An itinerant antiferromagnetic metal without magnetic constituents
The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case o...
Gespeichert in:
Veröffentlicht in: | Nature communications 2015-07, Vol.6 (1), p.7701-7701, Article 7701 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7701 |
---|---|
container_issue | 1 |
container_start_page | 7701 |
container_title | Nature communications |
container_volume | 6 |
creator | Svanidze, E. Wang, Jiakui K. Besara, T. Liu, L. Huang, Q. Siegrist, T. Frandsen, B. Lynn, J. W. Nevidomskyy, Andriy H. Gamża, Monika B. Aronson, M. C. Uemura, Y. J. Morosan, E. |
description | The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case of the two such examples discovered several decades ago, the itinerant ferromagnets ZrZn
2
and Sc
3
In, the understanding of their magnetic ground states draws on the existence of 3
d
electrons subject to strong spin fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet with a spin density wave ground state, its 3
d
electron character has been deemed crucial to it being magnetic. Here, we report evidence for an itinerant antiferromagnetic metal with no magnetic constituents: TiAu. Antiferromagnetic order occurs below a Néel temperature of 36 K, about an order of magnitude smaller than in Cr, rendering the spin fluctuations in TiAu more important at low temperatures. This itinerant antiferromagnet challenges the currently limited understanding of weak itinerant antiferromagnetism, while providing insights into the effects of spin fluctuations in itinerant–electron systems.
Sc
3
In and ZrZn
2
are the only two known itinerant ferromagnets that form from non-magnetic constituents. Now, Svanidze
et al.,
evidence itinerant antiferromagnetism in TiAu below 36 K using thermodynamic, transport, muon-based and neutron-based measurements, and density functional analysis. |
doi_str_mv | 10.1038/ncomms8701 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4510670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3741315071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-46a6fb76d86fdd974d3a27f8576644b3016d04627b26c2f4007ffc373c5cb9223</originalsourceid><addsrcrecordid>eNplkV1LBCEUhiWKitqbfkAMdRPFll-jMzdBRV8QdFPX4ji6a8xoqVP073PZbdtKEMXz8J7z-gKwh-ApgqQ6c8r3faw4RGtgG0OKxohjsr5y3wKjGF9gXqRGFaWbYAszxBikeBtcXrjCJut0kC4VeVujQ_C9nDidrCp6nWRXfNg09UMqls_Ku5hsGrRLcRdsGNlFPVqcO-D55vrp6m788Hh7f3XxMFYlKdOYMslMw1lbMdO2NactkZibquSMUdoQiFgLKcO8wUxhQyHkxijCiSpVU2NMdsD5XPd1aHrdqtw7yE68BtvL8Cm8tOJ3xdmpmPh3QUsEGYdZ4GAu4PPsIiqbtJpmJ06rJBAuK1aSDB0tugT_NuiYRG-j0l0nnfZDFIjVDFV1XfKMHv5BX_wQXP6DGZV9Zc0ZdTynVPAxBm2WEyMoZhGKnwgzvL_qcYl-B5aBkzkQc8lNdFjp-V_uC26gpqM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1695761257</pqid></control><display><type>article</type><title>An itinerant antiferromagnetic metal without magnetic constituents</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Svanidze, E. ; Wang, Jiakui K. ; Besara, T. ; Liu, L. ; Huang, Q. ; Siegrist, T. ; Frandsen, B. ; Lynn, J. W. ; Nevidomskyy, Andriy H. ; Gamża, Monika B. ; Aronson, M. C. ; Uemura, Y. J. ; Morosan, E.</creator><creatorcontrib>Svanidze, E. ; Wang, Jiakui K. ; Besara, T. ; Liu, L. ; Huang, Q. ; Siegrist, T. ; Frandsen, B. ; Lynn, J. W. ; Nevidomskyy, Andriy H. ; Gamża, Monika B. ; Aronson, M. C. ; Uemura, Y. J. ; Morosan, E. ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case of the two such examples discovered several decades ago, the itinerant ferromagnets ZrZn
2
and Sc
3
In, the understanding of their magnetic ground states draws on the existence of 3
d
electrons subject to strong spin fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet with a spin density wave ground state, its 3
d
electron character has been deemed crucial to it being magnetic. Here, we report evidence for an itinerant antiferromagnetic metal with no magnetic constituents: TiAu. Antiferromagnetic order occurs below a Néel temperature of 36 K, about an order of magnitude smaller than in Cr, rendering the spin fluctuations in TiAu more important at low temperatures. This itinerant antiferromagnet challenges the currently limited understanding of weak itinerant antiferromagnetism, while providing insights into the effects of spin fluctuations in itinerant–electron systems.
