium Channel Blockers - pharmacology ; Sodium Channels - metabolism ; Sodium Channels - physiology ; Synapses - drug effects ; Synapses - physiology ; Synapses - ultrastructure ; Tetraethylammonium - pharmacology ; Tetrodotoxin - pharmacology</subject><ispartof>The Journal of neuroscience, 2005-04, Vol.25 (14), p.3724-3738</ispartof><rights>Copyright © 2005 Society for Neuroscience 0270-6474/05/253724-15.00/0 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c563t-1c9f9465fb01f8a1b74c6af699af1e679316808818adbe63bd3f35d02f2840ee3</citedby><cites>FETCH-LOGICAL-c563t-1c9f9465fb01f8a1b74c6af699af1e679316808818adbe63bd3f35d02f2840ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4511161/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4511161/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15814803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leao, Ricardo M</creatorcontrib><creatorcontrib>Kushmerick, Christopher</creatorcontrib><creatorcontrib>Pinaud, Raphael</creatorcontrib><creatorcontrib>Renden, Robert</creatorcontrib><creatorcontrib>Li, Geng-Lin</creatorcontrib><creatorcontrib>Taschenberger, Holger</creatorcontrib><creatorcontrib>Spirou, George</creatorcontrib><creatorcontrib>Levinson, S. Rock</creatorcontrib><creatorcontrib>von Gersdorff, Henrique</creatorcontrib><title>Presynaptic Na+ Channels: Locus, Development, and Recovery from Inactivation at a High-Fidelity Synapse</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Na+ channel recovery from inactivation limits the maximal rate of neuronal firing. However, the properties of presynaptic Na+ channels are not well established because of the small size of most CNS boutons. Here we study the Na+ currents of the rat calyx of Held terminal and compare them with those of postsynaptic cells. We find that presynaptic Na+ currents recover from inactivation with a fast, single-exponential time constant (24 degrees C, tau of 1.4-1.8 ms; 35 degrees C, tau of 0.5 ms), and their inactivation rate accelerates twofold during development, which may contribute to the shortening of the action potential as the terminal matures. In contrast, recordings from postsynaptic cells in brainstem slices, and acutely dissociated, reveal that their Na+ currents recover from inactivation with a double-exponential time course (tau(fast) of 1.2-1.6 ms; tau(slow) of 80-125 ms; 24 degrees C). Surprisingly, confocal immunofluorescence revealed that Na+ channels are mostly absent from the calyx terminal but are instead highly concentrated in an unusually long (approximately 20-40 microm) unmyelinated axonal heminode. Outside-out patch recordings confirmed this segregation. Expression of Na(v)1.6 alpha-subunit increased during development, whereas the Na(v)1.2alpha-subunit was not present. Serial EM reconstructions also revealed a long pre-calyx heminode, and biophysical modeling showed that exclusion of Na+ channels from the calyx terminal produces an action potential waveform with a shorter half-width. We propose that the high density and polarized locus of Na+ channels on a long heminode are critical design features that allow the mature calyx of Held terminal to fire reliably at frequencies near 1 kHz.</description><subject>Action Potentials - physiology</subject><subject>Action Potentials - radiation effects</subject><subject>Afferent Pathways - physiology</subject><subject>Afferent Pathways - radiation effects</subject><subject>Age Factors</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Brain Stem - cytology</subject><subject>Brain Stem - growth &amp; development</subject><subject>Cadmium Chloride - pharmacology</subject><subject>Cellular/Molecular</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Electric Stimulation - methods</subject><subject>Fluorescent Antibody Technique - methods</subject><subject>In Vitro Techniques</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - physiology</subject><subject>Membrane Potentials - radiation effects</subject><subject>Microscopy, Confocal - methods</subject><subject>Microscopy, Electron, Transmission - methods</subject><subject>Models, Neurological</subject><subject>NAV1.6 Voltage-Gated Sodium Channel</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Neurons - ultrastructure</subject><subject>Patch-Clamp Techniques - methods</subject><subject>Potassium Channel Blockers - pharmacology</subject><subject>Presynaptic Terminals - drug