Sc
3
In and ZrZn
2
are the only two known itinerant ferromagnets that form from non-magnetic constituents. Now, Svanidze
et al.,
evidence itinerant antiferromagnetism in TiAu below 36 K using thermodynamic, transport, muon-based and neutron-based measurements, and density functional analysis.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms8701</identifier><identifier>PMID: 26166042</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 140/146 ; 639/301/119/1001 ; 639/301/119/2793 ; 639/766/25 ; Antiferromagnetism ; Chromium ; Electron spin ; Ferromagnetism ; Fluctuations ; Ground state ; Humanities and Social Sciences ; Iron constituents ; Laboratories ; Low temperature ; Magnetism ; MATERIALS SCIENCE ; Metallurgical constituents ; Metals ; multidisciplinary ; Phase transitions ; Physics ; Science ; Science (multidisciplinary) ; Spin density waves</subject><ispartof>Nature communications, 2015-07, Vol.6 (1), p.7701-7701, Article 7701</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Jul 2015</rights><rights>Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-46a6fb76d86fdd974d3a27f8576644b3016d04627b26c2f4007ffc373c5cb9223</citedby><cites>FETCH-LOGICAL-c535t-46a6fb76d86fdd974d3a27f8576644b3016d04627b26c2f4007ffc373c5cb9223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510670/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510670/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26166042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1258653$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Svanidze, E.</creatorcontrib><creatorcontrib>Wang, Jiakui K.</creatorcontrib><creatorcontrib>Besara, T.</creatorcontrib><creatorcontrib>Liu, L.</creatorcontrib><creatorcontrib>Huang, Q.</creatorcontrib><creatorcontrib>Siegrist, T.</creatorcontrib><creatorcontrib>Frandsen, B.</creatorcontrib><creatorcontrib>Lynn, J. W.</creatorcontrib><creatorcontrib>Nevidomskyy, Andriy H.</creatorcontrib><creatorcontrib>Gamża, Monika B.</creatorcontrib><creatorcontrib>Aronson, M. C.</creatorcontrib><creatorcontrib>Uemura, Y. J.</creatorcontrib><creatorcontrib>Morosan, E.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>An itinerant antiferromagnetic metal without magnetic constituents</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case of the two such examples discovered several decades ago, the itinerant ferromagnets ZrZn
2
and Sc
3
In, the understanding of their magnetic ground states draws on the existence of 3
d
electrons subject to strong spin fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet with a spin density wave ground state, its 3
d
electron character has been deemed crucial to it being magnetic. Here, we report evidence for an itinerant antiferromagnetic metal with no magnetic constituents: TiAu. Antiferromagnetic order occurs below a Néel temperature of 36 K, about an order of magnitude smaller than in Cr, rendering the spin fluctuations in TiAu more important at low temperatures. This itinerant antiferromagnet challenges the currently limited understanding of weak itinerant antiferromagnetism, while providing insights into the effects of spin fluctuations in itinerant–electron systems.
Sc
3
In and ZrZn
2
are the only two known itinerant ferromagnets that form from non-magnetic constituents. Now, Svanidze
et al.,
evidence itinerant antiferromagnetism in TiAu below 36 K using thermodynamic, transport, muon-based and neutron-based measurements, and density functional analysis.</description><subject>119/118</subject><subject>140/146</subject><subject>639/301/119/1001</subject><subject>639/301/119/2793</subject><subject>639/766/25</subject><subject>Antiferromagnetism</subject><subject>Chromium</subject><subject>Electron spin</subject><subject>Ferromagnetism</subject><subject>Fluctuations</subject><subject>Ground state</subject><subject>Humanities and Social Sciences</subject><subject>Iron constituents</subject><subject>Laboratories</subject><subject>Low temperature</subject><subject>Magnetism</subject><subject>MATERIALS SCIENCE</subject><subject>Metallurgical constituents</subject><subject>Metals</subject><subject>multidisciplinary</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spin density waves</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkV1LBCEUhiWKitqbfkAMdRPFll-jMzdBRV8QdFPX4ji6a8xoqVP073PZbdtKEMXz8J7z-gKwh-ApgqQ6c8r3faw4RGtgG0OKxohjsr5y3wKjGF9gXqRGFaWbYAszxBikeBtcXrjCJut0kC4VeVujQ_C9nDidrCp6nWRXfNg09UMqls_Ku5hsGrRLcRdsGNlFPVqcO-D55vrp6m788Hh7f3XxMFYlKdOYMslMw1lbMdO2NactkZibquSMUdoQiFgLKcO8wUxhQyHkxijCiSpVU2NMdsD5XPd1aHrdqtw7yE68BtvL8Cm8tOJ3xdmpmPh3QUsEGYdZ4GAu4PPsIiqbtJpmJ06rJBAuK1aSDB0tugT_NuiYRG-j0l0nnfZDFIjVDFV1XfKMHv5BX_wQXP6DGZV9Zc0ZdTynVPAxBm2WEyMoZhGKnwgzvL_qcYl-B5aBkzkQc8lNdFjp-V_uC26gpqM</recordid><startdate>20150713</startdate><enddate>20150713</enddate><creator>Svanidze, E.</creator><creator>Wang, Jiakui K.</creator><creator>Besara, T.</creator><creator>Liu, L.</creator><creator>Huang, Q.</creator><creator>Siegrist, T.</creator><creator>Frandsen, B.</creator><creator>Lynn, J. W.</creator><creator>Nevidomskyy, Andriy H.</creator><creator>Gamża, Monika B.</creator><creator>Aronson, M. C.</creator><creator>Uemura, Y. J.</creator><creator>Morosan, E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20150713</creationdate><title>An itinerant antiferromagnetic metal without magnetic constituents</title><author>Svanidze, E. ; Wang, Jiakui K. ; Besara, T. ; Liu, L. ; Huang, Q. ; Siegrist, T. ; Frandsen, B. ; Lynn, J. W. ; Nevidomskyy, Andriy H. ; Gamża, Monika B. ; Aronson, M. C. ; Uemura, Y. J. ; Morosan, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-46a6fb76d86fdd974d3a27f8576644b3016d04627b26c2f4007ffc373c5cb9223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>119/118</topic><topic>140/146</topic><topic>639/301/119/1001</topic><topic>639/301/119/2793</topic><topic>639/766/25</topic><topic>Antiferromagnetism</topic><topic>Chromium</topic><topic>Electron spin</topic><topic>Ferromagnetism</topic><topic>Fluctuations</topic><topic>Ground state</topic><topic>Humanities and Social Sciences</topic><topic>Iron constituents</topic><topic>Laboratories</topic><topic>Low temperature</topic><topic>Magnetism</topic><topic>MATERIALS SCIENCE</topic><topic>Metallurgical constituents</topic><topic>Metals</topic><topic>multidisciplinary</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spin density waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Svanidze, E.</creatorcontrib><creatorcontrib>Wang, Jiakui K.</creatorcontrib><creatorcontrib>Besara, T.</creatorcontrib><creatorcontrib>Liu, L.</creatorcontrib><creatorcontrib>Huang, Q.</creatorcontrib><creatorcontrib>Siegrist, T.</creatorcontrib><creatorcontrib>Frandsen, B.</creatorcontrib><creatorcontrib>Lynn, J. W.</creatorcontrib><creatorcontrib>Nevidomskyy, Andriy H.</creatorcontrib><creatorcontrib>Gamża, Monika B.</creatorcontrib><creatorcontrib>Aronson, M. C.</creatorcontrib><creatorcontrib>Uemura, Y. J.</creatorcontrib><creatorcontrib>Morosan, E.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Svanidze, E.</au><au>Wang, Jiakui K.</au><au>Besara, T.</au><au>Liu, L.</au><au>Huang, Q.</au><au>Siegrist, T.</au><au>Frandsen, B.</au><au>Lynn, J. W.</au><au>Nevidomskyy, Andriy H.</au><au>Gamża, Monika B.</au><au>Aronson, M. C.</au><au>Uemura, Y. J.</au><au>Morosan, E.</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An itinerant antiferromagnetic metal without magnetic constituents</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-07-13</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>7701</spage><epage>7701</epage><pages>7701-7701</pages><artnum>7701</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case of the two such examples discovered several decades ago, the itinerant ferromagnets ZrZn
2
and Sc
3
In, the understanding of their magnetic ground states draws on the existence of 3
d
electrons subject to strong spin fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet with a spin density wave ground state, its 3
d
electron character has been deemed crucial to it being magnetic. Here, we report evidence for an itinerant antiferromagnetic metal with no magnetic constituents: TiAu. Antiferromagnetic order occurs below a Néel temperature of 36 K, about an order of magnitude smaller than in Cr, rendering the spin fluctuations in TiAu more important at low temperatures. This itinerant antiferromagnet challenges the currently limited understanding of weak itinerant antiferromagnetism, while providing insights into the effects of spin fluctuations in itinerant–electron systems.
Sc
3
In and ZrZn
2
are the only two known itinerant ferromagnets that form from non-magnetic constituents. Now, Svanidze
et al.,
evidence itinerant antiferromagnetism in TiAu below 36 K using thermodynamic, transport, muon-based and neutron-based measurements, and density functional analysis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26166042</pmid><doi>10.1038/ncomms8701</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2015-07, Vol.6 (1), p.7701-7701, Article 7701 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4510670 |
source | Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA Free Journals |
subjects | 119/118 140/146 639/301/119/1001 639/301/119/2793 639/766/25 Antiferromagnetism Chromium Electron spin Ferromagnetism Fluctuations Ground state Humanities and Social Sciences Iron constituents Laboratories Low temperature Magnetism MATERIALS SCIENCE Metallurgical constituents Metals multidisciplinary Phase transitions Physics Science Science (multidisciplinary) Spin density waves |
title | An itinerant antiferromagnetic metal without magnetic constituents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20itinerant%20antiferromagnetic%20metal%20without%20magnetic%20constituents&rft.jtitle=Nature%20communications&rft.au=Svanidze,%20E.&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2015-07-13&rft.volume=6&rft.issue=1&rft.spage=7701&rft.epage=7701&rft.pages=7701-7701&rft.artnum=7701&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms8701&rft_dat=%3Cproquest_pubme%3E3741315071%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1695761257&rft_id=info:pmid/26166042&rfr_iscdi=true |