effects</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Presynaptic Terminals - ultrastructure</subject><subject>Protein Subunits - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reaction Time - physiology</subject><subject>Sodium Channel Blockers - pharmacology</subject><subject>Sodium Channels - metabolism</subject><subject>Sodium Channels - physiology</subject><subject>Synapses - drug effects</subject><subject>Synapses - physiology</subject><subject>Synapses - ultrastructure</subject><subject>Tetraethylammonium - pharmacology</subject><subject>Tetrodotoxin - pharmacology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkMtOIzEQRa0RaMgw_ALybhbQoartdrtZIKEMj6AIRjzWltttJx71I7KbRPl7OgrisapF3XuqdAg5RhhjlrKzu_url8eHp8l0zArJEuDjFCD7QUbDtkhSDrhHRpDmkAie8wPyK8b_AJAD5j_JAWYSuQQ2IvN_wcZNq5e9N_Ren9DJQretreM5nXXmNZ7Sv3Zl627Z2LY_pbqt6KM13cqGDXWha-i01ab3K937rqW6p5re-vkiufaVrX2_oU9beLS_yb7TdbRH7_OQvFxfPU9uk9nDzXRyOUtMJlifoClcwUXmSkAnNZY5N0I7URTaoRV5wVBIkBKlrkorWFkxx7IKUpdKDtayQ3Kx4y5fy8ZWZvg66Fotg2902KhOe_V90_qFmncrxTNEFDgAxA5gQhdjsO6ji6C26tWHerVVr4CrrfqhePz18mft3fUQ-LMLLAZBax-sio2u6yGOar1ep5lCrliecvYGqe6P5Q</recordid><startdate>20050406</startdate><enddate>20050406</enddate><creator>Leao, Ricardo M</creator><creator>Kushmerick, Christopher</creator><creator>Pinaud, Raphael</creator><creator>Renden, Robert</creator><creator>Li, Geng-Lin</creator><creator>Taschenberger, Holger</creator><creator>Spirou, George</creator><creator>Levinson, S. Rock</creator><creator>von Gersdorff, Henrique</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20050406</creationdate><title>Presynaptic Na+ Channels: Locus, Development, and Recovery from Inactivation at a High-Fidelity Synapse</title><author>Leao, Ricardo M ; Kushmerick, Christopher ; Pinaud, Raphael ; Renden, Robert ; Li, Geng-Lin ; Taschenberger, Holger ; Spirou, George ; Levinson, S. Rock ; von Gersdorff, Henrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-1c9f9465fb01f8a1b74c6af699af1e679316808818adbe63bd3f35d02f2840ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Action Potentials - physiology</topic><topic>Action Potentials - radiation effects</topic><topic>Afferent Pathways - physiology</topic><topic>Afferent Pathways - radiation effects</topic><topic>Age Factors</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Brain Stem - cytology</topic><topic>Brain Stem - growth &amp; development</topic><topic>Cadmium Chloride - pharmacology</topic><topic>Cellular/Molecular</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Electric Stimulation - methods</topic><topic>Fluorescent Antibody Technique - methods</topic><topic>In Vitro Techniques</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - physiology</topic><topic>Membrane Potentials - radiation effects</topic><topic>Microscopy, Confocal - methods</topic><topic>Microscopy, Electron, Transmission - methods</topic><topic>Models, Neurological</topic><topic>NAV1.6 Voltage-Gated Sodium Channel</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Neurons - ultrastructure</topic><topic>Patch-Clamp Techniques - methods</topic><topic>Potassium Channel Blockers - pharmacology</topic><topic>Presynaptic Terminals - drug effects</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Presynaptic Terminals - ultrastructure</topic><topic>Protein Subunits - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reaction Time - physiology</topic><topic>Sodium Channel Blockers - pharmacology</topic><topic>Sodium Channels - metabolism</topic><topic>Sodium Channels - physiology</topic><topic>Synapses - drug effects</topic><topic>Synapses - physiology</topic><topic>Synapses - ultrastructure</topic><topic>Tetraethylammonium - pharmacology</topic><topic>Tetrodotoxin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leao, Ricardo M</creatorcontrib><creatorcontrib>Kushmerick, Christopher</creatorcontrib><creatorcontrib>Pinaud, Raphael</creatorcontrib><creatorcontrib>Renden, Robert</creatorcontrib><creatorcontrib>Li, Geng-Lin</creatorcontrib><creatorcontrib>Taschenberger, Holger</creatorcontrib><creatorcontrib>Spirou, George</creatorcontrib><creatorcontrib>Levinson, S. Rock</creatorcontrib><creatorcontrib>von Gersdorff, Henrique</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leao, Ricardo M</au><au>Kushmerick, Christopher</au><au>Pinaud, Raphael</au><au>Renden, Robert</au><au>Li, Geng-Lin</au><au>Taschenberger, Holger</au><au>Spirou, George</au><au>Levinson, S. Rock</au><au>von Gersdorff, Henrique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Presynaptic Na+ Channels: Locus, Development, and Recovery from Inactivation at a High-Fidelity Synapse</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2005-04-06</date><risdate>2005</risdate><volume>25</volume><issue>14</issue><spage>3724</spage><epage>3738</epage><pages>3724-3738</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Na+ channel recovery from inactivation limits the maximal rate of neuronal firing. However, the properties of presynaptic Na+ channels are not well established because of the small size of most CNS boutons. Here we study the Na+ currents of the rat calyx of Held terminal and compare them with those of postsynaptic cells. We find that presynaptic Na+ currents recover from inactivation with a fast, single-exponential time constant (24 degrees C, tau of 1.4-1.8 ms; 35 degrees C, tau of 0.5 ms), and their inactivation rate accelerates twofold during development, which may contribute to the shortening of the action potential as the terminal matures. In contrast, recordings from postsynaptic cells in brainstem slices, and acutely dissociated, reveal that their Na+ currents recover from inactivation with a double-exponential time course (tau(fast) of 1.2-1.6 ms; tau(slow) of 80-125 ms; 24 degrees C). Surprisingly, confocal immunofluorescence revealed that Na+ channels are mostly absent from the calyx terminal but are instead highly concentrated in an unusually long (approximately 20-40 microm) unmyelinated axonal heminode. Outside-out patch recordings confirmed this segregation. Expression of Na(v)1.6 alpha-subunit increased during development, whereas the Na(v)1.2alpha-subunit was not present. Serial EM reconstructions also revealed a long pre-calyx heminode, and biophysical modeling showed that exclusion of Na+ channels from the calyx terminal produces an action potential waveform with a shorter half-width. We propose that the high density and polarized locus of Na+ channels on a long heminode are critical design features that allow the mature calyx of Held terminal to fire reliably at frequencies near 1 kHz.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>15814803</pmid><doi>10.1523/JNEUROSCI.3983-04.2005</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2005-04, Vol.25 (14), p.3724-3738
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4511161
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Action Potentials - physiology
Action Potentials - radiation effects
Afferent Pathways - physiology
Afferent Pathways - radiation effects
Age Factors
Animals
Animals, Newborn
Brain Stem - cytology
Brain Stem - growth & development
Cadmium Chloride - pharmacology
Cellular/Molecular
Dose-Response Relationship, Radiation
Electric Stimulation - methods
Fluorescent Antibody Technique - methods
In Vitro Techniques
Membrane Potentials - drug effects
Membrane Potentials - physiology
Membrane Potentials - radiation effects
Microscopy, Confocal - methods
Microscopy, Electron, Transmission - methods
Models, Neurological
NAV1.6 Voltage-Gated Sodium Channel
Neurons - cytology
Neurons - drug effects
Neurons - physiology
Neurons - ultrastructure
Patch-Clamp Techniques - methods
Potassium Channel Blockers - pharmacology
Presynaptic Terminals - drug effects
Presynaptic Terminals - metabolism
Presynaptic Terminals - ultrastructure
Protein Subunits - metabolism
Rats
Rats, Sprague-Dawley
Reaction Time - physiology
Sodium Channel Blockers - pharmacology
Sodium Channels - metabolism
Sodium Channels - physiology
Synapses - drug effects
Synapses - physiology
Synapses - ultrastructure
Tetraethylammonium - pharmacology
Tetrodotoxin - pharmacology
title Presynaptic Na+ Channels: Locus, Development, and Recovery from Inactivation at a High-Fidelity Synapse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A48%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Presynaptic%20Na+%20Channels:%20Locus,%20Development,%20and%20Recovery%20from%20Inactivation%20at%20a%20High-Fidelity%20Synapse&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Leao,%20Ricardo%20M&rft.date=2005-04-06&rft.volume=25&rft.issue=14&rft.spage=3724&rft.epage=3738&rft.pages=3724-3738&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.3983-04.2005&rft_dat=%3Cpubmed_cross%3E15814803%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/15814803&rfr_iscdi=true